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Abstract. In this paper, we study how the shape of the graph of a(z) affects on the
number of positive solutions of

−∆v+µb(z)v= a(z)vp−1+λh(z)vq−1, in R
N . (0.1)

We prove for large enough λ,µ>0, there exist at least k+1 positive solutions of the this
semilinear elliptic equations where 1≤q<2< p<2∗=2N/(N−2) forN≥3.
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1 Introduction

For N≥3, 16q<2< p<2∗=2N/(N−2), we suppose the semilinear elliptic equations

{

−∆v+µb(z)v= a(z)vp−1+λh(z)vq−1, in R
N;

ν∈H1(RN),
(Eλ,µ)

where λ,µ>0. Suppose a, b and h satisfy the following conditions:

(a1) a is a positive continuous function in R
N and lim|z|→∞ a(z)= a∞ >0.

(a2) There are k points a1,a2,··· ,ak in R
N such that a(ai)=amax=maxz∈RN a(z); for 1≤i≤k

and a∞ < amax.
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(h1) h∈L
p

p−q (RN)∩L∞(RN) and h	0.

(b1) b is a bounded and positive continuous function in R
N.

For µ=1, λ=0, a(z)=b(z)=1 for all z∈R
N , we assume the semilinear elliptic equation

{

−∆u+u=up−1, in R
N;

u∈H1(RN),
(E0)

where

‖u‖2
H=

∫

RN

(|∇u |2+u2)dz is the norm in H1(RN),

and the energy functional

J∞
0 (u)=

1

2
‖u‖2

H −
1

p
‖u+ ‖

p
Lp , where u+=max{u,0}>0.

We consider the semilinear elliptic equation

{

−∆u+u= a(z)up−1+λh(z)uq−1, in R
N;

u∈H1(RN),

have been studied by Huei-li Lin [1] (b(z) = 1, µ= 1 and for N ≥ 3, 16 q< 2< p< 2∗=
2N/(N−2)) and she studied the effect of the coefficient a(z) of the subcritical nonlinearity
in R

N, Ambrosetti [2] ( a≡1 and 1<q<2< p≤2∗=2N/(N−2) and Wu [3] (a∈C(Ω) and
changes sign, 1<q<2< p<2∗ ). They showed that this equation has at least two positive
solutions for small enough λ > 0. In [4], Hsu and Lin have studied that there are four
positive solutions of the general cases

−∆v+v= a(z)vp−1+λh(z)vq−1, in R
N ;

for small enough λ>0.
In this paper, we study the existence and multiplicity of positive solutions of the equa-

tion (Eλ,µ) in R
N. By the change of variables

µ=
1

ε2
and u(z)= ε

2
p−2 ν(εz),

Eq. (Eλ,µ) is converted to

{

−∆u+b(εz)u= a(εz)up−1+λh(εz)uq−1, in R
N;

u∈H1(RN).
(Eε,λ)

Based on Eq. (Eε,λ), we consider the C1-functional Jε,λ, for u∈H1(RN).

Jε,λ(u)=
1

2

∫

RN

(|∇u |2 +b(εz)u2)dz−
1

p

∫

RN

a(εz)u
p
+dz−

1

q

∫

RN

λh(εz)u
q
+dz,
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where

‖u‖2
b=
∫

RN

(|∇u |2 +b(εz)u2)dz

is the norm in H1(RN). In fact that d =max{1,b(εz)} then ‖ u ‖H≤‖ u ‖b≤ d ‖ u ‖H, i.e.,
‖ u ‖b is an equivalent norm by ‖ u ‖H. We know that the nonnegative weak solutions
of Eq. (Eε,λ) are equivalent to the critical points of Jε,λ. Here we study the existence and
multiplicity of positive solutions of Eq. (Eε,λ) in R

N.

We organize this paper in this way. In Section 2, we apply the argument of Tarantello
[5] to divide the Nehari manifold Mε,λ into two parts M+

ε,λ and M−
ε,λ. In Section 3, we show

that the existence of a positive ground state solution u0 ∈ M+
ε,λ of Eq. (Eε,λ). In Section 4,

there are at least k critical points u1,··· ,uk∈M−
ε,λ of Jε,λ such that Jε,λ(ui)=βi

ε,λ((PS)-value)
for 1≤ i≤ k. Let

S=supu∈H1(RN),‖u‖H=1 ‖u‖LP ,

then ‖u‖Lp≤S‖u‖H for every u∈H1(RN)\{0}.

2 Main results

Theorem 2.1. Under assumptions a1 and h1, if

(a)

0<λ<Λ=(p−2)

(

2−q

amax

)

2−q
p−2
(

(p−q)S2
)

q−p
p−2 ‖h‖−1

# ,

where ‖ h ‖# is the norm in L
P

p−q (RN), then Eq. (Eε,λ) accepts at least a positive ground
state solution, (see Theorem 3.4).

(b) Under assumptions a1,a2 and h1, if λ is large enough, then Eq. (Eλ,µ) archives at least k+1
positive solutions, (see Theorem 4.10).

For the semilinear elliptic equations

{

−∆u+u= a(εz)up−1, in R
N;

u∈H1(RN),

if a= amax and Ω={u∈H1(RN)\{0}|u+ 6≡0 and 〈I ′max(u),u〉=0}. We define the energy
functional

Imax=
1

2
‖u‖2

H −
1

p

∫

RN

amax(εz)u
p
+dz,

then γmax= infu∈Ω Imax(u).
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Lemma 2.1. We have

γmax=
p−2

2p
(amaxSp)

−2
(p−2) >0.

Proof. If

Imax=
1

2
‖u‖2

H −
1

P

∫

RN

amaxu
p
+dz,

then

γmax=γmax(Ω)=
(1

2
−

1

p

)

γ(Ω)
2p

2−p ;

γ(Ω)=sup

{

∫

RN

amaxup

∣

∣

∣

∣

u∈H1(RN) and ‖u‖H=1

}

= a
1
p
max.

Moreover γmax=( 1
2 −

1
p)(a

1
p
maxS)

2p
p−2 >0.

Definition 2.1. We define the Palais-Smale (denoted by (PS))-sequences, (PS)-value, and (PS)-
conditions in H1(RN) for Jε,λ as follows.

(i) For β∈R, a sequence {un} is a (PS)β-sequence in H1(RN) for Jε,λ if Jε,λ(un)=β+on(1)

and J′ε,λ(un) = on(1) strongly in H−1(RN) as n −→ ∞, where H−1(R)N is the dual space of

H1(RN);

(ii) β∈R is a (PS)-value in H1(RN) for Jε,λ if there is a (PS)β-sequence in H1(R) for Jε,λ;

(iii) Jε,λ satisfy the (PS)β-condition in H1(RN) if every (PS)β-sequence in H1(RN) for Jε,λ

includes a convergent subsequence.

Next, since Jε,λ is not bounded form below in H1(RN), we consider the Nehari mani-
fold

Mε,λ={u∈H1(RN)\0|u+ 6≡0, and 〈J′ε,λ(u),u〉=0}, (2.1)

where

〈J′ε,λ(u),u〉=‖u‖2
H−

∫

RN

a(εz)u
p
+dz−λ

∫

RN

h(εz)u
q
+dz.

Notice Mε,λ includes all nonnegative solutions of Eq. (Eλ,µ).

Lemma 2.2. The energy functional Jε,λ is coercive and bounded from below on Mε,λ.

Proof. For u∈Mε,λ, the Holder inequality (p1 = p/(p−q),p2 = p/q) and the Sobolev em-
bedding we get

Jε,λ(u)=
(1

2
−

1

p

)

‖u‖2
H −

(1

q
−

1

p

)

∫

RN

λh(εz)u
q
+dz

≥
(1

2
−

1

p

)

‖u‖2
H −

(1

q
−

1

p

)

λ‖h‖# Sq ‖u‖
q
H

≥
‖u‖

q
H

p

[

p−2

2
‖u‖

2−q
H −(

p−q

q
)λ‖h‖# Sq

]

≥0,
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where

C1=(p−2)/2>0 and C2=((p−q)/q)λ‖h‖# Sq
>0,

i.e, we have that Jε,λ is coercive and bounded from below on Mε,λ.

Definition 2.2. Define ψε,λ(u)= 〈J′ε,λ(u),u〉.

Under assumptions for u∈Mε,λ, we get

〈ψ′
ε,λ(u),u〉=2‖u‖2

H−p
∫

RN

a(εz)u
p
+dz−λq

∫

RN

h(εz)u
q
+dz

=(2−p)‖u‖2
H +(p−q)λ

∫

RN

h(εz)u
q
+dz

=(2−q)‖u‖2
H +(q−p)

∫

RN

a(εz)u
p
+dz. (2.2)

We apply the method in Tarantello [5], suppose

M+
ε,λ={u∈Mε,λ | 〈ψ

′
ε,λ(u),u〉>0};

M0
ε,λ={u∈Mε,λ | 〈ψ

′
ε,λ(u),u〉=0};

M−
ε,λ={u∈Mε,λ|〈ψ

′
ε,λ(u),u〉<0}.

Lemma 2.3. Under assumptions a1,a2 and h1, if 0<λ<Λ, then M0
ε,λ=∅.

Proof. On the contrary, there is a number λ0∈R and 0<λ0 <Λ such that M0
λ0
=∅. Then

for u∈M0
λ0

, by (2.2), we have

‖u‖2
H=

p−q

p−2
λ0

∫

RN

h(εz)u
q
+dz=

p−q

2−q

∫

RN

a(εz)u
p
+dz.

By the Holder and the Sobolev embedding theorem, we obtain

‖u‖H≥

[

(2−q)

(p−q)amax
S−p

]
1

(p−2)

and ‖u‖H ≤

(

p−q

p−2
λ0 ‖h‖# Sq

) 1
2−q

.

Thus,

λ0≥ (p−2)
(2−q

amax

)

2−q
p−2 (

(p−q)S2
)

q−p
p−2 ‖h‖−1

# =Λ.

This makes a contradiction.

Lemma 2.4. Suppose that u is a local minimizer for Jε,λ on Mε,λ and u∈M0
ε,λ. Then J′ε,λ(u)=0

in H−1(RN).

Proof. See [6, Theorem 2.3].
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Lemma 2.5. For each u∈M+
ε,λ, we have

∫

RN

h(εz)u
q
+dz>0, and ‖u‖H<

(

p−q

p−2
λ‖h‖ 6= Sq

) 1
(2−q)

.

Proof. For u∈M+
ε,λ, we get

(2−p)‖u‖2
H +(p−q)λ

∫

RN

h(εz)u
q
+dz>0,

(p−q)λ
∫

RN

h(εz)u
q
+dz> (2−p)‖u‖2

H ,

∫

RN

h(εz)u
q
+dz>

(2−p)

λ(p−q)
‖u‖2

H>0.

For every u∈ M+
ε,λ ⊂ Mε,λ, by (2.2), we apply the Holder inequality (p1 = p/(p−q),p2 =

p/q) to obtain that

0< (p−q)
∫

RN

λh(εz)‖u
q
+dz−(p−2)‖u‖2

H≤ (p−q)λ‖h‖# Sq ‖u‖
q
H −(p−2)‖u‖2

H ,

‖u‖H ≤
( p−q

p−2
λ‖h‖# Sq

)
1

2−q
.

This completes the proof.

Lemma 2.6. For each u∈M−
ε,λ, we have

‖u‖H>

[

2−q

(p−q)amax
Sp

] 1
p−2

.

Proof. For every u∈M−
ε,λ, by (2.2), we have that

‖u‖2
H<

p−q

2−q

∫

RN

a(εz)u
p
+dz≤

p−q

2−q
Sp ‖u‖

p
H amax, ‖u‖H≥

[

(2−q)

(p−q)amax
S−p

]
1

(p−2)

.

This completes the proof.

Lemma 2.7. If 0<λ<
qΛ

2 and u∈M−
ε,λ, then Jε,λ(u)>0.

Proof. For u∈M−
ε,λ, we have

Jε,λ(u)=
(1

2
−

1

p

)

‖u‖2
H −

(1

q
−

1

p

)

∫

RN

λh(εz)u
q
+dz

≥
‖u‖

q
H

p

[

P−2

2
‖u‖

2−q
H −

p−q

q
λ‖h‖# Sq

]

>
1

p

(

2−p

(p−q)amaxSp

)

q
p−2





p−2

2

(

2−q

(p−q)amaxSp

)

2−q
p−2

−
p−q

q
λ‖h‖# Sq



.

So Jε,λ(u)>d0>0 for some d0 =d0(ε,p,q,S,λ,‖h‖#,amax).
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For u∈H1(RN)\{0} and u+ 6≡0, let

l= l(u)=







(2−q)‖u‖2
H

(p−q)
∫

RN

a(εz)u
p
+dz







1
p−2

>0.

Lemma 2.8. For every u∈H1(RN)\{0} and u+ 6≡0, we have that, if
∫

RN

λh(z)u
q
+dz=0,

then there is a unique positive number l− = l−(u)> l such that l−u ∈ M−
ε,λ and Jε,λ(l

−u) =
supl>0 Jε,λ(lu).

Proof. For every u∈H1(RN)\{0} and u+ 6≡0, define

k(l)= ku(l)= l2−q ‖u‖2
H −lp−q

∫

RN

a(εz)u
p
+dz, for l>0.

Clearly, we get that k(0)=0 and k(l)→−∞ as l→∞ since

k′(l)=
1

lq+1

[

(2−q)‖ lu‖2
H −(p−q)

∫

RN

a(εz)(lu+)
pdz

]

, for l>0,

then k′(l)=0, k′(l)>0 for 0< l< l, and k′(l)<0 for l> l. Thus, k(l) get its maximum at l.
Furthermore, by the Sobolev embedding theorem, we have that

k(l)=

(

(2−q)‖u‖2
H

(p−q)
∫

RN a(εz)u
p
+dz

)

(2−q)
(p−2)

‖u‖2
H

−

(

(2−q)‖u‖2
H

(p−q)
∫

RN a(εz)u
p
+dz

)

(p−q)
(

p−2)
∫

RN

a(εz)u
p
+dz

≥ (p−2)(2−q)
2−q
p−2 (p−q)

q−p
p−2 S

p(q−2)
p−2 ‖u‖

q
H , (2.3)

∫

RN

λh(z)u
q
+dz=0.

There is a unique positive number l−= l−(u)> l such that

k(l−)=
∫

RN

λh(z)u
q
+dz=0,

and k′(l−)>0. Then

d

dl
Jε,λ(lu)=

1

l

(

‖ lu‖2
H −

∫

RN

a(εz)(lu+)
pdz−

∫

RN

λh(εz)(lu+)
qdz

)

|l=l− =0,

d2

dl2
Jε,λ(lu)=

1

l2

[

‖ lu‖2
H −(p−1)

∫

RN

a(εz)(lu+)
pdz−(q−1)

∫

RN

λh(εz)(lu+)
qdz

]

|l=l− <0,
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and

Jε,λ(lu)→−∞, as l→∞.

Furthermore, it is not difficult to find that l−u∈M−
ε,λ and Jε,λ(l

−u)=supl≥0 Jε,λ(lu).

Lemma 2.9. If 0<λ<Λ and
∫

RN λh(εz)u
q
+dz>0, then there is unique positive number l+=

l+(u)< l< l−= l−(u) such that l+u∈M−
ε,λ, and

Jε,λ(l
+u)= inf

0≤l≤l
Jε,λ(lu), Jε,λ(l

−u)=sup
l≥l

Jε,λ(lu).

Proof. Since 0<λ<Λ and
∫

RN λh(εz)u
q
+dz>0, by (2.3), then

k(0)=0<λ
∫

RN

h(εz)u
q
+dz≤λ‖h‖# Sq ‖u‖

q
H

<(P−2)(2−q)
2−q
p−2 (p−q)

q−p
p−2 S

p(q−2)
p−2 ‖u‖

q
H≤ k(l).

It follows that there are unique positive number l+= l+(u) and l−= l−(u) such that

l+< l< l−, k(l+)=
∫

RN

λh(εz)u
q
+dz= k(l−) and k′(l−)<0< k′(l+).

We also have that

l+u∈M+
ε,λ, l−u∈M−

ε,λ, Jε,λ(l
+u)≤ Jε,λ(lu)≤ Jε,λ(l

−u)

for every l∈ [l+,l−], and Jε,λ(l
+u)≤ Jε,λ(lu) for every l∈ [0,l]. Hence,

Jε,λ(l
+u)= inf

0≤l≤l
Jε,λ(lu), Jε,λ(l

−u)=sup
l≥l

Jε,λ(lu).

This completes the proof.

Applying Lemma 2.6 (M0
ε,λ=∅ for 0<λ<Λ). We have Mε,λ=M+

ε,λ∪M−
ε,λ, where

M+
ε,λ=

{

u∈Mε,λ

∣

∣

∣

∣

(2−q)‖u‖2
H −(p−q)

∫

RN

a(εz)u
p
+dz>0

}

,

M−
ε,λ=

{

u∈Mε,λ

∣

∣

∣

∣

(2−q)‖u‖2
H −(p−q)

∫

RN

a(εz)u
p
+dz<0

}

.

Define

αε,λ= inf
u∈Mε,λ

Jε,λ(u); α+
ε,λ= inf

u∈M+
ε,λ

Jε,λ(u); α−
ε,λ= inf

u∈M−
ε,λ

Jε,λ(u).

Lemma 2.10. If 0<λ<Λ, then αε,λ≤α+
ε,λ<0.



82 S. Khademloo and R. Mohsenhi / J. Partial Diff. Eq., 27 (2014), pp. 74-94

Proof. Suppose u∈M+
ε,λ, by (2.2) we get that

(p−2)‖u‖2
H< (p−q)λ

∫

RN

h(z)u
q
+dz.

Then

Jε,λ(u)=
(1

2
−

1

p

)

‖u‖2
H −

(1

q
−

1

p

)

λ
∫

h(εz)u
q
+dz

<

[

(1

2
−

1

p

)

−
(1

q
−

1

p

) p−2

p−q

]

‖u‖2
H

=−
(2−q)(p−2)

2pq
‖u‖2

H<0.

By the definition αε,λ and α+
ε,λ, we conclude that αε,λ≤α+

ε,λ<0.

Lemma 2.11. If 0<λ<qΛ/2, then α−
ε,λ≥d0>0 for some d0 =d0(ε,λ,p,q,S,‖h‖#).

Proof. See [4, Lemma 2.5].

Lemma 2.12. We conclude

(a) There is a (PS)αε,λ
-sequence {un} in Mε,λ for Jε,λ;

(b) There is a (PS)α+
ε,λ

-sequence {un} in M+
ε,λ for Jε,λ;

(c) There is a (PS)α−
ε,λ

-sequence {un} in M−
ε,λ for Jε,λ.

3 Existence of a ground state solution

At first, we show that Jε,λ satisfy the (PS)β-condition in H1(RN) for β ∈ (−∞,γmax−

C0λ
2

2−q ), where

C0=(2−q)[(p−q)‖h‖# Sq]
2

2−q �
[

2pq(p−2)
q

2−q

]

.

Lemma 3.1. Under some assumptions a1,a2,h1 and 0<λ<Λ. If {un} is a (PS)β- sequence in

H1(RN) for Jε,λ with un ⇀u weakly in H1(RN), then J′ε,λ(u)=0 in H−1(RN).

Proof. Suppose {un} be a (PS)β-sequence in H1(RN) for Jε,λ such that Jε,λ(un)=β+on(1)
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and J′ε,λ(un)= on(1) in H−1(RN). Then

|β |+on(1)+
dn ‖un ‖H

p
≥Jε,λ(un)−

1

p
〈J′ε,λ(un),un〉

=
(1

2
−

1

p

)

‖un ‖
2
H −

(1

q
−

1

p

)

∫

RN

λh(εz)(un)
q
+dz

≥
p−2

2p
‖un ‖

2
H −

p−q

pq
λ‖h‖# Sq ‖un ‖

q
H

≥
p−2

2p
‖un ‖

2
H,

then
‖un ‖≥2p(|β |+on (1))/(2dn−(p−2)),

where dn=on(1) as n→∞. It follows that {un} is bounded in H1(RN). Furthermore there
are a subsequence {un} and u∈H1(RN) such that J′ε,λ(u)=0 in H−1(RN).

Lemma 3.2. Under some assumptions a1,a2,h1 and 0<λ<Λ. If {un} is a (PS)β-sequence in

H1(RN) for Jε,λ with un ⇀u weakly in H1(RN), Jε,λ(u)>−C0λ
2

2−q >−C′
0, where

C′
0=
(

(p−2)(2−q)
p

p−2

)

�

(

2pq(amax(p−q))
2

p−2 S
2p

p−2

)

.

Proof. we have 〈J′ε,λ(u),u〉=0, that is,

∫

RN

a(εz)u
p
+dz=‖u‖2

H −
∫

RN

λh(εz)u
q
+dz.

Hence, by the Young inequality (p1=
2
q and p2=

2
2−q ).

Jε,λ(u)=

(

1

2
−

1

p

)

‖u‖2
H −

(

1

q
−

1

p

)

∫

RN

λh(εz)uqdz

≥
p−2

2p
‖u‖2

H −
p−q

pq
λ‖h‖# Sq ‖u‖

q
H

≥
p−2

2p
‖u‖2

H −
p−2

pq

[

q‖u‖2
H

2
+
( p−q

p−2
λ‖h‖# Sq

)
2

2−q 2−q

2

]

=−λ
2

2−q (2−q)[(p−q)‖h‖# Sq]
2

2−q �
[

2pq(p−2)
q

2−q

]

≥−
(p−2)(2−q)

p
p−2

2pq[amax(p−q)]
2

p−2 S
2p

p−2

=−C′
0.

This completes the proof.
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Lemma 3.3. Assume that a, b and h satisfy a1 and h1. If 0<λ<Λ. Then Jε,λ satisfy the (PS)β-

condition in H1(RN) for β∈ (−∞,γmax−C0λ
2

2−q ).

Proof. Suppose {un} be a (PS)β-sequence in H1(RN) for Jε,λ such that

Jε,λ(un)=β+on(1),

and J′ε,λ(un)=on(1) in H−1(RN). Then it follows that {un} is bounded in H1(RN). More-

over, there are a subsequence {un} and u ∈ H1(RN) such that J′ε,λ(u) = 0 in H−1(RN).

un ⇀ u weakly in H1(RN), un → u a.e. in R
N ,un ⇀ u strongly in Ls

loc(R
N) for every

1≤ s<2∗. Next, claim that

∫

RN

h(εz)|un−u|qdz→0, as n→∞. (3.1)

Using the Brezis-Lieb lemma to get

∫

RN

h(εz)(un−u)
q
+dz=

∫

RN

h(εz)(un)
q
+dz−

∫

RN

h(εz)uqdz+on(1).

For every σ>0, there is r>0 so that

∫

[BN(0;r)]
c
h(εz)

p
p−q dz<σ.

By the Holder inequality and the Sobolev embedding theorem, we get

∣

∣

∣

∣

∣

∫

RN

h(εz) |un−u |q dz

∣

∣

∣

∣

∣

≤
∫

BN(0;r)
h(εz) |un−u |q dz+

∫

[BN(0;r)]c
h(εz) |un−u |q dz

≤‖h‖#

(

∫

RN

|un−u |p dz

)

q
p

+sq

(

∫

RN

h(εz)
p

p−q dz

)

p−q
p

‖un−u‖
q
H

≤on(1)+σC′.

{un} is bounded in H1(RN) and un→u in L
q
loc(R

N). Applying a1 and un→u in L
q
loc(R

N)),
we get that

∫

RN

a(εz)(un−u)
p
+dz=

∫

RN

amax(un−u)
p
+dz+on(1). (3.2)
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Let pn =un−u. Suppose pn90 strongly in H1(RN). By (3.1), (3.2), we conclude that

‖ pn ‖
2
H=‖un ‖

2
H −‖u‖2

H +on(1)

=
∫

RN

a(εz)(un)
p
+dz−

∫

RN

λh(εz)(un)
q
+dz

−
∫

RN

a(εz)updz+
∫

RN

λh(εz)uqdz+on(1)

=
∫

RN

a(εz)(un−u)
p
+dz+on(1)

=
∫

RN

amax(pn)
p
+dz+on(1),

also

Imax(u)=
1

2
‖un ‖

2
H −

1

p

∫

RN

amaxu
p
+dz,

then

Imax(pn)=
1

2
‖ pn ‖

2
H −

1

p

∫

RN

amax(pn)
p
+dz=

(1

2
−

1

p

)

‖ pn ‖
2
H +on(1)>0.

By Theorem 4.3 in Wang [7], there is a sequence {sn}⊂R
+ such that

sn =1+on(1), {sn pn}⊂Ω, and Imax(sn pn)= Imax(pn)+on(1).

It follows that

γmax≤Imax(sn pn)= Imax(pn)+on(1)= Jε,λ(un)− Jε,λ(u)+on(1)

=β− Jε,λ(u)+on(1)= Jε,λ(un)− Jε,λ(u)

=Jε,λ(pn)→ on(1)<γmax,

which is a contradiction. Hence, un →u strongly in H1(RN).

Theorem 3.1. Under some assumptions a1, a2, h1 and 0<λ<Λ, then there is at least one positive
ground state solution u0 of Eq. (Eε,λ) in R

N. Moreover, we have that u0∈M+
ε,λ and

Jε,λ(u0)=αε,λ=α+
ε,λ≥−C0λ

2
2−q .

Proof. There is a minimizing sequence {un}⊂Mε,λ for Jε,λ such that

Jε,λ(un)=αε,λ+on(1), and J′ε,λ(un)= on(1) in H−1(RN).

By Lemma 3.2 (i), there is a subsequence {un} and u0∈H1(RN). We claim that

u0∈M+
ε,λ (M0

ε,λ=∅ for 0<λ<Λ) and Jε,λ(u0)=αε,λ.
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On the contrary that u0∈M−
ε,λ, we get that

∫

RN

λh(εz)(u0)
q
+dz>0.

Otherwise,

‖un ‖
2
H −

∫

RN

a(εz)(un)
p
+dz=

∫

RN

λh(εz)(un)
q
+dz

=
∫

RN

λh(εz)(u0)
q
+dz+on(1)= on(1).

It follows that

lim
n→∞

(1

2
−

1

p

)

‖un ‖
2
H=αε,λ;

that contradicts to αε,λ < 0. By Lemma 2.11 (ii), then there are positive numbers l+< l<
l−=1 such that l+u0∈M+

ε,λ, l−u0∈M−
ε,λ and that is a contradiction. Hence,

u0∈M+
ε,λ, −C0λ

2
2−q ≤ Jε,λ(u0)=αε,λ=α+

ε,λ.

This completes the proof.

4 Existence of multiple solutions

From this time, we assume that a and h satisfy a1, a2 and h1. Suppose w∈H1(RN) be the
positive ground state solution of Eq. (E0) in R

N for a≡ amax.

(i) w∈L∞(RN)∩C2,θ
loc(R

N) for some 0< θ<1 and lim|z|→∞ w(z)=0.

(ii) For every ε>0, there are positive numbers C1, Cε
2 and Cε

3 such that for all

z∈R
NCε

2exp(−(1+ε) |z |)≤w(z)≤C1 exp(−|z |),

and
|∇w(z) |≤Cε

3exp(−(1−ε) |z |).

For 1≤ i≤ k, we define

wi
ε(z)=w

(

z−
ai

ε

)

, where a(ai)= amax.

Clearly, wi
ε(z)∈ H1(RN). By Lemma 2.11 (ii) there is a unique number (li

ε)
−
> 0 so that

(li
ε)

−wi
ε ∈M−

ε,λ⊂Mε,λ, where 1≤ i≤ k.

Lemma 4.1. There is a number t0>0 such that for 0≤ t< t0 and every ε>0, we have that

Jε,λ(tw
i
ε)<γmax, uniformly in i
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Proof. For every ε>0, we have

Jε,λ(tw
i
ε)=

t2

2
‖wi

ε ‖
2
H −

tp

p

∫

RN

a(εz)(wi
ε)

pdz−
tq

q

∫

RN

λh(εz)(wi
ε)

qdz.

Since Jε,λ is continuous in H1(RN), {wi
ε} is uniformly bounded in H1(RN) for every ε>0

and γmax>0 there is t0>0 such that for 0≤ t≤ t0 and every ε>0

Jε,λ(tw
i
ε)<γmax.

This completes the proof.

Lemma 4.2. There are positive numbers t1 and ε1 such that for every t> t1 and ε< ε1, we have
that

Jε,λ(tw
i
ε)<0, uniformly in i.

Proof. There is an r0 >0 such that a(z)≥ amax/2 for z∈BN(ai : r0) uniformly in i. Then is
ε1>0 such that for ε< ε1

Jε,λ(tw
i
ε)=

t2

2
‖wi

ε ‖
2
H −

tp

p

∫

RN

a(εz)(wi
ε)

pdz−
tq

q

∫

RN

λh(εz)(wi
ε)

qdz

≤
t2

2

∫

RN

[

|▽w |2+w2
]

−
tp

2p

[

|▽w |2+w2
]

−
tp

2p

∫

RN

amaxwpdz.

Thus, there is t1>0 such that for every t> t1 and ε< ε1

Jε,λ(tw
i
ε)<0, uniformly in i.

This completes the proof.

Lemma 4.3. Suppose that a1,a2, and h1 hold. If 0<λ<qΛ/2, then

lim
ε→0+

sup
t≥0

Jε,λ(tw
i
ε)≤<γmax, uniformly in i.

Proof. By Lemma 4.1 we just try to indicate

lim
ε→0+

sup
t0≤t≤t1

Jε,λ(tw
i
ε)≤γmax
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uniformly in i; we learn that supt≥0 Imax(tw)=γmax. For t0≤ t≤ t1, we get

Jε,λ(tw
i
ε)=

1

2
‖ twi

ε ‖
2
H −

1

p

∫

RN

a(εz)(twi
ε)

pdz−
1

q

∫

RN

λh(εz)(twi
ε)

qdz

=
t2

2

∫

RN

[

∣

∣

∣
▽w

(

z−
ai

ε

)∣

∣

∣

2
+w

(

z−
ai

ε

)2
]

dz

−
tp

p

∫

RN

a(εz)w
(

z−
ai

ε

)p
dz−

tq

q

∫

RN

λh(εz)w
(

z−
ai

ε

)q
dz

=

{

t2

2

∫

RN

[

|▽w |2+w2
]

dz−
tp

p

}

+
tp

p

∫

RN

(amax−a(εz)w
(

z−
ai

ε

)p
dz−

tq

q
λ
∫

RN

h(εz)w
(

z−
ai

ε

)q
dz

≤γmax
t

p
1

p

∫

RN

(amax−a(εz))w
(

z−
ai

ε

)p
dz−

t
q
0

q
λ
∫

RN

h(εz)w
(

z−
ai

ε

)q
dz.

Since
∫

RN

(amax−a(εz))w
(

z−
ai

ε

)p
dz=

∫

RN

[

amax−a(εz+ai)
]

wpdz= o(1)

as ε→0+ uniformly in i. And

λ
∫

RN

h(εz)w
(

z−
ai

ε

)q
dz≤λ‖h‖# Sq ‖w‖

q
H= o(1) as ε→0+.

then

lim
ε→0+

supt0≤t≤t1
Jε,λ(tw

i
ε)≤γmax, lim

ε→0+
supt≥0 Jε,λ(tw

i
ε)≤γmax,

uniformly in i.

Remark 4.1. Applying the results of Lemma 4.3, we can conclude that

0<d0≤α−
ε,λ≤γmax+0(1), as ε→0+.

Since there is ε0>0 such that







0<γmax−C0λ
2

2−q , for any ε< ε0,

BN
ρ0
(ai)∩BN

ρ0
(aj)=∅, for 1≤ i 6= j≤ k;

(4.1)

where

BN
ρ0
(ai)={z∈R ||z−ai |≤ρ0} and a(ai)= amax.
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Define

k={ai |1≤ i≤ k} and K ρ0
2
=∪k

i=1BN
ρ0
2

(ai),

choosing 0≤ρ0<1. Suppose∪k
i=1BN

ρ0
(ai)⊂BN

r0
(0) for some r0>0. Let Qε:H

1(RN)\{0}→R
N

be given by

Qε(u)=

∫

RN χ(εz) |u |p dz
∫

RN |u |p dz
,

where χ :RN→R
N,χ(z)=z for |z |≤r0, and χ(z)=r0z/|z | for |z |>r0. For every 1≤ i≤k,

define

Oi
ε ={u∈M−

ε,λ| |Qε(u)−ai |<ρ0};

∂Oi
ε ={u∈M−

ε,λ| |Qε(u)−ai |=ρ0};

βi
ε,λ= inf

u∈Oi
ε

Jε,λ(u) and β
i

ε,λ= inf
u∈∂Oi

ε

Jε,λ(u).

By Lemma 4.3, there is ti
ε >0 such that ti

εw
i
ε>0∈Mε,λ for every 1≤ i≤ k.

Lemma 4.4. There is 0< ε0 ≤ ε0 such that if ε< ε0, then Qε((ti
ε)

−wi
ε)∈K ρ0

2
for every 1≤ i≤ k.

Proof. Since

Qε((t
i
ε)

−wi
ε)=

∫

RN χ(εz) |w(z− ai

ε ) |
p dz

∫

RN |w(z− ai

ε ) |
p dz

=

∫

RN χ(εZ+ai) |w(z) |p dz
∫

RN

|w(z) |p dz→ ai as ε→0+.

There is ε0
>0 such that

Qε((t
i
ε)

−wi
ε)∈K ρ0

2
, for every ε< ε0 and every 1≤ i≤ k.

This completes the proof.

Lemma 4.5. There is a number δ>0 such that if u∈Ω and Imax(u)≤γmax+δ then Qε(u)∈K ρ0
2

for every 0< ε< ε0.

Proof. On the contrary, there exist the sequences {εn}⊂R
+ and {un}∈Ω such that εn→0+.

Iεn(un)=γmax(>0)+on(1) as n→∞ and Qεn(un) 6∈K ρ0
2

for all n∈N. It is not difficult to

find that {un} is bounded in H1(RN). Suppose that

∫

RN

|un |
p dz→0, as n→∞, un →0,
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strongly in Lp(RN). Since

‖un ‖
2
H=

∫

R

a(εnz)(un)
p
+dz, for every n∈N,

then

Iεn(un)=
(1

2
−

1

p

)

∫

RN

a(εnz)(un)
pdz=γmax(>0)+on(1)≤ on(1).

That is a contradiction. Then

∫

RN

|u |p dz90, as n→∞.

Thus un 9 0 strongly in Lp(RN). Also the concentration - compactness principle (see
Wang [7, Lemma 2.16],then there is a fixed d0>0 and a sequence {zn}⊂R

N such that

∫

BN(zn :1)
|un(z) |

2 dz≥d0>0. (4.2)

Suppose νn(z)= un(z+zn) then there a subsequence {νn} and ν∈ H1(RN) such that
νn ⇀ ν weakly in H1(RN). Using the same computation in Lemma 2.11. There is a se-
quence {sn

max}⊂R
+ such that νn = sn

maxνn ∈Ω and

0<γmax≤ Imax(νn)≤ Iεn(s
n
maxun)≤ Iεn(un)=γmax(>0)+on(1)

as n→∞.

We conclude that a convergent subsequence {sn
max} satisfy sn

max→s0>0. Then there are
subsequences {νn} and ν∈H1(RN) such that νn ⇀ν(= s0ν) weakly in H1(RN). By (4.2),
then ν 6=0. Furthermore, we can obtain that νn→ν strongly in H1(RN), and Imax(ν)=γmax.
Now, we try to indicate that there is a subsequence {zn}={εnzn} such that zn → z0∈K.

(i) Claim that the sequence {zn} is bounded in R
N. On the contrary, assume that

|zn |→∞, then

γmax= Imax(ν)< I∞(ν)

≤liminf
n→∞

[

1

2
‖νn ‖

2
H −

1

P

∫

RN

a(εnz+zn)(νn)
p
+dz

]

=liminf
n→∞

[

(sn
max)

2

2
‖un ‖

2
H −

(sn
max)

p

p

∫

RN

a(εnz)(un)
p
+dz

]

=liminf
n→∞

Iεn(s
n
maxun)≤ liminf

n→∞
Iεn(un)=γmax,

that is a contradiction.
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(ii) Claim that z0 ∈K. On the contrary, assume that z0 /∈K, that is a(z0)< amax. Then
using the above argument to obtain that

γmax=Imax(ν)<
1

2
‖νn ‖

2
H −

1

P

∫

RN

a(z)(νn)
p
+dz

≤liminf

[

1

2
‖νn ‖

2
H −

1

P

∫

RN

a(εnz+zn)(νn)
p
+dz

]

=γmax,

that is a contradiction. Since νn ⇀ν 6=0 in H1(RN), we have that

Qεn(un)=

∫

RN χ(εnz) |νn(z−zn) |p dz
∫

RN |νn(z−zn) |p dz
=

∫

RN χ(εnz+εnzn) |νn |p dz
∫

RN |νn |p dz
→ z0⊂K æ0

2

as n→∞, that is a contradiction.

Hence, there is a number δ>0 such that if u∈Ω and Imax(u)≤γmax+δ. Then Qε(u)∈
K æ0

2
for every c< ε0. Choosing 0<δ0<δ such that

γmax+δ0<γmax−C0λ
2

2−q , for every 0< ε≤ ε0. (4.3)

This completes the proof.

Lemma 4.6. If u∈M−
ε,λ and Jε,λ(u)≤γmax+

δ0
2 , then there is a number Λ∗

>0 so that Qε(u)∈K æ0
2

for every 0< ε<Λ∗.

Proof. We apply the same computation in Lemma 2.11 to obtain that there is a unique
positive number

su
ε =

(

‖u‖2
H

∫

RN a(εz)u
p
+dz

)
1

p−2

,

so that su
ε u∈Ω we want to show that su

ε <C for some C>0 (independent of u). First, since
u∈Mε,λ

0<d0 ≤α−
ε,λ≤ Jε,λ(u)≤γmax+

δ0

2
,

since 〈J′ε,λ(u),u〉=0, then

γmax+
δ0

2
≥Jε,λ(u)=

(1

2
−

1

q

)

‖u‖2
H +

(1

q
−

1

p

)

∫

RN

a(εz)‖u‖p dz≥
q−2

2q
‖u‖2

H ,

that is

‖u‖2
H≥C1=

2q

q−2

(

γmax+
δ0

2

)
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and

d0≤ Jε,λ(u)=
(1

2
−

1

p

)

‖u‖2
H +

(1

q
−

1

p

)

∫

RN

a(εz)‖u‖p dz≥
p−2

2p
‖u‖2

H ,

that is

‖u‖2
H≥C2=

2P

P−2
d0. (4.4)

Moreover, we have that Jε,λ is coercive on Mε,λ, then 0<C2<‖u‖2
H<C1 for some C1 and

C2 (independent of u). Next, we claim that ‖u‖
p
Lp>C3>0 for some C3 (independent of u).

On the contrary, there is a sequence {un}⊂M−
ε,λ so that ‖un ‖

p
Lp= on(1) as n→∞. By (2.3)

2−q

p−q
<

∫

RN a(εz)‖un ‖
p
+ dz

‖u‖2
H

≤
amax ‖u‖

p
Lp

C2
= on(1),

that is a contradiction. Thus, su
ε <C for some C>0 (independent of u). Now, we get that

γmax+
δ0

2
≥Jε,λ(u)=sup

t≥0

Jε,λ(tu)≥ Jε,λ(s
u
ε u)

=
1

2
‖ su

ε u‖2
H −

1

p

∫

RN

a(εz)‖ su
ε u‖

p
+ dz−

1

q

∫

RN

λh(εz)(su
ε u)

q
+dz

≥Imax(s
u
ε u)−

1

q

∫

RN

λh(εz)(su
ε u)

q
+dz.

Form the above inequality, we conclude that

Iε(s
u
ε u)≤γmax+

δ0

2
+

1

q

∫

RN

λh(εz)(su
ε u)

q
+dz

≤γmax+
δ0

2
+λ‖h‖# Sq ‖ su

ε u‖
q
H

<γmax+
δ0

2
+λCq(C1)

q
2 ‖h‖# Sq.

Hence, there is 0<Λ∗≤ ε0 such that for 0< ε≤Λ∗

Imax(s
u
ε u)≤γmax+δ0, where su

ε u∈Ω.

By Lemma 4.6, we get

Qε(s
u
ε u)=

∫

RN χ(εz) | su
ε u(z) |p dz

∫

RN | su
ε u(z) |p dz

∈K æ0
2

, for every 0< ε<Λ
∗,

or Qε ∈K æ0
2

.
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Applying the above lemma, we get that

βi
ε,λ≥γmax+

δ0

2
, for every 0< ε<Λ

∗. (4.5)

By Lemmas 4.3, 4.4, and Eq. (4.3), there every 0< ε∗<Λ∗. So that

βi
ε,λ≤ Jε,λ

(

(ti
ε)

−)wi
ε

)

≤γmax+
δ0

3
<γmax−C0λ

2
2−q . (4.6)

This completes the proof.

Lemma 4.7. Given u ∈ Oi
ε, then there is an η > 0 and differentiable functional l : B(0;η)⊂

H1(RN)→R
+ such that

l(0)=1, l(ν)(u−ν)∈Oi
ε, for every ν∈B(0;η),

and

〈l′(ν),φ〉 |(l,ν)=(1,0)=
〈ψ′

ε,λ(u),φ〉

〈ψ′
ε,λ(u),u〉

, for every φ∈C∞
c (RN), (4.7)

where ψε,λ(u)= 〈J′ε,λ(u),u〉.

Proof. See Cao and Zhou [8].

Lemma 4.8. For each 1≤ i≤ k, there is a (PS)βi
ε,λ

-sequence {un}⊂Oi
ε in H1(RN) for Jε,λ.

Proof. See [1, Lemma 4.7].

Theorem 4.1. According to a1, a2, h1, there is a positive number (ε∗)−2 such that for λ,µ >

(ε∗)−2, Eq. (Eλ,µ) has k+1 positive solution in R
N.

Proof. We know that there is a (PS)βi
ε,λ

-sequence {un}⊂M−
ε,λ in H1(RN) for Jε,λ for every

1 ≤ i ≤ k, and (4.5). Since Jε,λ satisfy the (PS)β-condition for β ∈ (−∞,γmax−C0λ
2

2−q ),
then Jε,λ has at least k critical points in M−

ε,λ for 0 < ε ≤ ε∗. It follows that Eq. (Eλ,µ)

has k nonnegative solution in R
N. Applying the maximum principle and Theorem 3.4,

Eq. (Eε,λ) has k+1 positive solution in R
N.
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