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Abstract. This paper presents the global existence and uniqueness of the initial and
boundary value problem to a system of evolution p-Laplacian equations coupled with
general nonlinear terms. The authors use skills of inequality estimation and the method
of regularization to construct a sequence of approximation solutions, hence obtain the
global existence of solutions to a regularized system. Then the global existence of solu-
tions to the system of evolution p-Laplacian equations is obtained with the application
of a standard limiting process. The uniqueness of the solution is proven when the
nonlinear terms are local Lipschitz continuous.
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1 Introduction

In this paper, we study the global existence and uniqueness of solutions to the initial and
boundary value problem

uit−div(|∇ui|
pi−2∇ui)= fi(u1,··· ,um), (x,t)∈Ω×(0,T), (1.1a)

ui(x,0)=ui0(x), x∈Ω, (1.1b)

ui(x,t)=0, (x,t)∈∂Ω×(0,T), (1.1c)

where pi > 2, i = 1,2,··· ,m, T > 0, Ω ⊂ Rn is an open connected bounded domain with
smooth boundary ∂Ω.

System (1.1a) models such as non-Newtonian fluids [1, 2] and nonlinear filtration [3],
etc. In the non-Newtonian fluids theory, (p1,p2,··· ,pm) is a characteristic quantity of the
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fluids. The fluids with (p1,p2,··· ,pm)>(2,2,··· ,2) are called dilatant fluids and those with
(p1,p2,··· ,pm)< (2,2,··· ,2) are called pseudoplastics. If (p1,p2,··· ,pm)= (2,2,··· ,2), they
are Newtonian fluids.

For pi=2, i=1,2, many authors have studied the problem above; most of them studied
global existence, uniqueness, boundedness, and blowup behavior of solutions, etc(see
[4–10]). Some authors have derived sufficient conditions for the nonexistence of global
solutions. Such conditions are usually related to the structure of fi, i = 1,2. And some
authors have studied the uniqueness of the global solution and blow-up of the positive
solution, with nonlinearities in the form of

f1(u1,u2)=uα
1u

β
2 , f2(u1,u2)=u

γ
1 uδ

2,

where α,β,γ,δ are nonnegative numbers.
For pi >2, i=1,2, in [11], the authors gave local existence and uniqueness theorem of

solutions for the initial and boundary value problem on Ω×(0,T1), where T1∈(0,T)(T>0)
could be very small.

It is our goal to prove results of global existence and uniqueness for the degenerate
system of m equations. Since the system is coupled with nonlinear terms, in general, the
solutions of (1.1a)-(1.1c) will not exist for all time. Inspired by [12], in this paper, we study
some special cases by stating constrains to nonlinear functions. The proof consists of two
steps. First, we prove that the approximating problem admits a global solution; then
we do some uniform estimates for these solutions. We mainly use skills of inequality
estimation and the method of regularization to construct a sequence of approximation
solutions, hence obtain existence of the solution to a regularized system of equations.
By a standard limiting process, we obtain the existence of solutions to the system (1.1a)-
(1.1c).

Systems (1.1a) degenerates when ∇ui = 0. In general, there is no classical solution;
therefore, we have to study the generalized solutions to the problem (1.1a)-(1.1c). The
definition of generalized solutions is as follows:

Definition 1.1. A nonnegative function u=(u1,··· ,um) is called a generalized solution to the

system (1.1a)-(1.1c) in ΩT, T>0, if ui∈L∞(ΩT)∩Lpi(0,T;W
1,pi

0 (Ω)), uit∈L2(ΩT), satisfying
∫

Ω
ui(x,T)ϕi(x,T)dx+

∫∫

ΩT

|∇ui|
pi−2∇ui∇ϕidxdt

=
∫∫

ΩT

( fi(u)ϕi+ϕitui)dxdt+
∫

Ω
ui0(x)ϕi(x,0)dx, (1.2)

for any ϕi∈C1(ΩT), s.t. ϕi=0, for (x,t)∈∂Ω×(0,T); and ui(x,t)=0,(x,t)∈∂Ω×(0,T), where
i=1,2,··· ,m.

2 Main results

In order to study the problem (1.1a)-(1.1c), we make the following assumptions:
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(H0) If ui ≥ 0, i = 1,2,··· ,m, fi(u) = fi(u1,··· ,um) are smooth in Rm
+ and fi satisfies

the following type of quasi-positive condition: fi(u)≥ 0 for every u=(u1,··· ,um) which
satisfies ui ≥0 for i=1,2,··· ,m.

(H1) fi(0)=0.

(H2) fi(u)≤∑j ciju
αij

j +ci, in Rm
+, where cij,αij,ci are constants and αij≥0,i, j=1,2,··· ,m.

In assumption (H2), we intend to give an explicit form of the growth of fi(u) for
large u, furthermore to state the results that will follow; the nonlinear part fi(u) could be
allowed to depend on x,t. In that case, in (H2), cij, ci, would be functions of (x,t), each
contained in same space Lq(0,T;Lp(Ω)), T>0, where p≥1 and q≥1 would be special real
numbers.

We begin by regularizing problem (1.1a)-(1.1c).
Since the nonlinear term fi(u) could be super-linear for large u, we will approximate

it by a sequence of linear maps for large u. Let {Rq}q∈N be an increasing sequence of
positive real numbers s.t. limq→+∞ Rq=+∞ and fiq be smooth functions that linearize for
the functions fi for |u|>Rq (actually they should also satisfy the quasi-positive condition),
and fiq ≤ fi, for ui≥0, q∈N.

If in (1.1b), ui0∈L∞(Ω)∩W
1,pi

0 (Ω) and ui0≥0, we can construct a sequence {ui0q}q∈N ,
s.t. ui0q ∈C∞

0 (Ω), ui0q ≥0, limq→+∞‖ui0q−ui0‖W1,pi (Ω)=0 and equilimited in L∞ norm.

We consider the following regularizing problem for every q≥1:

uiqt=div

(

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq

)

+ fiq

(

uq−
1

q

)

, (x,t)∈ΩT, (2.1a)

uiq(x,0)=ui0q(x)+
1

q
, x∈Ω, (2.1b)

uiq(x,t)=
1

q
, (x,t)∈∂Ω×(0,T), (2.1c)

where uq−
1
q =
(

u1−
1
q ,u2−

1
q ,··· ,um−

1
q

)

.

We prove the following lemma by using a similar method as in [12].

Lemma 2.1. For every q≥1, problem (2.1a)-(2.1c) exists a classical global solution

uq =(u1q,u2q,··· ,umq) (uiq∈C2,1(ΩT), T>0)

and

uiq≥
1

q
, (x,t)∈ΩT . (2.2)

Proof. We consider the system

uiqt=div

(

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq

)

+ fiq

(

(

uq−
1

q

)+
)

, (2.3)
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with

(

uq−
1

q

)+
=

(

(

u1−
1

q

)+
,
(

u2−
1

q

)+
,··· ,

(

um−
1

q

)+
)

, r+=max(r,0).

This is a quasilinear nondegenerate parabolic system. The system (2.3) with initial and
boundary conditions (2.1b)-(2.1c) admits a unique classical solution

uq=(u1q,u2q,··· ,umq) (uiq ∈C2,1(ΩT), i=1,2,··· ,m, T>0),

(see, VII, §7 [13]). Considering the structure of f and T > 0 is arbitrary, the solution is
global.

If uiq(x,t)≥ 1
q ,(x,t)∈ΩT, then fiq

(

(uq−
1
q )

+
)

= fiq

(

(uq−
1
q )
)

. Therefore we can conclude

that system (2.3) is equivalent to (2.1a) when uiq(x,t)≥ 1
q . Then uq =(u1q,u2q,··· ,umq) is a

classical global solution of system (2.1a)-(2.1c).
Let

viq(x,t)= e−t
(

uiq−
1

q

)

.

We will show that the functions viq(x,t) are greater than zero. It is clear viq(x,0)≥0 in Ω

and viq(x,t)≥ 0 in ∂Ω×(0,T). Now suppose that for some j ∈ {1,2,··· ,m}, vjq(x,t) take
negative values, then it must have a negative minimum at a point (x0,t0); therefore, the
inequality

vjqt−
(1

q

)

pj−2

2
△vjq ≤0, (2.4)

is true at (x0,t0). On the other hand, due to (2.3),

vjqt−
(1

q

)

pj−2

2
△vjq =−vjq+e−t f jq

(

(

uq−
1

q

)+
)

, (2.5)

at (x0,t0). If we take assumptions (H0), (H1) into account, we have

f jq

(

(

uq−
1

q

)+
)

= f jq

(

(

u1q−
1

q

)+
,··· ,

(

u(j−1)q−
1

q

)+
,0,
(

u(j+1)q−
1

q

)+
,··· ,

(

umq−
1

q

)+
)

≥0,

at (x0,t0).
Hence the right-hand side of equality (2.5) is positive at (x0,t0). This contradicts to

(2.4); therefore, viq ≥0, and uiq≥
1
q in ΩT; the lemma is proved.

We now prove some a priori estimates for the solution uq of (2.1a)-(2.1c). We begin by
proving that uiq are equilimited in ΩT, T≥0.
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Lemma 2.2. Assume that cij >0. If

(1) αij < pi−1, i, j=1,2,··· ,m,

or

(2) αij ≤ pi−1, i, j=1,2,··· ,m, and diam(Ω) is sufficiently small,

then the following a priori estimate

‖uiq‖L∞(ΩT)≤C1, ∀T≥0, (2.6)

is valid for uq =(u1q,u2q,··· ,umq) which is a classical solution of (2.1)-(2.3), where cij and αij

come from (H2), and C1 denotes a constant independent of q.

Proof. (1) If u∈ L∞(ΩT), then ‖u‖L∞(ΩT)= limr→+∞‖u‖Lr(ΩT). We intend to prove that

sequence ‖uiq−
1
q‖Lr(ΩT) is equilimited by a constant independent of r and q.

Multiplying (2.1a) by (uiq−
1
q )

r−1, r > 1, and integrating by parts over ΩT, for some

T>0, we have

∫∫

ΩT

(

uiq−
1

q

)r−1
uiqtdxdt

=
∫∫

ΩT

(

uiq−
1

q

)r−1
div

(

(

|∇uiq|
2+

1

q

)

pi−2

2
∇uiq

)

dxdt+
∫∫

ΩT

(

uiq−
1

q

)r−1
fiq

(

uq−
1

q

)

dxdt.

Therefore

1

r

∫

Ω

(

uiq−
1

q

)r
(x,T)dx+

∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq∇

(

uiq−
1

q

)r−1
dxdt

=
∫∫

ΩT

(

uiq−
1

q

)r−1
fiq

(

uq−
1

q

)

dxdt+
1

r

∫

Ω

(

uiq−
1

q

)r
(x,0)dx. (2.7)

Moreover

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq∇

(

uiq−
1

q

)r−1

=(r−1)
(

|∇uiq|
2+

1

q

)

pi−2

2
(

uiq−
1

q

)r−2
|∇uiq|

2

≥(r−1)
(

uiq−
1

q

)r−2
|∇uiq|

pi

=(r−1)
p

pi

i

(pi+r−2)pi

∣

∣

∣

∣

∣

∇
(

uiq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

.
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If we take assumption (H2) ( fiq ≤ fi) into account, we have

∫

Ω

(

uiq−
1

q

)r
(x,T)dx+r(r−1)

∫∫

ΩT

(

uiq−
1

q

)r−2(

|∇uiq|
2+

1

q

)

pi−2
2
|∇uiq|

2dxdt

≤
∫∫

ΩT

(

∑
j

cijr
(

ujq−
1

q

)αij
(

uiq−
1

q

)r−1
)

dxdt+
∫∫

ΩT

rci

(

uiq−
1

q

)r−1
dxdt

+
∫

Ω

(

uiq−
1

q

)r
(x,0)dx. (2.8)

Applying Young’s inequality, we have

∫ T

0

∫

Ω
cijr
(

ujq−
1

q

)αij
(

uiq−
1

q

)r−1
dxdt

≤
∫ T

0

∫

Ω

(

cijr
αij

s

(

ujq−
1

q

)s
+cijr

(s−αij)

s

(

uiq−
1

q

)

s(r−1)
s−αij

)

dxdt, (2.9)

where αij < s< r will be suitably chosen. Applying the Sobolev embedding theorem, we
have

∫

Ω

(

uiq−
1

q

)

s(r−1)
s−αij dx=

∫

Ω
(uiq−

1

q
)

pi+r−2
pi

·
pi(r−1)s

(pi+r−2)(s−αij) dx

≤C

(

∫

Ω

∣

∣

∣

∣

∣

∇
(

uiq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

dx

)

(r−1)s
(pi+r−2)(s−αij)

, (2.10)

where C denotes various constants independent of r and q. In different formulae these
constants will in general have different values. Choose αij < s< r, s.t.

(r−1)s

(pi+r−2)(s−αij)
<1.

Then

s>

(

pi+r−2

pi−1

)

αij >αij. (2.11)

According to assumption αij < pi−1, we know that s< r. i.e. we can choose such s.
From Young’s inequality, we obtain

∫

Ω

(

ujq−
1

q

)s
dx≤

s

r

∫

Ω

(

ujq−
1

q

)r
dx+C, (2.12)

and
∫

Ω
cir
(

uiq−
1

q

)r−1
dx≤ cirC+cir

∫

Ω

(

uiq−
1

q

)r
dx. (2.13)
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By (2.9)-(2.13), we get

∑
i

∫

Ω

(

uiq−
1

q

)r
(x,T)dx+∑

i

r(r−1)
p

pi

i

(pi+r−2)pi

∫ T

0

∫

Ω

∣

∣

∣

∣

∣

∇
(

uiq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

dxdt

≤∑
ij

Ccijr
s−αij

s

∫ T

0

(

∫

Ω

∣

∣

∣

∣

∣

∇
(

uiq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

dx

)

(r−1)s
(pi+r−2)(s−αij)

dt

+∑
ij

cijαij

∫∫

ΩT

(

ujq−
1

q

)r
dxdt+T∑

ij

cijrC+T∑
i

cirC

+∑
i

cir
∫∫

ΩT

(

uiq−
1

q

)r
dxdt+∑

i

∫

Ω

(

uiq−
1

q

)r
(x,0)dx. (2.14)

Therefore

∑
i

∫

Ω

(

uiq−
1

q

)r
(x,T)dx

≤Cr∑
i

∫∫

ΩT

(

uiq−
1

q

)r
dxdt+∑

i

∫

Ω

(

uiq−
1

q

)r
(x,0)dx+Cr. (2.15)

Using Gronwall’s lemma (see e.g. [14]) and that (2.15) is true for every T > 0, for every
t<T, we have

∑
i

∫

Ω

(

uiq−
1

q

)r
(x,t)dx

≤eCrt∑
i

∫

Ω

(

uiq−
1

q

)r
(x,0)dx+

(

∑
ij

( CKm

r(r−1)βij

)
1

βij−1
+rC

)

eCrt.

Therefore

∑
i

‖
(

uiq−
1

q

)

(x,t)‖Lr(ΩT)

≤eCt∑
i

‖
(

uiq−
1

q

)

(x,0)‖Lr(Ω)+eCt

(

∑
ij

( CKm

r(r−1)βij

)
1

r(βij−1)
+r

1
r C

1
r

)

. (2.16)

Let r→+∞, we have

∑
i

‖
(

uiq−
1

q

)

(x,t)‖L∞(ΩT)≤ eCt∑
i

‖
(

uiq−
1

q

)

(x,0)‖L∞(Ω)+meCt,

from which (2.6) follows.
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(2) The proof is similar to case (1) when max{αij}< pi−1. If max{αij}= pi−1, then
the first part of right hand of (2.8) is as follows.

∫∫

ΩT

∑
j

cijr
(

ujq−
1

q

)αij
(

uiq−
1

q

)r−1
dxdt

≤
∫∫

ΩT

ciir
(

uiq−
1

q

)pi+r−2
dxdt+

∫∫

ΩT

∑
j 6=i

cijr
(

ujq−
1

q

)pi−1(

uiq−
1

q

)r−1
dxdt. (2.17)

Applying Young’s inequality, we have

∫∫

ΩT

cijr
(

ujq−
1

q

)pi−1(

uiq−
1

q

)r−1
dxdt

≤
∫ T

0

∫

Ω
cijr

(

pi−1

pi+r−2

(

ujq−
1

q

)pi+r−2
+

r−1

pi+r−2

(

uiq−
1

q

)pi+r−2
)

dxdt. (2.18)

Applying Poincaré inequality, we have

∫

Ω

(

uiq−
1

q

)pi+r−2
dx=

∫

Ω

(

uiq−
1

q

)

pi+r−2
pi

·pi

dx

≤C(n,pi)(diam(Ω))pi

∫

Ω

∣

∣

∣

∣

∣

∇
(

uiq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

dx, (2.19)

and

∫

Ω

(

ujq−
1

q

)pi+r−2
dx=

∫

Ω

(

ujq−
1

q

)

pi+r−2
pi

·pi

dx

≤C(n,pi)(diam(Ω))pi

∫

Ω

∣

∣

∣

∣

∣

∇
(

ujq−
1

q

)

pi+r−2
pi

∣

∣

∣

∣

∣

pi

dx. (2.20)

Similar to case (1), we can get (2.14)-(2.16) provided that diam(Ω) is sufficiently small.
Then (2.6) follows.

Lemma 2.3. Under the assumptions of Lemma 2.2, we have

∫∫

ΩT

∣

∣∇uiq

∣

∣

pi dxdt≤C2, (x,t)∈ΩT , (2.21)

∫∫

ΩT

∣

∣uiqt

∣

∣

2
dxdt≤C3, (x,t)∈ΩT , (2.22)

where Cj(j=2,3) are constants independent of q, q≥1.
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Proof. Multiplying (2.1a) by uiq and integrating over ΩT, we have

∫∫

ΩT

(

uiquiqt−div

(

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq

)

uiq

)

dxdt=
∫∫

ΩT

fiq

(

uq−
1

q

)

uiqdxdt. (2.23)

Furthermore

∫

Ω

∫ T

0

1

2

d

dt
(uiq)

2dtdx+
∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2
2
|∇uiq|

2dxdt=
∫∫

ΩT

fiq

(

uq−
1

q

)

uiqdxdt,

i.e.

∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2

2
|∇uiq|

2dxdt

=
∫∫

ΩT

fiq

(

uq−
1

q

)

uiqdxdt−
1

2

∫

Ω

(

(uiq(x,T))2−(uiq(x,0))2
)

dx.

By (2.6) and the property of fiq, we have

∫∫

ΩT

∣

∣∇uiq

∣

∣

pi dxdt≤
∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2
2
|∇uiq|

2dxdt≤C
′

2, (2.24)

where C
′

2 is a constant independent of q. By (2.6) and (2.24), (2.21) follows.
Multiplying (2.1a) by uiqt and integrating over ΩT, we have

∫∫

ΩT

(uiqt)
2dxdt−

∫∫

ΩT

div

(

(

|∇uiq|
2+

1

q

)

pi−2

2
∇uiq

)

uiqtdxdt

=
∫∫

ΩT

fiq

(

uq−
1

q

)

uiqtdxdt. (2.25)

By Hölder inequality and integrating by parts, we obtain

∫∫

ΩT

(uiqt)
2dxdt

=−
∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq∇uiqtdxdt+

∫∫

ΩT

fiq

(

uq−
1

q

)

uiqtdxdt

≤
1

pi

∣

∣

∣

∣

∣

∫

Ω

∫ T

0

d

dt

(

|∇uiq|
2+

1

q

)

pi
2

dtdx

∣

∣

∣

∣

∣

+
1

2

∫∫

ΩT

f 2
iq

(

uq−
1

q

)

dxdt+
1

2

∫∫

ΩT

(uiqt)
2dxdt

≤
1

pi

∫

Ω

∣

∣

∣

∣

∣

(

|∇uiq(x,T)|2+
1

q

)

pi
2
−
(

|∇ui0q|
2+

1

q

)

pi
2

∣

∣

∣

∣

∣

dx

+
1

2

∫∫

ΩT

f 2
iq

(

uq−
1

q

)

dxdt+
1

2

∫∫

ΩT

(uiqt)
2dxdt.
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Therefore
∫∫

ΩT

(uiqt)
2dxdt≤C3. (2.26)

The proof is complete.

Now we are able to prove an existence theorem for (1.1a)-(1.1c).

Theorem 2.1. Under the assumptions in Lemma 2.2 and ui0∈L∞(Ω)∩W
1,pi

0 (Ω), i, j=1,2,··· ,m,
for every T>0, then there exists a generalized solution u=(u1,··· ,um) to problem (1.1a)-(1.1c)
in ΩT. Furthermore,

ui∈L∞(ΩT)∩Lpi

(

0,T;W
1,pi

0 (Ω)
)

, (2.27)

and

uit∈L2
(

0,T;L2(Ω)
)

. (2.28)

Proof. Due to lemma 2.2, lemma 2.3 and the property of fiq, for every i, i=1,2,··· ,m, there
exist a function ui(x,t) and a subsequence of {uiq}, which we denote again by {uiq}, s.t.

uiq →ui, a.e. in ΩT, ∇uiq⇀∇ui, in Lpi(ΩT),

uiqt⇀uit, in L2(ΩT), |∇uiq|
pi−2uiqxl

⇀wixl
, in L

pi
pi−1 (ΩT), for some wixl

,

where ⇀ stands for weak convergence, and

wixl
∈L

pi
pi−1 (ΩT) is the weak limit of |∇uiq|

pi−2uiqxl
.

We can prove that wixl
= |∇ui|

pi−2uixl
using similar method as in [11].

Multiplying (2.1a) by (uiq−ui)φi and integrating over ΩT, φi∈C1(ΩT), φi≥0, we get

∫∫

ΩT

φiuiqt(uiq−ui)dxdt+
∫∫

ΩT

φi

(

|∇uiq|
2+

1

q

)

pi−2

2
∇uiq(∇uiq−∇ui)dxdt

+
∫∫

ΩT

(

|∇uiq|
2+

1

q

)

pi−2
2
∇uiq∇φi(uiq−ui)dxdt

=
∫∫

ΩT

φi fiq

(

uq−
1

q

)

(uiq−ui)dxdt.

Hence

lim
q→+∞

∫∫

ΩT

φi|∇uiq|
pi−2∇uiq(∇uiq−∇ui)dxdt=0. (2.29)
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On the other hand, since ∇ui∈Lpi(ΩT), we have

lim
q→+∞

∫∫

ΩT

|∇uiq|
pi−2∇uiq(∇uiq−∇ui)φidxdt=0. (2.30)

Note that

(

|∇uiq|
pi−2∇uiq−|∇ui|

pi−2∇ui

)

(∇uiq−∇ui)

≥
∫ 1

0
|∇(suiq+(1−s)ui)|

pi−2ds|∇(uiq−ui)|
2. (2.31)

By (2.30) and (2.31), we have

lim
q→+∞

∫∫

ΩT

φi

∫ 1

0
|∇(suiq+(1−s)ui)|

pi−2ds|∇(uiq−ui)|
2dxdt=0.

Since
∫∫

ΩT

∫ 1

0
|∇(suiq+(1−s)ui)|

pi−2dsdxdt≤C,

and
∣

∣

∣

∣

∣∇uiq

∣

∣

pi−2
uiqxl

−|∇ui|
pi−2uixl

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

d

ds

{∣

∣s∇uiq+(1−s)∇ui

∣

∣

pi−2
(suiqxl

+(1−s)uixl
)
}

ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0

∣

∣s∇uiq+(1−s)∇ui

∣

∣

pi−2
(uiqxl

−uixl
)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ 1

0
(pi−2)

∣

∣s∇uiq+(1−s)∇ui

∣

∣

pi−4
(suiqxl

+(1−s)uixl
)(uiqxl

−uixl
)ds

∣

∣

∣

∣

≤C
∣

∣∇(uiq−ui)
∣

∣

∫ 1

0

∣

∣s∇uiq+(1−s)∇ui

∣

∣

pi−2
ds, (2.32)

we have
∣

∣

∣

∣

∫∫

ΩT

φi(
∣

∣∇uiq

∣

∣

pi−2
uiqxl

−|∇ui|
pi−2uixl

)dxdt

∣

∣

∣

∣

≤C

(

∫∫

ΩT

φi

∫ 1

0

∣

∣∇(suiq+(1−s)ui)
∣

∣

pi−2
ds
∣

∣∇(uiq−ui)
∣

∣

2
dxdt

)
1
2

(

∫∫

ΩT

φ
∫ 1

0

∣

∣∇(suiq+(1−s)ui)
∣

∣

pi−2
dsdxdt

)
1
2

→0, q→+∞, (2.33)

i.e.
∫∫

ΩT

(wixl
−|∇ui|

pi−2uixl
)φidxdt=0, for any φi.
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Hence wixl
= |∇ui|

pi−2uixl
, i=1,2,··· ,m.

Following a standard limiting process, we obtain that u=(u1,··· ,um) satisfies the ini-
tial and boundary value conditions and the integrating expression. Thus u is a general-
ized solution to (1.1a)-(1.1c).

Theorem 2.2. Assume f =( f1, f2,··· , fm) is local Lipschitz continuous in u, then the solution is
unique.

Proof. Assume that u=(u1,··· ,um) and v=(v1,··· ,vm) are two solutions to (1.1a)-(1.1c),
then u,v are bounded. Considering that f is local Lipschitz continuous in u, we get that
f is Lipschitz continuous on [0,max{‖u‖L∞(QT),‖v‖L∞(QT)}].

Let ϕi=ui−vi, then by (1.2),

∫

Ω
ui(x,T)ϕi(x,T)dx+

∫∫

ΩT

|∇ui|
pi−2∇ui∇ϕidxdt

=
∫∫

ΩT

( fi(u)ϕi+ϕitui)dxdt+
∫

Ω
ui0(x)ϕi(x,0)dx, (2.34a)

∫

Ω
vi(x,T)ϕi(x,T)dx+

∫∫

ΩT

|∇vi|
pi−2∇vi∇ϕidxdt

=
∫∫

ΩT

( fi(v)ϕi+ϕitvi)dxdt+
∫

Ω
vi0(x)ϕi(x,0)dx. (2.34b)

Subtracting the two equations, we get

1

2

∫

Ω
(ui(x,T)−vi(x,T))2dx=−

∫ T

0

∫

Ω
(|∇ui|

pi−2∇ui−|∇vi|
pi−2∇vi)∇(ui−vi)dxdt

+
∫ T

0

∫

Ω
( fi(u)− fi(v))(ui−vi)dxdt.

Note that

(

|∇ui|
pi−2∇ui−|∇vi|

pi−2∇vi

)

∇(ui−vi)≥0.

Using the previous inequality and the Lipschitz condition, a simple calculation shows
that

∫

Ω
(|u1−v1|

2+···+|um−vm|
2)dx

≤2K
∫ T

0

∫

Ω
(|u1−v1|+···+|um−vm|)

2dxdt

≤2mK
∫ T

0

∫

Ω
(|u1−v1|

2+···+|um−vm|
2)dxdt.

Set

F(T)=
∫ T

0

∫

Ω
(|u1−v1|

2+···+|um−vm|
2)dxdt,
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then the above inequality can be written as

F′(T)≤2mKF(T).

A standard argument shows that F(T)≡0 since F(0)≡0, ui≡vi. The proof is complete.

Acknowledgments

The project is supported by NSFC (10771085), by Key Lab of Symbolic Computation and
Knowledge Engineering of Ministry of Education and by the 985 program of Jilin Uni-
versity.

The authors would like to thank the referees and editors for their valuable suggestions
and comments on this paper.

References

[1] Astrita G., Marrucci G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, 1974.
[2] Martinson L. K., Pavlov K. B., Unsteady shear flows of a conducting fluid with a rheological

power law. Magnitnaya Gidrodinamika, 2 (1971), 50-58.
[3] Esteban J. R., Vazquez J. L., On the equation of turbulent filteration in one-dimensional

porous media. Nonlinear Analysis, 10 (1982), 1303-1325.
[4] Chen H., Global existence and blow-up for a nonlinear reaction-diffusion system. J. Math.

Anal. Appl., 12 (1997), 481-492.
[5] Escobedo M., Herrero M. A., Boundedness and blow up for a semilinear reaction-diffusion

system. J. Differential Equation, 89 (1991), 176-202.
[6] Escobedo M., Levine M. A., Fujita type exponents for reaction-diffusion system. Arch. Ratio-

nal Med. Anal., 129 (1995), 47-100.
[7] Zhang J., Boundedness and blow-up behavior for reaction-diffusion systems in a bounded

domain. Nonlinear Analysis, 35 (1999), 833-844.
[8] Zheng S., Global existence and global non-existence of solutions to a reaction-diffusion sys-

tem. Nonlinear Analysis, 39 (2000), 327-340.
[9] Levine H. A., A Fujita type global existence-global noexistence theorem for a weakly cou-

pled system of reaction-diffusion equations. ZAMP, 42 (1992), 408-430.
[10] Dickstein F., Escobedo M., A maximum principle for semilinear parabolic systems and ap-

plications. Nonlinear Analysis, 45 (2001), 825-837.
[11] Wei Y., Gao W., Existence and uniqueness of local solutions to a class of quasilinear degen-

erate parabolic systems. Appl. Math. Comp., 190 (2007), 1250-1257.
[12] Maddalena L., Existence of global solution for reaction-diffusion system with density de-

pendent diffusion. Nonlinear Anal., TMA, 8(11) (1984), 1383-1394.
[13] Ladyzenskaja O. A., Solonnikov V. A. and Ural’ceva N. N., Linear and Quasilinear Equations

of Parabolic Type. Amer. Math. Soc., Providence, RI, 1968.
[14] Rao M. Rama Mohana, Ordinary Differential Equations, Arnold, 1980.


