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Abstract. In this paper, we study how the shape of the graph of a(z) affects on the
number of positive solutions of

—Av+ub(z)v=a(z)oP 1+ Ah(z)0T7 ], in RN, (0.1)

We prove for large enough A, >0, there exist at least k-1 positive solutions of the this
semilinear elliptic equations where 1 <g<2<p<2*=2N/(N—-2) forN >3.
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1 Introduction

For N>3,1<q<2<p<2*=2N/(N-2), we suppose the semilinear elliptic equations

—Av+ub(z)v=a(z)oP 1 +Ah(z)v17}, in RY;
(E)L,]J)

ve HY(RY),
where A, > 0. Suppose a, b and & satisfy the following conditions:
(a1) a is a positive continuous function in RN and lim,|_,,4(z) =ae > 0.
(a2) There are k points a',a?,- - ,a* in RN such that a(a') =amax =max,cgna(z); for 1<i<k

and e < Amax-
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(h1) he L7 (RN)NL®(RN) and h 0.
(b1) bis a bounded and positive continuous function in RY.

For u=1,A=0, a(z)=b(z)=1 for all zERY, we assume the semilinear elliptic equation

(Eo)

—Au+u=up1, in RN;
ue HY(RN),

where
HuH%{:/N(]Vu]Z—i-uz)dz is the norm in H!(RY),
R

and the energy functional
0 1 2 1 p
Jo (u)= > ][5 ~p |us Iz, where uy =max{u,0}>0.

We consider the semilinear elliptic equation

—Au+tu=a(z)uP '+ Ah(z)ul!,  inRN;
ue HY(RN),

have been studied by Huei-li Lin [1] (b(z) =1, y=1and for N>3,1<g<2<p<2*=

2N /(N —2)) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity

in RN, Ambrosetti [2] (a=1and 1<g<2<p<2*=2N/(N-2) and Wu [3] (€ C(Q) and

changes sign, 1 <q <2< p<2*). They showed that this equation has at least two positive

solutions for small enough A > 0. In [4], Hsu and Lin have studied that there are four
positive solutions of the general cases

—Av+v=a(z)vP 1+ Ah(z)v7 !,  inRY,

for small enough A > 0.
In this paper, we study the existence and multiplicity of positive solutions of the equa-
tion (E, ;) in RN. By the change of variables

yzelz and u(z):sﬁv(sz),

Eq. (E,y) is converted to

—Au+b(ez)u=a(ez)uP 1 +Ah(ez)ul™t,  in RN
(Ee,/\)

ue HY(RN).

Based on Eq. (E. ), we consider the C!-functional J ,, for u € H' (RN).

1 1 1
]S’A(M)IE/RJN(’V“ ’2_|_b(ez)u2)dz—;/Rma(ez)uﬁdz—5/1RJN/\h(£z)uidZ,
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where
2_ 2 2
ullp= [ (1 VuP+b(ez)u)dz

is the norm in H!(RYN). In fact that d = max{1,b(ez)} then || u ||g<| u|,<d || u|g, ie.
|| u ]|y is an equivalent norm by || u ||g. We know that the nonnegative weak solutions
of Eq. (E¢,)) are equivalent to the critical points of J. ,. Here we study the existence and
multiplicity of positive solutions of Eq. (E ) in RN,

We organize this paper in this way. In Section 2, we apply the argument of Tarantello
[5] to divide the Nehari manifold M, , into two parts M;“A and M, ,.In Section 3, we show
that the existence of a positive ground state solution ug € M;A of Eq. (Eg,). In Section 4,

there are at least k critical points uy, -, ux € M, , of ] x such that Jo  (u;) = i_/A((PS)-Value)
for1<i<k. Let

S=8UPy e (RN, uf =1 | 417/

then ||u||p»<S||ul g for every u € H'(RN)\ {0}.

2 Main results

Theorem 2.1. Under assumptions ay and hy, if

(a)

[N

=

Nl

q=pr

((p—9)S?) 2 || hlls ",

0</\<A:(p—2)<umax>

N

=

A=)

where || h |4 is the norm in L7 (RN), then Eq. (E.,) accepts at least a positive ground
state solution, (see Theorem 3.4).

(b) Under assumptions ay,ap and hy, if A is large enough, then Eq. (E, ;) archives at least k+-1
positive solutions, (see Theorem 4.10).

For the semilinear elliptic equations

—Autu=a(ez)uP1, in RN;
ue HY(RN),
if 2= ama and Q={u € H'(RN)\ {0}|u; £0 and (I}, (u),u) =0}. We define the energy

functional ) .
Inax = 1= [ amox(ez)ul dz

then Ymax =inf,cq Imax (1)-
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Lemma 2.1. We have

-2 =2
Ymax = PZP (amaxsp) -2 > (.
Proof. 1f
1, . 1 )
=5 11y = [ At iz,
then
1 1 2p
- — 2—p-
’)/max ’)’max(ﬂ) (2 p> (Q) p/
1
'}/(Q):sup{/wamaxup uc€ H'(RN) and HuHHzl}:ar’fﬂaX.
R
i 2p
Moreover Ymax= (3 — %)(ar’;aXS) 7~2>0. O

Definition 2.1. We define the Palais-Smale (denoted by (PS))-sequences, (PS)-value, and (PS)-
conditions in H'(RN) for ], » as follows.

(i) For BER, a sequence {uy, } is a (PS) g-sequence in H(RN) for Jo » if Je (1n) =PB+0,(1)
and J] , (un) = 0,(1) strongly in H"'(RN) as n — oo, where H-*(R)N is the dual space of
HY(RN);

(ii) BER is a (PS)-value in H' (RN) for ],  if there is a (PS)g-sequence in H'(R) for Je a;

(iii) [, satisfy the (PS)g-condition in H'(IRN) if every (PS) g-sequence in H*(RN) for ], ,
includes a convergent subsequence.

Next, since J; , is not bounded form below in H!(IRY), we consider the Nehari mani-
fold

M ={ucH (RN)\0Ju, #£0, and (Jo(u),u)y=0}, (2.1)
where
(Jor(u),u) =|Jul|f— / (ez)u! dz— /\/ (e2)
Notice M, ) includes all nonnegative solutions of Eq. (Ej ).

Lemma 2.2. The energy functional |, , is coercive and bounded from below on M, ).

Proof. For u € M, ,, the Holder inequality (p1=p/(p—q),p2=p/q) and the Sobolev em-
bedding we get

]e,)\(u):(l_1> ||| — (———) Ah(ez)u® dz

2. p
>(3-5) lulhi- (———)Anhn#squuu"

||u||qH |:p p :|
> —_— —(— /\ h|lgS7 >0,
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where
Ci=(p-2)/2>0 and  Co=((p—a)/@A k]S>0,

i.e, we have that |, , is coercive and bounded from below on M, ,. O
Definition 2.2. Define . (u)=(J; ,(u),u).

Under assumptions for u € M, 5, we get

(Wt (),0) =2l ulfy—p [ alez)udz=2q [ h(ez)ul dz
=@—p) i +(p—1 A/ (ez)u. dz
=(@—q) |l +(g—p) [ alez)n’ d= 2
We apply the method in Tarantello [5], suppose

M, ={u€Mex | (Y (u),u) >0};
Mg = {1 € Mo | (g (1), u) =0};
My = {u € M| (e (u),u) <O}

Lemma 2.3. Under assumptions aq,ap and hy, if 0 <A <A, then Me 1 =2.

Proof. On the contrary, there is a number Ag € R and 0 <A¢ < A such that Mgo =@. Then
forue MOO, by (2.2), we have

[ [I3= %AO/RN;Z(EZ)uidZZZT_Z IRINa(ez)uidz.

By the Holder and the Sobolev embedding theorem, we obtain

1

1
_ o= _ -
fullnz | 220577 and < (P nlest)

P—q)max
Thus, -
Yo (p=2)(52) 7 (p-0)s) 1=
This makes a contradiction. O

Lemma 2.4. Suppose that u is a local minimizer for J, » on M) and u € Mg A Then Ji, (u)=0
in H-1(RN).

Proof. See [6, Theorem 2.3]. O
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Lemma 2.5. Foreach u e Mj/v we have

1

P—q AN
/H{Nh(ez)u+dz>0 and |ullg< ﬁ/\HhH#S )
Proof. For u€ M), we get
@=p) |l +(p—0A | h(ez)ut dz>0,
(p=)r [ (el dz>@=p) | u
2—p)
h(ez)ul dz> ( ull2,>0.
[ ezt az> B2

For every u € M, C M, by (2.2), we apply the Holder inequality (p1=p/(p—q),p2=
p/q) to obtain that

0<(P—q)/ Ah(ez) | uldz—(p=2) ||| < (p—@)A I lle STl 1 — (p—2) |3,

1
P—4 2
u H< A h #Sq
Jullr < (B2 10 es) ™
This completes the proof. O

Lemma 2.6. For each u € M_,, we have

1

2—q } P2
ullg> | ———8F .
el [(P_Q)“max

Proof. For every u€ M, ,, by (2.2), we have that

1
g ) )™
u <—/ szu =TSP u |7 amax, u 2[78 P )
el < B st ull Jull> | o ooy

This completes the proof. O

Lemma 2.7. If0<A< % and u € Mg ,, then Je(u) >0.

Proof. Forue M_,, we have

]e,)\(”):<1—1> ||M||%{—(%—%>/RNAh(ez)uidz

ul|? —
_u[ Nl UAHhu#sﬂ
p q

_ 53 -7
1 2—p )pz p—Z( 2—g >p_ p—q
>p —p— — 2 A h]||aST ).
<< Q)amaxsp ( 2 (p—q)amaxsp q H H#

So Jo A (1) >do >0 for some dy =do(e,p,9,5,A, || It ||#,0max) - O

[N
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For ue H'(RN)\ {0} and u, #0, let

1
p—2

TIHM): (Z_q)HuHZ
(p=q) [ alez)u’ dz

Lemma 2.8. For every u € H'(RN)\ {0} and u #0, we have that, if
1 3,
/]RNAh(z)qudz—O,

then there is a unique positive number 1~ =1~ (u) > I such that " u € M, and Jea(I"u) =
supl>0]g,A(lu).

Proof. For every uc H'(RN)\ {0} and u #0, define

> 0.

k(D) =k, (1)=1>71 Hu”%{—l?’_”’/RNa(sz)uidz, for 1>0.

Clearly, we get that k(0) =0 and k(I) — —o0 as [ — co since

K= | 2= il ~(p=g) [ a(es)(n)raz], for 10,

then k'(I)=0, k'(I) >0 for 0< <1, and k'(I) <0 for [ > 1. Thus, k() get its maximum at [.
Furthermore, by the Sobolev embedding theorem, we have that

(2—9)
- — 2 (r-2)
(p—q) [gna(ez)uldz

(p

2 TP*
_<( (2—q) [ ulk ) ez)u’idz

p—9q) [gnalez)u’ dz
q-p _pl4=2)

> (p-2)@-q) H(p—q) 72T [ull], (2.3)
/IRJNAh(z)u+dz:0.

There is a unique positive number I~ =1~ (u) > such that

k(l_):/IRNAh(z)uﬂdz:O,

and k' (I7) >0. Then

EIS,A(lu) _! (H |2, —ANa<ez)<zu+)sz—AN Ah(ez)(lu+)‘7dz> ) =0,

St = [ 11— [ a(e2)tucpdz—(4-1)  Abez) s itz 1 <0,



Multiple Positive Solutions for Semilinear Elliptic Equations 81

and
Jea(lu) — —oo, as | — oo.

Furthermore, it is not difficult to find that ["u € M, , and JoA(I"u) =sup,¢Jea(lu). O

Lemma 2.9. If 0<A <A and [pn Ah(ez)u®.dz >0, then there is unique positive number I+ =
It (u) <I<I”=I"(u) such that I'tu e M_,, and

Jer(ITu)=inf Joa(lu),  Jea(I"u)=supJea(lu).

0<I<I 151
Proof. Since 0<A <A and [pn Ah(ez)u’ dz>0, by (2.3), then
k(0) :0<A/RNh(ez)uidz§)\||h||# ST u |,
<(P-2)2=) P (p-) ST u )l <k(D).

It follows that there are unique positive number I =1 (1) and I~ =1~ (u) such that

t<I<io, k(") :/RNAh(sz)uﬂdz:k(z—) and  K(I7)<0<K(I*).
We also have that

MueMf, TTueM,, Joa(I"u) <Joa(lu) <Joa(I"u)

for every I € [IT,I7],and J.(I"u) <J. 1 (Iu) for every I € [0,]]. Hence,

Jea(ITu)= inf J.(lu), Jer(I"u) =supJe(lu).

This completes the proof. O

Applying Lemma 2.6 (M{ , =@ for 0<A < A). We have M, =M, UM_,, where

M;r/\: {M G]\/Ig,)L

2=l ~(p-g) [ et dz>0},

Mg)\: {uGM&/\

2=a) = (p=0) [ ate2t dz<0}.

Define

e = ueirl\l/lfg/)\ ]e,A (u); “;\ - u irl\l/ffm ]8’/\ (M); a;)‘ - u ir]‘l/ff;/\ ]E’A (u) .

Lemma 2.10. I[f0<A <A, then a,, < oc;“A <0.
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Proof. Suppose u € M), by (2.2) we get that

(p=2)l|u i< (p=)2 [ 1@ dz.

Then
(Ao otlt 7
]e,A(u)—<§ P)HuHH (q p))&/k(ez)u+dz
1 1 1 1\p-2 ”
<|G3)- G it
2— -2
— 2202 <o
By the definition a, , and oczfA, we conclude that a, )y < ocj,A <0. O

Lemma 2.11. If0<A <gA/2, then Xy >dy >0 for some do=do(¢,A,p,q,S,|| I ||4).

Proof. See [4, Lemma 2.5]. O

Lemma 2.12. We conclude

(a) There is a (PS),, ,-sequence {u, } in M, for J¢ ;

(b) There is a (PS)azA—sequence {un} in M, for Jor;

(c) There is a (PS) o, -Sequence {un} in M, for Jea.

3 Existence of a ground state solution

At first, we show that [, satisfy the (PS)g-condition in H'(RN) for € (—00, max—
Co/\ﬁ ), where

Co=02-g)[(p—a) |1l Sq]ﬁ/ [ZPQ(}?—Z)%] .

Lemma 3.1. Under some assumptions ay,a,hy and 0<A <A.If {u,} is a (PS)g- sequence in
H'(RN) for Jo » with u, —u weakly in H'(RN), then J. , (u)=0in H'(RN).

Proof. Suppose {i, } be a (PS)g-sequence in H!(RN) for J, » such that ], 1 (1) =B+0, (1)
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and J , (uy) =0, (1) in H-*(RN). Then

dn || un || 1

18] +0n(1)+ zfg,A<un>—%<f;,A(un>,un>

p
1 1 1
(35 N = (5= [ Moz ()
>” Vit (13 = =T B S| 1 |
2p prq
-2
=E

then
[ un ||>2p(| Bl 40, (1))/(2dn—(p—2)),

where d,, =0,,(1) as n— co. It follows that {u, } isbounded in H!(RN). Furthermore there
are a subsequence {u,} and u € H!(RN) such that JiA(u)=0in H1(RN). O

Lemma 3.2. Under some assumptions ay,a,hy and 0 <A < A. If {un} is a (PS)g-sequence in
HY(RN) for J » with u, — u weakly in H*(RN), J. 1 (1) > — CoATT > —C}, where

Chy=((p-2)(2- q)%)/(ZPq(umax(p q))%s_pz)-

Proof. we have (J{ , (u),u)=0, that s,

/]Rwa(sz)u+dz—HuHH /IR]N/\h(ez)u+dz

Hence, by the Young inequality (p; =% and p2= ZL)

Jo() = (---) 12— (%-%) [ Mntezyurdt

P—q q

ully ———Al|R||+S7||u
2 LAl
p=2, o p=2[aqllully  (p—1q 7724
SFP < _ q <1
22 - 22 | U () ™2

2 i
——AZ3(2-g)[(p- q)Hhu#sq]w[zpq@ 2)7]
S )| o 9)7>

2 2p
2pq [amax(p—q)] 725772
:—Co.

This completes the proof. O
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Lemma 3.3. Assume that a, b and h satisfy ay and hy. If 0< A <A. Then J, » satisfy the (PS);-
condition in H'(RN) for B € (—OOI’Ymax—CoA%’ ).

Proof. Suppose {u, } be a (PS)g-sequence in H'(RY) for J , such that

]e,A(un) :,B+Oﬂ(1)/

and J! ) (u,)=0,(1) in H'(RY). Then it follows that {u,} is bounded in H'(RN). More-
over, there are a subsequence {u,} and u € H'(RN) such that Jir(u)=01in H-Y(RN).
uy, — u weakly in H'(RV), u, — u a.e. in RN,u, — u strongly in L; _(RN) for every
1 <s<2*. Next, claim that

/Nh(ez)|un—u]‘7dz—>0, as n— oo. (3.1)
R

Using the Brezis-Lieb lemma to get

/Rmh(sz)(un—u)ﬂdz:/IRJNh(ez)(un)ﬂdz—/IRNh(sz)uqdz—i-on(l).

For every ¢ >0, there is >0 so that
_p_
/ h(ez)rdz<o.
[BN(0;)]°

By the Holder inequality and the Sobolev embedding theorem, we get

'/]Rwh(sz) |ty —ulTdz

g/ h(ez)\un—ulqdz—l—/ h(ez)|uy,—ul7dz
BN (0;r) [BN(0;7)]¢

P-4

9
r P r
<|lhls (/RN|un—u|sz> Yy (/]RNh(ez)Mdz> (—s

<0,(1)+0C'.

{u,} isbounded in H'(RN) and u,—u in L] (RN). Applying a; and u,—u in L] (RN)),

loc
we get that

/IRJNa(ez)(un—u)idz:/]RINamax(un—u)’jrdz—l—on(l). (3.2)
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Let p,, =u, —u. Suppose p, -+ 0 strongly in H'(RN). By (3.1), (3.2), we conclude that
[P 7= Il 17 = 17 +-0u (1)
:/ a(ez) un)pdz—/ Ah(ez)(uy)? dz
RN
—/ a(ez) u”dz-l—/ Ah(ez)uldz+o,(1)
:/ (e2) (up—u)" dz+0,(1)

/IRN max (Pn)hdz+0,(1),

also , ,
(1) =5 [ty =, [ amoni

then

1 1 1 1
tonax(pn) =5 P =, [ amax(pn)'iz= (5= ) 1 Iy +on (1) >0.

By Theorem 4.3 in Wang [7], there is a sequence {s, } CR" such that

Sn:1+0n<1)/ {Snpn}CQ/ and Imax(snpn):Imax<Pn)+0n(1)-

It follows that

“Ymax SImax<Snpn) = Imax(pn) +0n<1) :]s,/\(un) _]S,)L(u) +0n(1)
:,B_]S,A<u)+on<1) :]s,A(un)_]e,A(u)
:]s,/\<Pn) _>0n<1) < Ymaxs

which is a contradiction. Hence, u, — u strongly in H(RN). O

Theorem 3.1. Under some assumptions ay, az, hy and 0<A <A, then there is at least one positive
ground state solution ug of Eq. (Eg») in RN. Moreover, we have that ug € M, and

Jea(to) =aer =0, —CoAT.
Proof. There is a minimizing sequence {u, } C M, for J;  such that
Jer(un) =0 +0n(1), and J;  (1n) =0,(1) in H}Y(RN).
By Lemma 3.2 (i), there is a subsequence {u, } and ug€ H'(RN). We claim that

up€ M, (M2, =@ for 0<A<A) and Je (1h0) =g 0.
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On the contrary that up € M_,, we get that

/m  Ah(ez) (o), dz>0.
Otherwise,
o = [ o(e)(un)idz= [ Ah(ez) (w,)] o
:/RNAh(ez)(uo)idz—l—on(l):on(l).
It follows that

. 1 1 2 ]
Jim (5= ) e = aca

that contradicts to &, , < 0. By Lemma 2.11 (ii), then there are positive numbers [T <<
I~ =1such that [Tug€ Mj/v [Tup€e M_, and that is a contradiction. Hence,

2
ueM,,  —CoATT <Joa(uo) =aen =0,

This completes the proof. O

4 Existence of multiple solutions

From this time, we assume that a and / satisfy a;, a4, and h;. Suppose w € H 1 (IRN) be the
positive ground state solution of Eq. (Eo) in RN for a=amax.

(i) we L*(RN)NC? (RN) for some 0< 6 <1 and lim |, w(z) =0,
(i) For every & >0, there are positive numbers C;, C5 and C5 such that for all
ZEIRNCEexp(—(l +e)|z|) <w(z) <Ciexp(—|z|),
and
| Vw(z) |< Ciexp(—(1—¢)|z]).
For 1<i<k, we define
4

wé(z):w(z—z), where a(ai):amax.

Clearly, wi(z) € H'(RN). By Lemma 2.11 (ii) there is a unique number (I1)~ > 0 so that
(I~ wle M, C My, where 1 <i<k.

€

Lemma 4.1. There is a number ty >0 such that for 0 <t <ty and every e >0, we have that

Jer(fwl) <Ymax,  uniformly in i
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Proof. For every ¢ >0, we have

. 2 . tp . # .
Jealtat) =5 llwf Iy~ [ alea)(@i)da—C [ Ah(es) (i de

Since J,  is continuous in H'(RN), {wi} is uniformly bounded in H'(RN) for every e>0
and ymax >0 there is ty >0 such that for 0 <t <ty and every e >0

Jer (tw‘lg) < Ymax-

This completes the proof. O

Lemma 4.2. There are positive numbers t1 and € such that for every t >t and € < 1, we have
that

Jea (twl) <0, uniformly in i.

Proof. There is an ry > 0 such that a(z) > amax /2 for z€ BN (a' : rg) uniformly in i. Then is
€1 >0 such that for e <e;

, 2. p , q ‘
Joaltl) =5 k== [ atez)(wlydz=C [ An(ea)(w))iaz

# 2,02 P 2, o1 P p
SE/IRNHVZU’ +w ]—Eﬂvuﬂ +w ]—E/H{Namaxw dz.
Thus, there is t; >0 such that for every t >t; and e <¢;
Je (twl) <0, uniformly in i.

This completes the proof. O

Lemma 4.3. Suppose that ay,a2, and hy hold. If 0 <A <qA/2, then

lim supJ, A (twé) <<“Ymaxs uniformly in i.
e—0+ t>0

Proof. By Lemma 4.1 we just try to indicate

lim sup ]e,A(twé) < Ymax
e=0% o <t<ty
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uniformly in i; we learn that sup,., Imax (f0) = Ymax- For tg <t <t;, we get
i1 iz 1 i 1 i
Jea(tw) =3 ||twg||H—; In ea) i [ Anez) (tly1dz
=5 |7 (Z——>\ o= )]
tP at\g
5 o ( ) dz— / Ah(ez)w (Z_E> dz
t2 ) tP
= 2/ [| vw |* +w?] dz——

id ai\g
+? RN(“max a(ez)w(z—z) dz——)\/ (ez w(z—?> dz
tP

S'Ymaxgl/]lw(”max_“@z))w(z_— dZ— A/ (ez) z——)qdz.

Since
i

/IRN(amx—a(sz))w(z—%)pdz:/IRIN [amax—a(ez—l-ai)] wPdz=0(1)

as ¢ — 07" uniformly in i. And

ai\a
- _ q 9 _ +
A IRJNh(sz)w(z e) dz<A|h|#S7||w|=0(1) as e—=0".

then
EIE(I)L SUpy <s<, Jer (twe) < Ymax, EIL%L SUP;>o)en (twe) < Ymax,
uniformly in i. O

Remark 4.1. Applying the results of Lemma 4.3, we can conclude that
0<do<a,), <Ymaxt+0(1), ase—07.

Since there is ¢y > 0 such that

(4.1)

0< ’ymax—CoA%?, for any e <,
BN (a')NBN(a/) =@, for1<i#j<k;

where
Bﬁé(ai):{zeﬂ?||z—ai|§po} and a(a") = amax.
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Define

k={a'|1<i<k} and K%Ozulk:lB

NS Z

('),

choosing 0<pp<1. Suppose ULB% (a')CBN(0) for some ro>0. Let Q¢:H' (RN)\ {0} — RN
be given by
Jrn X (€2) [u]P dz

Jgn|ulpdz

where x: RN RN, x(z) =z for |z|<rg, and x(z) =roz/|z| for |z|>ro. For every 1<i<k,
define

Qe(u)=

Ol={ueM_,||Q.(u)—a'|<po};
00 ={ueM_,||Qc(u)—a'|=po};

ﬁQ,A: inf Jo A (u) and B;A: inf J.A(u).
ucO u€dO}

By Lemma 4.3, there is t. > 0 such that £.w! >0€ M, , for every 1<i<k.

Lemma 4.4. There is 0 <& <eg such that if e <&°, then Q. ((t.)~w') € Ky, for every 1<i<k.
2

Proof. Since

_ Jrnx(e2) \w(zf ”—81) |Pdz
Jrn lw(z—%)|Pdz
_ Jrnx(eZ+a') |w(z) [P dz

J RN

Qe((th)~wh)

|w(z)|Pdz—a' as e—0T.

There is € >0 such that

Qe((t)) wi) €Ky, foreverye<e®and every 1<i<k.

7
This completes the proof. O

Lemma 4.5. There is a number >0 such that if u € Q and Inax (1) < Ymax+0 then Q¢ (1) EKpy

vl

for every 0 <e <.

Proof. On the contrary, there exist the sequences {¢, } CR" and {u, } €Q such thate,—07.
L, (Un) = Ymax(>0)+0,(1) as n—co and Q;, (u,) & KpTO for all n €IN. It is not difficult to

find that {u,} is bounded in H!(RN). Suppose that

/N]un]”dz—m, asn— oo, u, —0,
R



90 S. Khademloo and R. Mohsenhi / J. Partial Diff. Eq., 27 (2014), pp. 74-94
strongly in LP(RN). Since
|| 1t H%{:/ a(enz)(uy)ldz, foreveryneNN,
R

then
e, (1) = (% _ %) /IRNa(snz)(un)pdz:'ymax(> 0)+0n(1) <on(1).

That is a contradiction. Then

/N\u]”dz—/»o, as n— oo.
R

Thus u, -+ 0 strongly in LP(RN). Also the concentration - compactness principle (see
Wang [7, Lemma 2.16],then there is a fixed do >0 and a sequence {Z, } C RN such that

1(2)2dz>dy > 0. 4.2
o rerPza =

Suppose v, (z) =u,(z+2,) then there a subsequence {v,} and v € H!(RN) such that
vy —v weakly in H'(RN). Using the same computation in Lemma 2.11. There is a se-
quence {sl ..} CR" such that v, =s" ., v, € Q and

0 < Ymax < Imax (V) < I, (Shaxtn) < I, (4n) = Ymax(>0) 40, (1)

as n— oo.

We conclude that a convergent subsequence {sZ .. } satisfy sk .. —so>0. Then there are
subsequences {v;,} and v € H!(RN) such that v, — 7(=sov) weakly in H!(RN). By (4.2),
then 7#0. Furthermore, we can obtain that 7,, - strongly in H!(RN), and Inax (V) =7max-
Now, we try to indicate that there is a subsequence {z, } ={¢,z, } such that z, —zy € K.

(i) Claim that the sequence {z,} is bounded in RYN. On the contrary, assume that
|z, | = 00, then

Ymax = Imax (V) <l <7)

RS b 1 —
<timint [ 71— [ a(erz-+2) (7)) ]

R TOE (S?nax)z 2 (S?nax)p p
—liminf [T it ||H—T/Rwa(snz)(un)+dz
zligiorgflgn (Sh axcin) < ligiorc}flgn (tn) = Ymax,

that is a contradiction.
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(ii) Claim that zg € K. On the contrary, assume that zg Z K, that is a(z0) < Amax. Then
using the above argument to obtain that

T =T (7) < 5 1T = [ (2

<liminf [5 17 1% —ﬁ/]RNa(snz-i-zn) (Vn)h dz
=Ymaxs
that is a contradiction. Since v, — v #0 in H'(RN), we have that

Jrnx(€nz) | va(z—25) [P dz _ Jrnx(€nztenZn) [vn [P dz
Jrn [Vn(z2—=Z) [P dz Jrn [ vn [P dz

Qe, (un) =

—>ZCK_0
2

as n— oo, that is a contradiction.

Hence, there is a number ¢ > 0 such that if # € Q) and Imax (%) < Ymax+6. Then Qq(u) €
K =0 for every ¢ < e’. Choosing 0 < 6y < & such that

Ymax 00 < Ymax — COAZZT'%, forevery 0<e< €0, (4.3)

This completes the proof. O

Lemma 4.6. IquMgA and Jo (1) <Ymax+3 % then there is a number A*>0 so that Qe (u)eK =y
for every 0 <e < A*.

2

Proof. We apply the same computation in Lemma 2.11 to obtain that there is a unique

positive number
1
-]
o (Y
© o\ fgwalez)ufldz )7

so that s} 1 € () we want to show that s} < C for some C >0 (independent of u). First, since
u E ME,)\

_ 0
O<d0 S‘Xg,/\ S]s,A(”) S'}’max‘i‘jor

since (J; , (u),u) =0, then

1 1 1 1
Tt 2 2 fop (1) = (3= Il (=) [t <ez>rruupdz>qq el

that is

Zq 50
2

> = —

iz Cr= 03 (et )
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and

1 1y, o, (1 1 p—2. 5
< = =——— - — P >
o< Toal) = (3 5) lulB+ (G- [ oten) Pz 22 s,

that is

2P
2>Cy=——dy. 4.4
Julfy>Co= o sdo @4

Moreover, we have that J, , is coercive on M 5, then 0< C, <| u ||2,< C; for some C; and
C, (independent of u). Next, we claim that || u||?,>C3>0 for some C; (independent of ).
On the contrary, there is a sequence {u,} C M_, so that | uy, ||},=0,(1) as n— oc. By (2.3)

2—q  Jgna(ez) lun [5dz _ amax || u]l]s _
> < =o0,(1),
p—4 1l C2

that is a contradiction. Thus, s¥ < C for some C >0 (independent of ©). Now, we get that

)
’)’max'i'io 2]8,)\(”) :Sup]&/\(tu) > ]8,/\ (S?M)
t>0

1 1 1
=g lstully— [ ol Istullfdemy [ A(ez) (st de
1
zlmax(sz‘u)—g/ﬂw)\h(sz)(s?u)idz.
Form the above inequality, we conclude that
o 1
Le{stn) ot /IR Ah(ez)(st'u)" dz
)
<Ymax-+7 + A tlla 7 stu I,
)
Ymaxt 5 HACHCL) || n]|o S°.
Hence, there is 0 < A* < &% such that for 0 <& < A*
Imax (8£14) < Ymax+9%0, where sfueQ.

By Lemma 4.6, we get

Jrnx(ez) |siu(z) [P dz
u _ JR € *
Qe(stu)= f]RN|s£“u(Z)|sz EK%, for every 0 <e <A,

or Q.eK=

i
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Applying the above lemma, we get that

‘ )
4= Ymax+ ?O, for every 0 <e < A™. (4.5)

By Lemmas 4.3, 4.4, and Eq. (4.3), there every 0 <&* < A*. So that
. o 5 e
:Bfe,ASIS,A ((té) )w::> S'Ymax+§o < Ymax — CoA21. (4.6)

This completes the proof. O

Lemma 4.7. Given u € O}, then there is an 1 > 0 and differentiable functional 1: B(0;n) C
HY(RN) — R* such that

1(0)=1, I(v)(u—v) €O, for every v € B(0;17),

and

'), 9) l10)=0.0)= % for every ¢ € C*(RY), (4.7)
where P (u) = é,/\<”)/”>'
Proof. See Cao and Zhou [8]. O

Lemma 4.8. For each 1 <i<k, there is a (PS) g -sequence {u,} C Ol in HY(RN) for J. A.

gA

Proof. See [1, Lemma 4.7]. O

Theorem 4.1. According to ay, ap, hy, there is a positive number (¢*)~2 such that for A,y >
(¢*)72, Eq. (Ea ) has k+1 positive solution in RN.

Proof. We know that there is a (PS) -sequence {untCM,_,inH LRN) for J,  for every

1<i<k and (45). Since J;, satisfy the (PS)g-condition for B € (—oo,'ymaX—Co/\%?),
then ]\ has at least k critical points in M_, for 0 <e<e*. It follows that Eq. (Ej )

has k nonnegative solution in RN. Applying the maximum principle and Theorem 3.4,
Eq. (E.) has k+1 positive solution in RN, O
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