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Abstract. In this work, we study the following nonlinear homogeneous Neumann
boundary value problem β(u)−diva(x,∇u)∋ f in Ω, a(x,∇u) ·η= 0 on ∂Ω, where Ω

is a smooth bounded open domain in R
N , N≥3 with smooth boundary ∂Ω and η the

outer unit normal vector on ∂Ω. We prove the existence and uniqueness of an entropy
solution for L1-data f . The functional setting involves Lebesgue and Sobolev spaces
with variable exponent.
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1 Introduction

The paper is motivated by phenomena which are described by the homogeneous Neu-
mann boundary value problem of the form

{

β(u)−diva(x,∇u)∋ f , in Ω,
a(x,∇u)·η=0, on ∂Ω,

(1.1)

where η is the unit outward normal vector on ∂Ω, Ω is a smooth bounded open domain
in R

N,N≥3,β= ∂j is a maximal monotone graph in R
2 with dom(β) bounded on R and

0∈β(0), f ∈L1(Ω) and a is a Leray-Lions operator which involves variable exponents.
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Note that j is a nonnegative, convex and l.s.c. function on R and, ∂j is the subdiffer-
ential of j. We set

dom(β)= [m,M]⊂R with m≤0≤M.

Recall that a Leray-Lions operator which involves variable exponents is a
Carathéodory function a(x,ξ) :Ω×R

N −→R
N (i.e. a(x,ξ) is continuous in ξ for a.e. x∈Ω

and measurable in x for every ξ∈R
N) such that:

• There exists a positive constant C1 such that

|a(x,ξ)|≤C1(j(x)+|ξ|p(x)−1), (1.2)

for almost every x∈Ω and for every ξ∈R
N where j is a nonnegative function in Lp′(.)(Ω),

with 1/p(x)+1/p′(x)=1.

• The following inequalities hold

(a(x,ξ)−a(x,η))·(ξ−η)>0, (1.3)

for almost every x∈Ω and for every ξ,η∈R
N , with ξ 6=η, and

1

C
|ξ|p(x)≤ a(x,ξ)·ξ, (1.4)

for almost every x∈Ω,C>0 and for every ξ∈R
N .

In this paper, we make the following assumption on the variable exponent:

p(·) : Ω→R is a continuous function such that 1< p−≤ p+<+∞, (1.5)

where p− :=essinfx∈Ω p(x) and p+ :=esssupx∈Ω
p(x).

As the exponent p(·) appearing in (1.2) and (1.4) depends on the variable x, the func-
tional setting for the study of problem (1.1) involves Lebesgue and Sobolev spaces with

variable exponents Lp(·)(Ω) and W1,p(·)(Ω). In the next section, we will make a brief
presentation of the variable exponent spaces.

Many results are known as regards to elliptic problems in the variational setting for
Dirichlet or Dirichlet-Neumann problems (cf. [1–9]).

Problem (1.1) can be viewed as an extension of the following

{

b(u)−diva(x,∇u)= f , in Ω,
a(x,∇u)·η=0, on ∂Ω,

(1.6)

where Ω is a smooth bounded open domain in R
N ,N ≥ 3 and η the outer unit normal

vector on ∂Ω. b : R → R is a continuous, nondecreasing function, surjective such that
b(0)=0, f ∈L1(Ω) and a is a Lerray-Lions operator which involves variable exponents.

Problem (1.6) was studied by Bonzi, Nyanquini and Ouaro (cf. [2]) where they proved
the existence and uniqueness of an entropy solution. An equivalent notion of solution is
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called renormalized solution. The concept of renormalized solutions was introduced by
Diperna and Lions in [10]. This notion was then adapted to the study of various problems
of PDEs. In [9], Wittbold and Zimmermann adapted this notion of solution to a new and
interesting problem of the form

{

β(u)−diva(x,∇u)−divF(u)∋ f , in Ω,
u=0, on ∂Ω.

(1.7)

They proved for F locally Lipschitz continuous, β maximal monotone mapping with
0 ∈ β(0), f ∈ L1(Ω) and a continuous exponent p(·), the existence and uniqueness of a
renormalized solution for problem (1.7).

In this work, we consider an homogeneous Neumann boundary condition instead
of the Dirichlet boundary condition considered in [9]. One of the main difficulty which
appears in this case is the famous Poincaré inequality which dœsn’t apply and even the
Poincaré-Wirtinger inequality also. An other difficulty is that, since we assume that the
domain of β is bounded, it appears in the definition of the solution, a bounded Radon
diffuse measure in order to take into account the border of the domain. The techniques
used in this work are close to those used in [5, 7].

We denote by Mb(Ω) the space of bounded Radon measure in Ω, equipped with
its standard norm ||·||Mb(Ω). Given ν ∈Mb(Ω), we say that ν is diffuse with respect

to the capacity W1,p(·)(Ω)(p(·)−capacity for short) if ν(E) = 0 for every set E such that
Capp(·)(E,Ω)=0, where the Sobolev p(·)-capacity of E is defined by

Capp(·)(E,Ω)= inf
u∈Sp(·)(E)

∫

Ω

(

|u|p(x)+|∇u|p(x)
)

dx,

with

Sp(·)(E)={u∈W1,p(·)(Ω) : u≥1 in an open set containing E and u≥0 in Ω}.

In the case Sp(·)(E) =∅, we set Capp(·)(E,Ω) =+∞. The set of bounded Radon diffuse

measure in the variable exponent setting is denoted by M
p(·)
b (Ω).

The remaining part of the paper is the following: in Section 2, we introduce some
notations and functional spaces. In Section 3, we prove the existence of entropy solution
to the problem (1.1) and in Section 4, we prove the uniqueness of entropy solution.

2 Assumptions and preliminary

As the exponent p(·) appearing in (1.2) and (1.4) depends on the variable x, we must
work with Lebesgue and Sobolev spaces with variable exponents.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all mea-
surable function u : Ω−→R for which the convex modular

ρp(·)(u) :=
∫

Ω

|u|p(x)dx



4 S. Ouaro and A. Ouedraogo / J. Partial Diff. Eq., 27 (2014), pp. 1-27

is finite. If the exponent is bounded, i.e., if p+<+∞, then the expression

|u|p(·) := inf{λ>0 : ρp(·)(u/λ)≤1}

defines a norm in Lp(·)(Ω), called the Luxembourg norm. The space (Lp(·)(Ω),|·|p(·)) is

a separable Banach space. Moreover, if 1 < p− ≤ p+ <+∞, then Lp(·)(Ω) is uniformly
convex, hence reflexive, and its dual space is isomorphic to Lp′(·)(Ω), where

1

p(x)
+

1

p′(x)
=1.

Finally, we have the Hölder type inequality:

∣

∣

∣

∫

Ω

uvdx
∣

∣

∣
≤
( 1

p−
+

1

p+

)

|u|p(·)|v|p′(·), (2.1)

for all u∈Lp(·)(Ω) and v∈Lp′(·)(Ω).
Now, let

W1,p(·)(Ω) :=
{

u∈Lp(·)(Ω) : |∇u|∈Lp(·)(Ω)
}

,

which is a Banach space equipped with the following norm

||u||1,p(·)= |u|p(·)+|(|∇u|)|1,p(·).

The space (W1,p(·)(Ω),||u||1,p(·)) is a separable and reflexive Banach space. For the in-
terested reader, more details about Lebesgue and Sobolev spaces with variable exponent
can be found in [11] (see also [12]).

An important role in manipulating the generalized Lebesgue and Sobolev spaces is
played by the modular ρp(·) of the space Lp(·)(Ω). We have the following result (cf. [13]):

Lemma 2.1. If un,u∈Lp(·)(Ω) and p+<+∞, then the following properties hold:

1. |u|p(·)>1 =⇒ |u|
p−
p(·)

≤ρp(·)(u)≤|u|
p+
p(·)

;

2. |u|p(·)<1 =⇒ |u|
p+
p(·)

≤ρp(·)(u)≤|u|
p−
p(·)

;

3. |u|p(·)<1 (respectively =1;>1) ⇐⇒ ρp(·)(u)<1 (respectively =1;>1);

4. |un|p(·)−→0 (respectively −→+∞)⇐⇒ρp(·)(un)−→0 (respectively −→+∞);

5. ρp(·)

(

u/|u|p(·)
)

=1.

For a measurable function u : Ω→R, we introduce the function

ρ1,p(·)(u) :=
∫

Ω

|u|p(x)dx+
∫

Ω

|∇u|p(x)dx.

Then we have the following lemma (see [14, 15]).
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Lemma 2.2. If u∈W1,p(·)(Ω), then the following properties hold:

1. |u|1,p(·)>1 =⇒ |u|
p−
1,p(·)

≤ρ1,p(·)(u)≤|u|
p+
1,p(·)

;

2. |u|1,p(·)<1 =⇒ |u|
p+
1,p(·)

≤ρ1,p(·)(u)≤|u|
p−
1,p(·)

;

3. |u|1,p(·)<1 (respectively =1;>1) ⇐⇒ ρ1,p(·)(u)<1 (respectively =1;>1).

For any given l,k>0, we define the function hl by hl(r)=min
(

(l+1−|r|)+ ,1
)

and the
truncation function Tk : R→R by Tk(s)=max{−k,min(k,s)}.

For any l0, we consider the function h0=hl0 defined by

{

h0 ∈C1
c (R), h0(r)≥0, ∀r∈R,

h0(r)=1 if |r|≤ l0 and h0(r)=0 if |r|≥ l0+1.

Let γ be a maximal monotone operator defined on R. We recall the definition of the main
section γ0 of γ:

γ0(s)=







the element of minimal absolute value of γ(s), if γ(s) 6=∅,
+∞, if [s,+∞)∩D(γ)=∅,
−∞, if (−∞,s]∩D(γ)=∅.

We write for any u :Ω→R and k≥0,{|u|≤k(<k,>k,≥k,=k)} for the set {x∈Ω/|u(x)|≤
k(< k,> k,≥ k,= k)}.

Before introducing the notion of entropy solution for the problem (1.1), we define the
following spaces which are similar to that introduced in [16, 17]. We note

T 1,p(·)(Ω) :=
{

u : Ω−→R measurable; Tk(u)∈W1,p(·)(Ω) for all k>0
}

.

As in [17], we can prove that for u∈T 1,p(·)(Ω), there exists a unique measurable function
w : Ω−→R such that ∇Tk(u)=wχ{|w|<k} ∀k>0. This function w will be denoted ∇u.

We define T
1,p(·)
H (Ω) (see [2]) as the set of functions u∈T 1,p(·)(Ω) such that there exists

a sequence (uδ)δ>0∈W1,p(·)(Ω) satisfying the following conditions:

(i) uδ−→u a.e. in Ω.

(ii) ∇Tk(uδ)−→∇Tk(u) in L1(Ω) for any k>0.

The symbol H in the notation is related to the fact that we consider here homogeneous
Neumann boundary condition.

To end this section, we give some useful convergence results.

Lemma 2.3. Let (βn)n≥1 be a sequence of maximal monotone graphs such that βn → β in the
sense of graphs (i.e. for (x,y)∈ β, there exists (xn,yn)∈ βn such that xn → x and yn → y). We
consider two sequences (zn)n≥1⊂ L1(Ω) and (wn)n≥1⊂ L1(Ω). We suppose that:

∀n≥1,wn∈βn(zn),(wn)n≥1 is bounded in L1(Ω) and zn → z in L1(Ω). Then z∈dom(β).
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Proof. For the proof of Lemma 2.3, we need the “biting lemma of Chacon”. Let us recall
it.

Lemma 2.4. (The “biting lemma of Chacon”) [19]. Let Ω⊂R
N be a bounded open domain

and ( fn)n≥1 a bounded sequence in L1(Ω). Then there exists f ∈L1(Ω), a sequence ( fnk
)k≥1 and

a sequence of measurable sets (Ej)j≥1,Ej⊂Ω,∀j∈N
∗ with Ej+1⊂Ej and limj→+∞ |Ej|=0, such

that for any j∈N
∗, fnk

⇀ f in L1(Ω\Ej).

Since the sequence (wn)n≥1 is bounded in L1(Ω), using the “biting lemma of Chacon”,
there exists w∈L1(Ω), a subsequence (wnk

)k≥1 and a sequence of measurable sets (Ej)j∈N∗

in Ω such that ∀j∈N
∗,Ej+1⊂Ej,limj→+∞ |Ej|=0 and ∀j∈N

∗,wnk
⇀w in L1(Ω\Ej). Since

znk
⇀ z in L1(Ω) and so in L1(Ω\Ej),∀j∈N and βnk

→ β in the sense of graphs, we have
w∈β(z) a.e. in Ω\Ej. Thus z∈dom(β) a.e. in Ω\Ej. Finally, we obtain z∈dom(β) a.e. in
Ω.

Lemma 2.5. (cf. [13], Theorem 1.4) Let u,un∈Lp(·)(Ω), n=1,2,··· . Then the following state-
ments are equivalent to each other:

1) lim
n→+∞

|un−u|p(·)=0;

2) lim
n→+∞

ρp(·)(un−u)=0;

3) un converges to u in Ω in measure and

lim
n→+∞

ρp(·)(un)=ρp(·)(u).

Lemma 2.6. (Lebesgue generalized convergence theorem) Let ( fn)n∈N be a sequence of
measurable functions and f a measurable function such that fn → f a.e. in Ω. Let (gn)n∈N ⊂
L1(Ω) such that for all n∈N, | fn|≤ gn a.e. in Ω and gn → g in L1(Ω). Then

∫

Ω

fn dx→
∫

Ω

f dx.

3 Statement of the main results

We introduce the following concepts of solution for problem (1.1).

Definition 3.1. A solution of (1.1) is a couple (u,b)∈T
1,p(·)
H (Ω)×L1(Ω), such that















u∈dom(β)LN −a.e. in Ω, b∈β(u)LN−a.e. in Ω,

there exists µ∈M
p(·)
b (Ω) with µ⊥LN ,

µ+ is concentrated on {u=M}, µ− is concentrated on {u=m},

and
∫

Ω

a(x,∇u)·∇ϕdx+
∫

Ω

bϕdx+
∫

Ω

ϕdµ=
∫

Ω

f ϕdx, ∀ ϕ∈W1,p(·)(Ω)∩L∞(Ω). (3.1)
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Remark 3.1. If (u,b) is a solution of the problem (1.1) then, it satisfy the following entropic
formulation

∫

Ω

a(x,∇u)·∇Tk(u−ξ)dx+
∫

Ω

bTk(u−ξ)dx≤
∫

Ω

f Tk(u−ξ)dx, (3.2)

for any ξ∈W1,p(·)(Ω)∩L∞(Ω) such that ξ∈dom(β) LN−a.e. in Ω.

Our main result is the following.

Theorem 3.1. Assume that (1.2)-(1.5) hold true and f ∈ L1(Ω), there exists a unique entropy
solution to problem (1.1). Moreover

lim
m→+∞

∫

[m≤|u|≤m+1]
|∇u|p(x)dx=0. (3.3)

Proof. The proof of Theorem 3.1 is divided into several steps.

3.1 Regularized problem

For every ǫ>0, we consider the Yosida regularisation βǫ of β given by

βǫ =
1

ǫ

(

I−(I+ǫβ)−1
)

,

and we set

jǫ(s)=min
r∈R

{ 1

2ǫ
|s−r|2+ j(r)

}

, ∀s∈R, ∀ǫ>0.

According to Proposition 2.11 in [18], we have























dom(β)⊂dom(j)⊂dom(j)⊂dom(β).

jǫ(s)=
ǫ

2

∣

∣βǫ(s)
∣

∣

2
+ j(Jǫ), where Jǫ =(I+ǫβ)−1,

jǫ is convex, Frechet-differentiable and βǫ =∂jǫ,

jǫ ↑ j as ǫ↓0.

Note that βǫ is a nondecreasing and Lipschitz-continuous function. We also define the
function fǫ by fǫ(x) = T1

ǫ

(

f (x)
)

for any x ∈ Ω. Then
(

fǫ

)

ǫ>0
is a sequence of bounded

functions which converges strongly to f ∈L1(Ω) and such that

‖ fǫ‖1≤‖ f‖1 , ∀ ǫ>0.

Lemma 3.1. The Yosida regularisation βǫ is a surjective operator.
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Proof. Since dom(β)⊂ [m,M], then ∀ r∈ R, Jǫ(r)=
(

I+ǫβ
)−1

(r)∈ [m,M]. Consequently

lim
r→+∞

βǫ(r)= lim
r→+∞

r− Jǫ(r)

ǫ
=+∞,

and

lim
r→−∞

βǫ(r)= lim
r→−∞

r− Jǫ(r)

ǫ
=−∞.

As βǫ is a maximal monotone graph, thanks to ([18], Corollaire 2.3), we conclude that βǫ

is surjective.

Now, we consider the approximated problem

{

βǫ

(

uǫ

)

−diva(x,∇uǫ)= fǫ, in Ω,
a(x,∇uǫ)·η=0, on ∂Ω,

(3.4)

where the notation uǫ is used for any solution of the problem (3.4).

Definition 3.2. A weak solution of (3.4) is a measurable function uǫ ∈ W1,p(·)(Ω) such that
βǫ

(

uǫ

)

∈L∞(Ω) and

∫

Ω

βǫ

(

uǫ

)

ϕdx+
∫

Ω

a(x,∇uǫ)·∇ϕdx=
∫

Ω

fǫ ϕdx, ∀ϕ∈W1,p(·)(Ω). (3.5)

We have the following result according to [2].

Theorem 3.2. Assume that (1.2)-(1.5) hold and fǫ ∈ L∞(Ω). Then, there exists a unique weak
solution uǫ to problem (3.4).

3.2 A priori estimates

Lemma 3.2. Assume that (1.2)-(1.5) hold and f ∈ L1(Ω). Let uǫ be a weak solution of (3.4).
Then, for all k>0,

∫

Ω

|∇Tk(uǫ)|
p(x)dx≤Ck‖ f‖1 , (3.6)

and
∫

Ω

βǫ(uǫ)Tk(uǫ)dx≤Ck|| f ||1, (3.7)

where C is a positive constant.

Proof. Taking ϕ=Tk(uǫ) as a test function in (3.5), we get

∫

Ω

βǫ

(

uǫ

)

Tk(uǫ)dx+
∫

Ω

a(x,∇uǫ)·∇Tk(uǫ)dx=
∫

Ω

fǫTk(uǫ)dx. (3.8)
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Using (1.4) and the fact that βǫ is nondecreasing and βǫ(0)=0, we deduce from (3.8) that

C1

∫

Ω

|∇Tk(uǫ)|
p(x)dx≤

∫

Ω

fǫTk(uǫ)dx≤
∫

Ω

| fǫTk(uǫ)|dx≤ k‖ f‖1 .

Then,
∫

Ω

|∇Tk(uǫ)|
p(x)dx≤Ck‖ f‖1 .

Now, using (1.4), we have a(x,∇Tk(uǫ))·∇Tk(uǫ)≥ C1|∇Tk(uǫ)|
p(x) ≥ 0. Then, we get

from (3.8) that
∫

Ω

βǫ

(

uǫ

)

Tk(uǫ)dx≤
∫

Ω

fǫTk(uǫ)dx≤ kC‖ f‖1 .

The proof is complete.

Lemma 3.3. The sequence (βǫ(uǫ))ǫ>0 is uniformly bounded in L1(Ω).

Proof. According to (3.7), we get

∫

Ω

βǫ(uǫ)
1

k
Tk(uǫ)dx≤C‖ f‖1 ,

which gives, if we let k→0,
∫

Ω

|βǫ(uǫ)|dx≤C‖ f‖1 .

The proof is complete.

Lemma 3.4. The sequence (βǫ(Tk(uǫ)))ǫ>0 is uniformly bounded in L1(Ω).

Proof. We have for all k>0,

∫

Ω

∣

∣βǫ

(

Tk(uǫ)
)∣

∣dx=
∫

{|uǫ|≤k}
|βǫ(uǫ)|dx+

∫

{uǫ>k}
|βǫ(k)|dx+

∫

{uǫ<−k}
|βǫ(−k)|dx

≤
∫

{|uǫ|≤k}
|βǫ(uǫ)|dx+

∫

{uǫ>k}
|βǫ(uǫ)|dx+

∫

{uǫ<−k}
|βǫ(uǫ)|dx

=
∫

Ω

|βǫ(uǫ)|dx.

Then, according to Lemma 3.3, (βǫ(Tk(uǫ)))ǫ>0 is uniformly bounded in L1(Ω).

Lemma 3.5. Assume that (1.2)-(1.5) hold true and f ∈L1(Ω). Let uǫ be a weak solution of (3.4),
then

meas{|uǫ|> k}≤
C‖ f‖1

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) , for k>0 large enough, (3.9)
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and

meas{|∇uǫ|> k}≤
C(k+1)

kp−
+

const
(

‖ f‖1

)

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) , for k>0 large enough, (3.10)

where C is a positive constant.

Proof. We start by the proof of (3.9). By Lemma 3.3, we have
∫

Ω

|βǫ(uǫ)|dx≤C‖ f‖1 ,

which implies that
∫

{|uǫ|>k}
|βǫ(uǫ)|dx≤C‖ f‖1 . (3.11)

Since βǫ is nondecreasing and βǫ(0)=0, we have

uǫ > k ⇒ βǫ(k)≤βǫ(uǫ) ⇒ βǫ(k)≤
∣

∣βǫ(uǫ)
∣

∣,

and
uǫ <−k ⇒ βǫ(−k)≥βǫ(uǫ) ⇒ |βǫ(−k)|≤

∣

∣βǫ(uǫ)
∣

∣.

Then, we deduce from (3.11) that

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

)

∫

{|uǫ|>k}
dx ≤ C‖ f‖1 ,

i.e.

meas{|uǫ|> k}≤
C‖ f‖1

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) .

Now, we prove (3.10). For k,λ≥0, set

Φ(k,λ)=meas{|∇uǫ|
p− >λ, |uǫ|> k}.

According to (3.9), we have

Φ(k,0)≤
C‖ f‖1

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) , for k>0 large enough. (3.12)

Using the fact that the function λ 7→Φ(k,λ) is nonincreasing, we get for k> 0 and λ> 0
that

Φ(0,λ)=
1

λ

∫ λ

0
Φ(0,λ)ds≤

1

λ

∫ λ

0
Φ(0,s)ds

≤
1

λ

∫ λ

0

[

Φ(0,s)+
(

Φ(k,0)−Φ(k,s)
)]

ds

≤Φ(k,0)+
1

λ

∫ λ

0

(

Φ(0,s)−Φ(k,s)
)

ds.
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Observe that since

Φ(0,s)−Φ(k,s)=meas{|uǫ|≤ k,|∇uǫ |
p−

> s},

we obtain
∫

∞

0

(

Φ(0,s)−Φ(k,s)
)

ds=
∫

{|uǫ|≤k}
|∇uǫ|

p−dx. (3.13)

Note that
∫

{|uǫ|≤k}
|∇uǫ|

p−dx=
∫

{|uǫ|≤k,|∇uǫ|>1}
|∇uǫ|

p−dx+
∫

{|uǫ|≤k,|∇uǫ|≤1}
|∇uǫ|

p−dx

≤
∫

{|uǫ|≤k,|∇uǫ|>1}
|∇uǫ|

p(x)dx+meas(Ω)

≤
∫

{|uǫ|≤k}
|∇uǫ|

p(x)dx+meas(Ω).

By the inequalities above, thanks to (3.6), we obtain

∫

{|uǫ|≤k}
|∇uǫ|

p−dx≤C(k+1). (3.14)

Combining (3.13) and (3.14), we obtain

∫

∞

0

(

Φ(0,s)−Φ(k,s)
)

ds≤C(k+1). (3.15)

Coming back to (3.12) and using (3.15) we arrive at

Φ(0,λ)≤
C(k+1)

λ
+

C|| f ||1

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) , for all λ>0,k large enough.

In particular,

Φ(0,λ)≤
C(k+1)

λ
+

C|| f ||1

min
(

βǫ(k),
∣

∣βǫ(−k)
∣

∣

) , for all λ≥1,k large enough. (3.16)

Setting λ= kp− in (3.16) gives (3.10).

3.3 Convergence results

Lemma 3.6. (i) For all k>0,Tk(uǫ)→Tk(u) in Lp− and a.e. in Ω, as ǫ→0.

(ii) There exists a measurable function u : Ω→R such that u∈dom(β) a. e. in Ω and uǫ →u in
measure and a.e. in Ω, as ǫ→0.
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Proof. For k> 0, the sequence (∇Tk(uǫ))ǫ>0 is bounded in Lp(·)(Ω); hence the sequence

(Tk(uǫ))ǫ>0 is bounded in W1,p(·)(Ω). Then, up to a subsequence we can assume that for

any k>0, (Tk(uǫ))ǫ>0 converges weakly to σk in W1,p(·)(Ω) and so (Tk(uǫ))ǫ>0 converges
strongly to σk in Lp− . Let s>0 and define

En :={|un|> k}, Em :={|um|> k} and En,m :={
∣

∣Tk(un)−Tk(um)
∣

∣> s},

where k>0 is to be fixed. We note that

{|un−um|> s}⊂En∪Em∪En,m

and hence
meas{|un−um|> s}≤ meas(En)+meas(Em)+meas(En,m). (3.17)

Let ǫ>0. Using Lemma 3.5, we choose k= k(ǫ) such that

meas(En)≤
ǫ

3
and meas(Em)≤

ǫ

3
. (3.18)

Since
(

Tk(uǫ)
)

ǫ>0
converges strongly in Lp−(Ω), then it is a Cauchy sequence in Lp−(Ω).

Thus,

meas(En,m)≤
1

sp−

∫

Ω

∣

∣Tk(un)−Tk(um)
∣

∣

p−dx≤
ǫ

3
, (3.19)

for all n,m≥n0(s,ǫ).
Finally, from (3.17)-(3.19), we obtain

meas{|un−um|> s}≤ ǫ, for all n,m≥n0(s,ǫ). (3.20)

Hence, the sequence (uǫ)ǫ>0 is a Cauchy sequence in measure. We can extract a subse-
quence such that uǫ → u a.e. in Ω. As for k > 0, Tk is continuous, then Tk(uǫ)→ Tk(u)
a.e. in Ω and σk = Tk(u) a.e. in Ω. Finally, using Lemma 2.3 we deduce that for all
k>0, Tk(u)∈ dom(β) a.e. in Ω and as dom(β) is bounded, we deduce that u∈ dom(β)
a.e. in Ω.

Lemma 3.7. For all k>0,

(i) a(x,∇Tk(uǫ))⇀ a(x,∇Tk(u)) in
(

Lp′(·)(Ω)
)N

,

(ii) ∇Tk(uǫ)→∇Tk(u) a.e. in Ω,

(iii) a(x,∇Tk(uǫ))·∇Tk(uǫ)→ a(x,∇Tk(u))·∇Tk(u) strongly in L1(Ω) and a.e. in Ω,

(iv) ∇Tk(uǫ)→∇Tk(u) in
(

Lp(·)(Ω)
)N

.

Proof. (i) The sequence
(

a(x,∇Tk(uǫ))
)

ǫ>0
is bounded in

(

Lp′(·)(Ω)
)N

according to (1.2).

We can extract a subsequence such that a(x,∇Tk(uǫ))⇀Φk in
(

Lp′(·)(Ω)
)N

. We have to
show that Φk = a(x,∇Tk(u)) a.e. x∈Ω. The proof consists of four steps.



L1 Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations 13

Step 1: We prove that for every function h∈W1,+∞(Ω), h≥0 with a compact support
(supp (h)⊂ [−l,l]⊂R),

limsup
ǫ→0

∫

Ω

a(x,∇uǫ)·∇
[

h(uǫ)(Tk(uǫ)−Tk(u))
]

dx≤0. (3.21)

Let us take ϕ=h(uǫ)(Tk(uǫ)−Tk(u)), k>0 as a test function in (3.5). We have
∫

Ω

a(x,∇uǫ)·∇
[

h(uǫ)
(

Tk(uǫ)−Tk(u)
)

]

dx+
∫

Ω

βǫ(uǫ)h(uǫ)
(

Tk(uǫ)−Tk(u)
)

dx

=
∫

Ω

fǫh(uǫ)
(

Tk(uǫ)−Tk(u)
)

dx. (3.22)

For any r>0, sufficiently small, we consider

ur =(u∧(M−r))∨(m+r).

For any k>0, Tk(ur)∈W1,p(·)(Ω). Furthermore, we have
∫

Ω

βǫ

(

uǫ

)

h(uǫ)
(

Tk(uǫ)−Tk(u)
)

dx

=
∫

Ω

h(uǫ)βǫ

(

uǫ

)(

Tk(uǫ)−Tk(ur)
)

dx+
∫

Ω

h(uǫ)βǫ

(

uǫ

)(

Tk(ur)−Tk(u)
)

dx

=
∫

Ω

h(uǫ)
(

βǫ(uǫ)−βǫ(ur)
)(

Tk(uǫ)−Tk(ur)
)

dx+
∫

Ω

h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

dx

+
∫

Ω

h(uǫ)βǫ

(

uǫ

)(

Tk(ur)−Tk(u)
)

dx

≥
∫

Ω

h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

dx+
∫

Ω

h(uǫ)βǫ

(

uǫ

)(

Tk(ur)−Tk(u)
)

dx

= : I1+ I2, (since h≥0 and βǫ is nondecreasing).

Note that
m+r≤ur ≤M−r.

Since βǫ is nondecreasing we have

βǫ(m+r)≤βǫ(ur)≤βǫ(M−r)⇒
∣

∣βǫ(ur)
∣

∣≤max
{
∣

∣βǫ(m+r)
∣

∣,
∣

∣βǫ(M−r)
∣

∣

}

.

We deduce that h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

∈L1(Ω).
Since

h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

→ h(u)β0

(

ur

)(

Tk(u)−Tk(ur)
)

a.e. in Ω as ǫ→0,

using Lebesgue dominated convergence theorem, we get

lim
ǫ→0

I1= lim
ǫ→0

∫

Ω

h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

dx

=
∫

Ω

h(u)β0

(

ur

)(

Tk(u)−Tk(ur)
)

dx. (3.23)



14 S. Ouaro and A. Ouedraogo / J. Partial Diff. Eq., 27 (2014), pp. 1-27

The term I2 can be written as

I2=
∫

Ω

fǫh(uǫ)
(

Tk(ur)−Tk(u)
)

dx−
∫

Ω

a(x,∇uǫ)·∇
[

h(uǫ)
(

Tk(ur)−Tk(u)
)]

dx

=
∫

Ω

fǫh(uǫ)
(

Tk(ur)−Tk(u)
)

dx−
∫

Ω

h(uǫ)a(x,∇uǫ)·∇
(

Tk(ur)−Tk(u)
)

dx

−
∫

Ω

h′(uǫ)
(

Tk(ur)−Tk(u)
)

a(x,∇uǫ)·∇uǫ dx.

Note that fǫh(uǫ)
(

Tk(ur)−Tk(u)
)

→0 a.e. in Ω as r→0,

∣

∣ fǫh(uǫ)
(

Tk(ur)−Tk(u)
)
∣

∣≤2kl| f |∈L1(Ω).

Then, by the Lebesgue dominated convergence theorem, we get

lim
r→0

∫

Ω

fǫh(uǫ)
(

Tk(ur)−Tk(u)
)

dx=0. (3.24)

As h(uǫ)a(x,∇uǫ)=h(uǫ)a(x,∇Tl(uǫ)) is uniformly bounded in
(

Lp′(·)(Ω)
)N

(by assump-

tion (1.2) and relation (3.6)) and ∇
(

Tk(ur)−Tk(u)
)

⇀0 as r→0, then

lim
r→0

∫

Ω

h(uǫ)a(x,∇uǫ)·∇
(

Tk(ur)−Tk(u)
)

dx=0. (3.25)

Recall that m+r≤ur ≤M−r and by Lemma 3.6 (part (ii)), u∈dom(β)⊂ [m,M]. Then

|Tk(ur)−Tk(u)|≤ r.

Thus, for the third term of I2, we have
∣

∣

∣

∣

∫

Ω

h′(uǫ)
(

Tk(ur)−Tk(u)
)

a(x,∇uǫ)·∇uǫ dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

h′(uǫ)
(

Tk(ur)−Tk(u)
)

a(x,∇Tl(uǫ))·∇Tluǫ dx

∣

∣

∣

∣

≤rC(h)
∫

Ω

a(x,∇Tl(uǫ))·∇Tl(uǫ)dx

≤rC(h)

[

∫

Ω

fǫTl(uǫ)dx−
∫

Ω

βǫ(uǫ)Tl(uǫ)dx

]

≤rC(h,l,Ω,‖ f‖1),

where C(h,l,Ω,‖ f‖1) is a constant depending on h,l,Ω and ‖ f‖1. Then, we get

lim
r→0

∫

Ω

h′(uǫ)
(

Tk(ur)−Tk(u)
)

a(x,∇uǫ)·∇uǫ dx=0. (3.26)

Therefore, combining (3.24)-(3.26) we obtain

lim
r→0

I2= lim
r→0

∫

Ω

h(uǫ)βǫ

(

uǫ

)(

Tk(ur)−Tk(u)
)

dx=0. (3.27)
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Now, let us see that
h(u)β0

(

ur

)(

Tk(u)−Tk(ur)
)

≥0.

Indeed,

h(u)β0

(

ur

)(

Tk(u)−Tk(ur)
)

=h(u)β0(M−r)
(

Tk(u)−Tk(M−r)
)

χ{M−r≤u≤M}

+h(u)β0(m+r)
(

Tk(u)−Tk(m+r)
)

χ{m≤u≤m+r}≥0,

since 0∈β(0),m+r≤0≤M−r and Tk is nondecreasing. It follows that

lim
ǫ→0

∫

Ω

h(uǫ)βǫ

(

ur

)(

Tk(uǫ)−Tk(ur)
)

dx≥0. (3.28)

We also have fǫh(uǫ)
(

Tk(uǫ)−Tk(u)
)

→0 a.e. in Ω as ǫ→0,

∣

∣ fǫh(uǫ)
(

Tk(uǫ)−Tk(u)
)
∣

∣≤2kl| f |∈L1(Ω).

Then, by the Lebesgue generalized convergence theorem, we get

lim
ǫ→0

∫

Ω

fǫh(uǫ)
(

Tk(uǫ)−Tk(u)
)

dx=0. (3.29)

Passing to the limit in (3.22) as ǫ→0 and combining (3.27)-(3.29), we obtain (3.21).

Step 2: We prove that

limsup
l→+∞

limsup
ǫ→0

∫

{l<|uǫ|<l+1}
a(x,∇uǫ)·∇uǫ dx≤0. (3.30)

Let us take for l>0, ϕ=T1(uǫ−Tl(uǫ)) as a test function in (3.5). We have
∫

Ω

a(x,∇uǫ)·∇T1

(

uǫ−Tl(uǫ)
)

dx+
∫

Ω

βǫ

(

uǫ

)

T1

(

uǫ−Tl(uǫ)
)

dx

=
∫

Ω

fǫT1

(

uǫ−Tl(uǫ)
)

dx. (3.31)

We have

T1

(

uǫ−Tl(uǫ)
)

=







T1

(

uǫ+l
)

, if uǫ <−l,
0, if |uǫ|< l,
T1

(

uǫ−l
)

, if uǫ > l.

Then

βǫ(uǫ)T1

(

uǫ−Tl(uǫ)
)

=







βǫ(uǫ)T1

(

uǫ+l
)

, if uǫ <−l,
0, if |uǫ|< l,
βǫ(uǫ)T1

(

uǫ−l
)

, if uǫ > l.

If uǫ <−l or uǫ > l, then uǫ and T1

(

uǫ−Tl(uǫ)
)

have the same sign. We conclude that the
second term of the left-hand side of (3.31) is nonnegative, i.e.

∫

Ω

βǫ

(

uǫ

)

T1

(

uǫ−Tl(uǫ)
)

dx≥0. (3.32)
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The first term of (3.31) is written as follows

∫

Ω

a(x,∇uǫ)·∇T1

(

uǫ−Tl(uǫ)
)

dx=
∫

{l<|uǫ|<l+1}
a(x,∇uǫ)·∇uǫ dx. (3.33)

As in step 1, we show that

lim
ǫ→0

∫

Ω

fǫT1

(

uǫ−Tl(uǫ)
)

dx=
∫

Ω

f T1(u−Tl(u))dx.

We also have T1(u−Tl(u))→0 a.e. in Ω as l→+∞ and
∣

∣ f T1(u−Tl(u))
∣

∣≤| f |∈L1(Ω).
Then, using the Lebesgue dominated convergence theorem, we obtain

lim
l→+∞

∫

Ω

f T1(u−Tl(u))dx=0.

We deduce that

lim
l→+∞

lim
ǫ→0

∫

Ω

fǫT1

(

uǫ−Tl(uǫ)
)

dx=0. (3.34)

Passing to the limit as ǫ→ 0, to the limit as l →+∞ in (3.31) and using (3.32)-(3.34), we
deduce (3.30).

Step 3: We prove that for every k>0,

limsup
ǫ→0

∫

Ω

a(x,∇uǫ)·∇
[

Tk(uǫ)−Tk(u)
]

dx≤0. (3.35)

For ν> k, we have

∫

Ω

a(x,∇uǫ)·∇
[

hν(uǫ)
(

Tk(uǫ)−Tk(u)
)]

dx

=
∫

{|uǫ|≤k}
hν(uǫ)a(x,∇Tk(uǫ))·∇

[

Tk(uǫ)−Tk(u)
]

dx

+
∫

{|uǫ|>k}
hν(uǫ)a(x,∇uǫ)·∇

[

−Tk(u)
]

dx

+
∫

Ω

h′ν(uǫ)
[

Tk(uǫ)−Tk(u)
]

a(x,∇uǫ)·∇uǫ dx. (3.36)

Since ν> k, on the set {|uǫ|≤ k}, it follows that hν(uǫ)=1 and we get

∫

{|uǫ|≤k}
hν(uǫ)a(x,∇Tk(uǫ))·∇

[

Tk(uǫ)−Tk(u)
]

dx

=
∫

{|uǫ|≤k}
a(x,∇Tk(uǫ))·∇

[

Tk(uǫ)−Tk(u)
]

dx

=
∫

Ω

a(x,∇uǫ)·∇
[

Tk(uǫ)−Tk(u)
]

dx. (3.37)
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The second term of the right-hand side of (3.36) can be written as

∫

{|uǫ|>k}
hν(uǫ)a(x,∇uǫ)·∇

[

−Tk(u)
]

dx=−
∫

{|uǫ|>k}
hν(uǫ)a(x,∇Tν+1(uǫ))·∇Tk(u)dx.

Using the Lebesgue dominated convergence theorem, we deduce that

hν(uǫ)χ{|uǫ|>k}∇Tk(u)→hν(u)χ{|uǫ|>k}∇Tk(u) strongly in
(

Lp(·)(Ω)
)N

.

The sequence (a(x,∇Tν+1(uǫ)))ǫ>0 is bounded in
(

Lp′(·)(Ω)
)N

, then it converges weakly

in
(

Lp′(·)(Ω))N to Γν+1. By the Lebesgue dominated convergence theorem, we find

lim
ǫ→0

(

−
∫

{|uǫ|>k}
hν(uǫ)a(x,∇Tν+1(uǫ))·∇Tk(u)dx

)

=−
∫

{|uǫ|>k}
hν(u)Γν+1 ·∇Tk(u)dx=0,

i.e.

lim
ǫ→0

(

−
∫

{|uǫ|>k}
hν(uǫ)a(x,∇uǫ)·∇Tk(u)dx

)

=0. (3.38)

Considering the third term of the right-hand side of (3.36), we have

−
∫

Ω

h′ν(uǫ)
[

Tk(uǫ)−Tk(u)
]

a(x,∇uǫ)·∇uǫ dx

≤

∣

∣

∣

∣

∫

Ω

h′ν(uǫ)
[

Tk(uǫ)−Tk(u)
]

a(x,∇uǫ)·∇uǫ dx

∣

∣

∣

∣

≤2k
∫

{ν<|uǫ|<ν+1}
a(x,∇uǫ)·∇uǫ dx.

Using the result of step 2, we obtain

limsup
ν→+∞

limsup
ǫ→0

(

−
∫

Ω

h′ν(uǫ)
[

Tk(uǫ)−Tk(u)
]

a(x,∇uǫ)·∇uǫ dx

)

≤0. (3.39)

Applying (3.21) with h replaced by hν, ν > k in (3.36) and using (3.37)-(3.39), it follows
that

limsup
ǫ→0

∫

Ω

a(x,∇uǫ)·∇
[

Tk(uǫ)−Tk(u)
]

dx

≤limsup
ν→+∞

limsup
ǫ→0

(

−
∫

Ω

h′ν(uǫ)
[

Tk(uǫ)−Tk(u)
]

a(x,∇uǫ)·∇uǫ dx

)

≤0.

Therefore, (3.35) follows.
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Step 4: Now, we prove by standard monotonicity arguments that for all k> 0,Φk =
a(x,∇Tk(u)) a.e. in Ω. Let ϕ∈D(Ω) and λ∈R

∗. Using (3.35), (1.3) and Lemma 3.6, we
get

λ lim
ǫ→0

∫

Ω

a(x,∇Tk(uǫ))·∇ϕdx

≥limsup
ǫ→0

∫

Ω

a(x,∇Tk(uǫ))·∇
[

Tk(uǫ)−Tk(u)+λϕ
]

dx

≥limsup
ǫ→0

∫

Ω

a(x,∇(Tk(u)−λϕ))·∇
[

Tk(uǫ)−Tk(u)+λϕ
]

dx

≥λ
∫

Ω

a(x,∇(Tk(u)−λϕ))·∇ϕdx. (3.40)

Dividing the first and the last integrals of (3.40) by λ>0 and by λ<0 respectively, passing
to the limit with λ→0 it follows that

lim
ǫ→0

∫

Ω

a(x,∇Tk(uǫ))·∇ϕdx=
∫

Ω

a(x,∇Tk(u)·∇ϕdx.

This means that
∫

Ω

Φk∇ϕdx=
∫

Ω

a(x,∇Tk(u)·∇ϕdx, ∀ k>0,

and so Φk= a(x,∇Tk(u)) in D′(Ω) for all k>0. Hence Φk= a(x,∇Tk(u)) a.e. in Ω and we
have

a(x,∇Tk(uǫ))⇀ a(x,∇Tk(u)), in
(

Lp′(·)(Ω)
)N

.

(ii) From (3.35) and (1.3), we deduce that for all k>0

lim
ǫ→0

∫

Ω

[

a(x,∇uǫ)−a(x,∇u)
]

·∇
[

Tk(uǫ)−Tk(u)
]

dx=0.

Now, set
gǫ(x)=

[

a(x,∇uǫ)−a(x,∇u)
]

·∇
[

Tk(uǫ)−Tk(u)
]

≥0.

gǫ(x)→ 0 strongly in L1(Ω) as ǫ→ 0. Up to a subsequence, gǫ(x)→ 0 a.e. in Ω, which
means that there exists ω ⊂ Ω such that meas(ω) = 0 and gǫ(x)→ 0 in Ω\ω. Let x ∈
Ω\ω. Using assumptions (1.4) and (1.2), it follows that the sequence

(

∇Tk(uǫ(x))
)

ǫ>0
is

bounded in R
N and so we can extract a subsequence which converges to some θ in R

N.
Passing to the limit in the expression of gǫ(x), it follows that

0=
[

a(x,θ)−a(x,∇Tk(u))
]

·
[

θ−Tk(u)
]

and it yields θ=∇Tk(u), ∀x∈Ω\ω.
As the limit dœsn’t depend on the subsequence, the whole sequence

(

∇Tk(uǫ(x))
)

ǫ>0

converges to θ in R
N . This means that ∇Tk(uǫ)→∇Tk(u) a.e. in Ω.
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(iii) The continuity of a(x,ξ) with respect to ξ∈R
N gives us

a(x,∇Tk(uǫ))→ a(x,∇Tk(u)), a.e. in Ω.

Therefore
a(x,∇Tk(uǫ))·∇Tk(uǫ)→ a(x,∇Tk(u))·∇Tk(u), a.e. in Ω.

Setting zǫ = a(x,∇Tk(uǫ))·∇Tk(uǫ) and z= a(x,∇Tk(u))·∇Tk(u), we have

zǫ >0, zǫ → z a.e. in Ω,z∈L1(Ω),
∫

Ω

zǫ dx→
∫

Ω

zǫ dx,

and as
∫

Ω

|zǫ−z|dx=2
∫

Ω

(z−zǫ)
+dx+

∫

Ω

(zǫ−z)dx, and (z−zǫ)
+≤ z,

it follows by using the Lebesgue dominated convergence theorem that

lim
ǫ→0

∫

Ω

|zǫ−z|dx=0,

which means that

a(x,∇Tk(uǫ))·∇Tk(uǫ)→ a(x,∇Tk(u))·∇Tk(u), strongly in L1(Ω).

(iv) Set

hǫ =
∣

∣

∣
∇Tk(uǫ)

∣

∣

∣

p(x)
, h=

∣

∣

∣
∇Tk(u)

∣

∣

∣

p(x)
,

gǫ = a(x,∇Tk(uǫ))·∇Tk(uǫ), g= a(x,∇Tk(u))·∇Tk(u).

We have:

• hǫ is a sequence of measurable functions, h is a measurable function and according to
(ii), hǫ →h a.e. in Ω.

• Using (iii), we have (gǫ)ǫ>0⊂ L1(Ω), gǫ → g a.e. in Ω, gǫ → g in L1(Ω) and using (1.4),
we have |hǫ |≤Cgǫ.

Then, by Lemma 2.6, we have

∫

Ω

hǫ dx→
∫

Ω

hdx, i.e.
∫

Ω

∣

∣

∣
∇Tk(uǫ)

∣

∣

∣

p(x)
dx→

∫

Ω

∣

∣

∣
∇Tk(u)

∣

∣

∣

p(x)
dx.

Note also that since Ω is bounded, we deduce from (ii) that the sequence
(

∇Tk(uǫ)
)

ǫ>0
converges to ∇Tk(u) in Ω in measure. Then, by Lemma 2.5 we deduce that

lim
ǫ→0

∫

Ω

∣

∣

∣
∇Tk(uǫ)−∇Tk(u)

∣

∣

∣

p(x)
dx=0,

i.e. ∇Tk(uǫ)→∇Tk(u) in
(

Lp(·)(Ω)
)N

.
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Remark 3.2. By Lemma 3.6 and Lemma 3.7-(iv), we deduce that u∈T
1,p(·)
H (Ω).

The following lemma is useful for the next.

Lemma 3.8. For any h∈C1
c (R) and ϕ∈W1,p(·)(Ω)∩L∞(Ω),

∇[h(un)ϕ]−→∇[h(u)ϕ], strongly in (Lp(·)(Ω))N as ǫ→0.

Proof. For any h∈C1
c (R) and ϕ∈W1,p(·)(Ω)∩L∞(Ω), we have

∇[h(uǫ)ϕ]−∇[h(u)ϕ]=(h(uǫ)−h(u))∇ϕ+h′(uǫ)ϕ[∇uǫ−∇u]+(h′(uǫ)−h′(u))ϕ∇u

:=ψǫ
1+ψǫ

2+ψǫ
3. (3.41)

For the term ψǫ
1, we consider

ρp(·)(ψ
ǫ
1)=

∫

Ω

|(h(uǫ)−h(u))∇ϕ|p(x)dx.

Set
Θ

ǫ
1(x)= |(h(uǫ)−h(u))∇ϕ|p(x).

We have Θ
ǫ
1(x)→0 a.e. x∈Ω as ǫ→0 and

|Θǫ
1(x)|≤C(h,p−,p+)|∇ϕ|p(x)∈L1(Ω).

Then, by the Lebesgue dominated convergence theorem, we get that limǫ→0ρp(·)(ψ
ǫ
1)=0.

Hence,
‖ψǫ

1‖Lp(·)(Ω)→0, as ǫ→0. (3.42)

For the term ψǫ
2 we consider

ρp(·)(ψ
ǫ
2)=

∫

Ω

|h′(uǫ)ϕ(∇Tl(uǫ)−∇Tl(u))|
p(x)dx

for some l>0 such that supp(h)⊂ [−l,l]. Set

Θ
ǫ
2(x)= |h′(uǫ)ϕ(∇Tl(uǫ)−∇Tl(u))|

p(x).

We have Θ
ǫ
2(x)→0 a.e. x∈Ω as ǫ→0 and

|Θǫ
2(x)|≤C(h,p− ,p+,‖ϕ‖∞)|∇Tl(uǫ)−∇Tl(u)|

p(x).

Since ∇Tl(uǫ)→∇Tl(u) strongly in
(

Lp(·)(Ω)
)N

, we get

ρp(·)(∇Tl(uǫ)−∇Tl(u))→0, as ǫ→0,

which is equivalent to say

lim
ǫ→0

∫

Ω

|∇Tl(uǫ)−∇Tl(u)|
p(x)dx=0.
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Then |∇Tl(uǫ)−∇Tl(u)|
p(·)→0 strongly in L1(Ω). By the Lebesgue generalized conver-

gence theorem, one has

lim
ǫ→0

∫

Ω

Θ
ǫ
2(x)dx= lim

ǫ→0
ρp(·)(ψ

ǫ
2)=0.

Hence,
‖ψǫ

2‖Lp(·)(Ω)→0, as ǫ→0. (3.43)

For the term ψǫ
3 we consider

ρp(·)(ψ
ǫ
3)=

∫

Ω

|(h′(uǫ)−h′(u))ϕ∇u|p(x)dx.

Set
Θ

ǫ
3(x)= |(h′(uǫ)−h′(u))ϕ∇u|p(x).

We have Θ
ǫ
3(x)→0 a.e. x∈Ω as ǫ→0 and

|Θǫ
3(x)|≤C(h,p−,p+,‖ϕ‖∞)|∇Tl(u)|

p(x)∈L1(Ω),

with some l>0 such that supp(h)⊂[−l,l]. Then, by the Lebesgue dominated convergence
theorem, we get

lim
ǫ→0

ρp(·)(ψ
ǫ
3)=0.

Hence,
‖ψǫ

3‖Lp(·)(Ω)→0, as ǫ→0. (3.44)

Thanks to (3.42)-(3.44), we get

∥

∥ψǫ
1+ψǫ

2+ψǫ
3

∥

∥

Lp(·)(Ω)
→0, as ǫ→0,

and the lemma is proved.

Now, we want to pass to the limit in the first integral of (3.5). Since, for any k > 0,
(hk(uǫ)βǫ(uǫ))ǫ>0 is bounded in L1(Ω), there exists zk ∈Mb(Ω), such that

hk(uǫ)βǫ(uǫ)
∗
⇀ zk in Mb(Ω), as ǫ→0.

Moreover, for any ϕ∈W1,p(·)(Ω)∩L∞(Ω), we have

∫

Ω

ϕdzk=
∫

Ω

ϕhk(u) f dx−
∫

Ω

a(x,∇u)·∇(hk(u)ϕ)dx,

which implies that zk ∈M
p(·)
b (Ω) and, for any k≤ l,

zk = zl , on [|Tk(u)|< k].
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Let us consider the Radon measure z defined by















z= zk, on [|Tk(u)|< k] for k∈N
∗,

z=0, on
⋂

k∈N∗

[|Tk(u)|= k].
(3.45)

For any h∈C1
c (R), h(u)∈L∞(Ω,d|z|) and

∫

Ω

h(u)ϕdz=−
∫

Ω

a(x,∇u)·∇(h(u)ϕ)dx+
∫

Ω

h(u)ϕ f dx,

for any ϕ∈W1,p(·)(Ω)∩L∞(Ω). Indeed, let k0>0 be such that supp(h)⊆ [−k0,k0],

∫

Ω

h(u)ϕdz=
∫

Ω

h(u)ϕdzk0

=− lim
ǫ→0

∫

Ω

a(x,∇uǫ)·∇(h(uǫ)ϕ)dx+ lim
ǫ→0

∫

Ω

h(uǫ)ϕ fǫ dx

=− lim
ǫ→0

∫

Ω

a(x,∇Tk0
(uǫ))·∇(h(uǫ)ϕ)dx+ lim

ǫ→0

∫

Ω

h(uǫ)ϕ fǫ dx

=−
∫

Ω

a(x,∇u)·∇(h(u)ϕ)dx+
∫

Ω

h(u)ϕ f dx. (3.46)

Moreover, we have

Lemma 3.9. The Radon-Nikodym decomposition of the measure z given by (3.45) with re-
spect to LN ,

z=bLN+µ, with µ⊥LN ,

satisfies the following properties















b∈β(u) LN−a.e. in Ω, b∈L1(Ω), µ∈M
p(·)
b (Ω),

µ+ is concentrated on [u=M]

and µ− is concentrated on [u=m].

Proof. Since, for any ǫ>0, zǫ ∈∂jǫ(uǫ), we have

j(t)≥ jǫ(t)≥ jǫ(uǫ)+(t−uǫ)zǫ LN−a.e. in Ω, ∀t∈R.

Then, for any h∈Cc(R), h≥0 and k>0 such that supp(h)⊆ [−k,k], we have

ξh(uǫ)j(t)≥ ξh(uǫ)jǫ(uǫ)+(t−uǫ)ξh(uǫ)hk(uǫ)zǫ.

In addition, for any 0<ǫ< ǫ̃, we have

ϕh(uǫ)j(t)≥ ϕh(uǫ)jǫ̃(uǫ)+(t−uǫ)ϕh(uǫ)hk(uǫ)zǫ,
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and, integrating over Ω yields

∫

Ω

ϕh(uǫ)j(t)dx≥
∫

Ω

ϕh(uǫ)jǫ̃(uǫ)dx+
∫

Ω

(t−uǫ)ϕh(uǫ)hk(uǫ)zǫdx.

As ǫ→0, we get by using Fatou’s Lemma

∫

Ω

ϕh(u)j(t)dx≥
∫

Ω

ϕh(u)jǫ̃(u)dx+liminf
ǫ→0

∫

Ω

(t−uǫ)ϕh(uǫ)hk(uǫ)zǫdx.

Now, for any ϕ∈C1
c (Ω) and t∈R, setting

h̃(r)=(t−r)h(r),

we have

lim
ǫ→0

∫

Ω

(t−uǫ)h(uǫ)ϕhk(uǫ)zǫdx= lim
ǫ→0

∫

Ω

h̃(uǫ)ϕhk(uǫ)zǫdx=
∫

Ω

(t−u)h(u)ϕdzk

=
∫

Ω

(t−u)h(u)ϕdz.

So,
∫

Ω

ϕh(u)j(t)dx≥
∫

Ω

ϕh(u)jǫ̃(u)dx+
∫

Ω

ϕ(t−u)h(u)dz.

As ǫ̃→0, we get by using again Fatou’s Lemma

∫

Ω

ϕh(u)j(t)dx≥
∫

Ω

ϕh(u)j(u)dx+
∫

Ω

ϕ(t−u)h(u)dz.

From the inequality above, we have

h(u)j(t)≥h(u)j(u)+(t−u)h(u)z, in Mb(Ω), ∀t∈R. (3.47)

Using the Radon-Nikodym decomposition of z we have z = bLN+µ with µ⊥LN , b ∈
L1(Ω), then comparing the regular part and the singular part of (3.47), for any h∈Cc(R),
we obtain

h(u)j(t)≥h(u)j(u)+(t−u)h(u)b LN−a.e. in Ω, ∀t∈R (3.48)

and
(t−u)h(u)µ≤0 in Mb(Ω), ∀ t∈dom(j). (3.49)

From (3.48) we get

j(t)≥ j(u)+(t−u)b LN−a.e. in Ω, ∀t∈R,

so that b∈∂j(u) LN−a.e in Ω. As to (3.49), this implies that for any t∈dom(j),

µ≥0 in [u∈ (t,∞)∩supp(h)] (3.50)
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and

µ≤0 in [u∈ (−∞,t)∩supp(h)]. (3.51)

In particular, this implies that

µ([m<u<M])=0

and so that

µ− is concentrated on [u=m] (resp. µ+ is concentrated on [u=M])

and the proof of the Lemma 3.9 is finished.

To finish the proof of Theorem 3.1, we consider ϕ∈W1,p(·)(Ω)∩L∞(Ω) and h∈C1
c (R).

Then, we take h(uǫ)ϕ as test function in (3.5). We get

∫

Ω

a(x,∇uǫ)·∇[h(uǫ)ϕ]dx+
∫

Ω

βǫ(uǫ)h(uǫ)ϕdx=
∫

Ω

h(uǫ)ϕ fǫdx. (3.52)

By the Lebesgue dominated convergence theorem, we have for the term in the right hand
side of (3.52),

lim
ǫ→0

∫

Ω

h(uǫ)ϕ fǫ dx=
∫

Ω

h(u)ϕ f dx.

The first term of (3.52) can be written as

∫

Ω

a(x,∇uǫ)·∇[h(uǫ)ϕ]dx=
∫

Ω

a(x,∇Tl0+1(uǫ))·∇[h0(uǫ)ϕ]dx,

for some l0>0 so that, by Lemma 3.7-(i) and Lemma 3.9, we have

lim
ǫ→0

∫

Ω

a(x,∇uǫ)·∇[h(uǫ)ϕ]dx=lim
ǫ→0

∫

Ω

a(x,∇Tl0+1(uǫ))·∇[h0(uǫ)ϕ]dx

=
∫

Ω

a(x,∇Tl0+1(u))·∇[h0(u)ϕ]dx

=
∫

Ω

a(x,∇u)·∇[h(u)ϕ]dx.

Thanks to the convergence of Lemma 3.9 and Lemma 3.7-(i) we have from (3.52)

lim
ǫ→0

∫

Ω

βǫ(uǫ)h(uǫ)ϕdx=
∫

Ω

h(u)ϕ f dx−
∫

Ω

a(x,∇u)·∇[h(u)ϕ]dx

=
∫

Ω

h(u)ϕdz=
∫

Ω

h(u)bϕdx+
∫

Ω

h(u)ϕdµ·

Letting ǫ goes to 0 in (3.52), we obtain

∫

Ω

a(x,∇u)·∇[h(u)ϕ]dx+
∫

Ω

h(u)bϕdx+
∫

Ω

h(u)ϕdµ=
∫

Ω

h(u)ϕ f dx. (3.53)
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In (3.53), we take h∈C1
c (R) such that [m,M]⊂ supp(h)⊂[−l,l] and h(s)=1 for all s∈[−l,l].

As u∈ dom(β), then h(u) = 1 and it yields that (u,b) is a solution of the problem (1.1).
Now, let us prove the uniqueness of the solution for the problem (1.1). Suppose that
(u1,w1),(u2,w2) are two solutions of the problem (1.1). For u1, we choose ξ = u2 as test
function in (3.2) to get

∫

Ω

a(x,∇u1)·∇Tk(u1−u2)dx+
∫

Ω

w1Tk(u1−u2)dx≤
∫

Ω

f Tk(u1−u2)dx.

Similarly we get for u2

∫

Ω

a(x,∇u2)·∇Tk(u2−u1)dx+
∫

Ω

w2Tk(u2−u1)dx≤
∫

Ω

f Tk(u2−u1)dx.

Adding these two last inequalities yields

∫

Ω

(

a(x,∇u1)−a(x,∇u2)
)

·∇Tk(u1−u2)dx+
∫

Ω

(w1−w2)Tk(u1−u2)dx≤0. (3.54)

For any k>0, from (3.54) it yields

∫

Ω

(

a(x,∇u1)−a(x,∇u2)
)

·∇Tk(u1−u2)dx=0. (3.55)

From (3.55), it follows that there exists a constant c such that u1−u2= c a.e. in Ω. At last,
let us see that w1 = w2 a.e. in Ω and ν1 = ν2. Indeed for any ϕ∈D(Ω), taking ϕ as test
function in (3.1) for the solutions (u1,w1) and (u1,w2), after substraction, we get

∫

Ω

(w1−w2)ϕdx+
∫

Ω

ϕd(ν1−ν2)=0.

Hence
∫

Ω

w1ϕdx+
∫

Ω

ϕdν1=
∫

Ω

w2ϕdx+
∫

Ω

ϕdν2.

Therefore
w1L

N+ν1=w2L
N+ν2.

Since the Radon-Nikodym decomposition of a measure is unique, we get

w1=w2, a.e. in Ω, and ν1 =ν2.

To end the proof of Theorem 3.1, we prove (3.3). We take ϕ = T1(uǫ−Tn(uǫ)) as test
function in (3.1) to get

∫

Ω

a(x,∇uǫ)·∇[T1(uǫ−Tn(uǫ))]dx+
∫

Ω

βǫ(uǫ)T1(uǫ−Tn(uǫ))dx

=
∫

Ω

f T1(uǫ−Tn(uǫ))dx. (3.56)
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Since
∫

Ω

βǫ(uǫ)T1(uǫ−Tn(uǫ))dx≥0, and ∇[T1(uǫ−Tn(uǫ))]=∇uǫχ[n<|uǫ|<n+1],

we have from equality (3.56),

∫

[n<|uǫ|<n+1]
a(x,∇uǫ)·∇uǫdx≤

∫

Ω

f T1(uǫ−Tn(uǫ))dx. (3.57)

Thanks to (3.34), we have

lim
n→+∞

lim
ǫ→0

∫

Ω

f T1(uǫ−Tn(uǫ))dx=0.

Using assumption (1.3), it follows if we let ǫ→0 and n→+∞ respectively in (3.57),

lim
n→+∞

lim
ǫ→0

1

C

∫

[n≤|uǫ|≤n+1]
|∇uǫ|

p(x)dx= lim
n→+∞

1

C

∫

[n≤|u|≤n+1]
|∇u|p(x)dx≤0. (3.58)

Therefore, we get (3.3).
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