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Abstract. This paper presents the global existence and uniqueness of the initial and
boundary value problem to a system of evolution p-Laplacian equations coupled with
general nonlinear terms. The authors use skills of inequality estimation and the method
of regularization to construct a sequence of approximation solutions, hence obtain the
global existence of solutions to a regularized system. Then the global existence of solu-
tions to the system of evolution p-Laplacian equations is obtained with the application
of a standard limiting process. The uniqueness of the solution is proven when the
nonlinear terms are local Lipschitz continuous.

AMS Subject Classifications: 35A01, 35A02, 35G55
Chinese Library Classifications: 0175.29, 0175.4

Key Words: Global existence; uniqueness; degenerate; p-Laplacian systems.

1 Introduction

In this paper, we study the global existence and uniqueness of solutions to the initial and
boundary value problem

uy—div(|Vu|P2Vu;) = fi(ur, - um),  (x,t)€Qx(0,T), (1.1a)
ui(x,0) =uj(x), xeQ), (1.1b)
ui(x,t)=0, (x,£)€0Q2x (0,T), (1.1c)

where p; >2,i=1,2,---,m, T >0, () C R" is an open connected bounded domain with
smooth boundary 0Q).

System (1.1a) models such as non-Newtonian fluids [1,2] and nonlinear filtration [3],
etc. In the non-Newtonian fluids theory, (p1,p2,--+,pPm) is a characteristic quantity of the
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fluids. The fluids with (p1,p2, -+, pm)>(2,2,--+,2) are called dilatant fluids and those with
(p1,p2,-+,pm) <(2,2,---,2) are called pseudoplastics. If (p1,p2, -, pm) =(2,2,---,2), they
are Newtonian fluids.

For p;=2,i=1,2, many authors have studied the problem above; most of them studied
global existence, uniqueness, boundedness, and blowup behavior of solutions, etc(see
[4-10]). Some authors have derived sufficient conditions for the nonexistence of global
solutions. Such conditions are usually related to the structure of f;, i=1,2. And some
authors have studied the uniqueness of the global solution and blow-up of the positive
solution, with nonlinearities in the form of

filonuz) =i, fo(w2) =,
where «, 3,7,0 are nonnegative numbers.

For p; >2,1=1,2, in [11], the authors gave local existence and uniqueness theorem of
solutions for the initial and boundary value problem on ()% (0,T7), where T €(0,T) (T>0)
could be very small.

It is our goal to prove results of global existence and uniqueness for the degenerate
system of m equations. Since the system is coupled with nonlinear terms, in general, the
solutions of (1.1a)-(1.1c) will not exist for all time. Inspired by [12], in this paper, we study
some special cases by stating constrains to nonlinear functions. The proof consists of two
steps. First, we prove that the approximating problem admits a global solution; then
we do some uniform estimates for these solutions. We mainly use skills of inequality
estimation and the method of regularization to construct a sequence of approximation
solutions, hence obtain existence of the solution to a regularized system of equations.
By a standard limiting process, we obtain the existence of solutions to the system (1.1a)-
(1.1¢).

Systems (1.1a) degenerates when Vu; =0. In general, there is no classical solution;
therefore, we have to study the generalized solutions to the problem (1.1a)-(1.1c). The
definition of generalized solutions is as follows:

Definition 1.1. A nonnegative function u= (uy,---, Uy, ) is called a generalized solution to the
system (1.1a)-(1.1c) in Qp, T>0, if u;€ L*(Qp)NLPi (O,T;Wé’pi(ﬂ)), ui € L2(Qr), satisfying

/Qui(x,T)goi(x,T)dx-l—//Q |V, |P2Vu,;V ¢;dxdt

T

=[] (Fweitguudxdt+ [ wo(x)gi(x,0)dx, (12)
T

forany ¢;€CY(Qr), s.t. 9;=0, for (x,t)€9Qx (0,T); and u;(x,t)=0,(x,t) €0Q x (0,T), where
i=1,2,---,m.

2 Main results

In order to study the problem (1.1a)-(1.1c), we make the following assumptions:
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(HO) If u; >0, i=1,2,---,m, fi(u) = fi(uy, - ,u,) are smooth in R and f; satisfies
the following type of quasi-positive condition: f;(u) >0 for every u = (uy,---,u;;) which
satisfies u; >0 fori=1,2,---,m.

(H1) ﬂ(O) =0.
(H2) fi(u) < chiju;‘”—i-ci, in R”, where c;;,a;j,c; are constants and a;; >0,i,j=1,2,---,m.

In assumption (H2), we intend to give an explicit form of the growth of f;(u) for
large u, furthermore to state the results that will follow; the nonlinear part f;(u#) could be
allowed to depend on x,t. In that case, in (H2), cjj, c;, would be functions of (x,t), each
contained in same space L7(0,T;LP(Q))), T>0, where p>1 and q>1 would be special real
numbers.

We begin by regularizing problem (1.1a)-(1.1c).

Since the nonlinear term f;(u) could be super-linear for large u, we will approximate
it by a sequence of linear maps for large u. Let {R;},en be an increasing sequence of
positive real numbers s.t. lim;, 1  R;=+00 and f;; be smooth functions that linearize for
the functions f; for [u| >R, (actually they should also satisfy the quasi-positive condition),
and fi; < f;, for u; >0, g€ N.

If in (1.1b), ujp € L*(Q) ﬂW&’pi (Q2) and u;p >0, we can construct a sequence {ujo, } geN,
s.t. iog € CF°(Q), tiog =0, limg—, 4o [[4i0g — Uio | w1 () =0 and equilimited in L* norm.

We consider the following regularizing problem for every g > 1:

. 1\ 1
uiqt:dlv<(’Vuiq|2+5> ? vuiq) +fz-q(uq—§), (x,t) €Qr, (2.1a)
1
Uig(x,0) = ujpg (x) + Pl xeq), (2.1b)
mﬂxj%:%, (x,£) €901 (0,T), (2.10)
whereuq—%:(ul—%,uz—%,---,um—%).

We prove the following lemma by using a similar method as in [12].

Lemma 2.1. For every q>1, problem (2.1a)-(2.1c) exists a classical global solution
ug= (U1g,tag, Umg) (i€ C*(Qr), T>0)

and .
Ujg > pt (x,t) €Qr. (2.2)

Proof. We consider the system

Ui =div < <|v”iq’2+%) pizzvuiq) + fig <<”q_ 1) +) / (2.3)
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with

(uq—%)+: ((ul—%)+,(uz—%)+,---,<um—%)+>, r* =max(r,0).

This is a quasilinear nondegenerate parabolic system. The system (2.3) with initial and
boundary conditions (2.1b)-(2.1¢c) admits a unique classical solution

uq = <u1q/u2q/' o /umq) <uiq € Czll (ﬁT)/ i= 1/2/' - ,m, T> O)/

(see, VII, §7 [13]). Considering the structure of f and T > 0 is arbitrary, the solution is
global.

If o (x,8) > %, (x,£)€Qr, then fi, ((uy— %)*) = fig ((ug— %)) . Therefore we can conclude
that system (2.3) is equivalent to (2.1a) when u;,(x,t) > %. Then ug = (u1g,U2g, -, Umg) is @
classical global solution of system (2.1a)-(2.1c).

Let

i (x,1) = et (uiq — %) )

We will show that the functions v, (x,t) are greater than zero. It is clear v;,(x,0) >0 in Q)
and v,(x,t) >0 in 0% (0,T). Now suppose that for some j € {1,2,---,m}, vj,(x,t) take
negative values, then it must have a negative minimum at a point (xo,ty); therefore, the
inequality

pj—2

Vgt — (%) 7 Av, <0, (2.4)

is true at (xp,tp). On the other hand, due to (2.3),

pj—2

quf_(%) : Avjq:_vjq‘i'etﬁq((”q_%)Jr)/ (2.5)

at (xo,to). If we take assumptions (HO), (H1) into account, we have
1\ +
il (=3))

(0 2) o 2) 0 () o () ) 20

at (XQ,to).
Hence the right-hand side of equality (2.5) is positive at (xo,tp). This contradicts to
(2.4); therefore, v;; >0, and u;; > % in Qr; the lemma is proved. O

We now prove some a priori estimates for the solution u, of (2.1a)-(2.1c). We begin by
proving that u;, are equilimited in Qr, T >0.
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Lemma 2.2. Assume that c;; >0. If

(@) njj < pl'—l, i,j:1,2,~-~,m,
or

(2) wj<pi—1,ij=1,2,-,m, and diam(Q) is sufficiently small,
then the following a priori estimate

[uigllop) <C1, VT >0, (2.6)

is valid for ug = (u1q,Ug," - ,Umg) which is a classical solution of (2.1)-(2.3), where c;; and w;;
come from (H2), and C; denotes a constant independent of q.

Proof. (1) 1If u € L®(Qr), then [|u| =) = lim,— 0|1l 1r(q,)- We intend to prove that

sequence ||u;; — % |1r(ay) is equilimited by a constant independent of r and 4.

Multiplying (2.1a) by (u;;— 1yr=1 4> 1, and integrating by parts over Qr, for some

q
T >0, we have

//Q (uiq—%)rluiqtdxdt
T
://m (uiq_%)r‘ldiv((\vuiq‘wr%)

Therefore

Pi

- 171 1
Vuiq> dxdt—i—//QT (uiq—§> fig (uq—a>dxdt.

pi—2

%/Q(uiq—%>y(x,T)dx+//QT(\Vuiqlz%-%) ’ Vuiqv<uiq—%)yldxdt

://m (”iq_%ylﬂq (uq—%)dxdt-l—%/ﬂ(uiq—%)y(x,o)dx. 2.7)

Moreover

<|Vuiq!2+%) piszuqu<uiq— %)r_l

(192 (1) i

2(7’—1) (”iq_%) lvuiq‘pi

pitr=2 pi

=N V(uiq—%) g
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If we take assumption (H2) (f;; < f;) into account, we have

/Q (ui”’_ %)r(X,T)dx—i—r(r_l)//QT (”iq_ %)TZOVW;!Z—I-%) i ]Vuiqlzdxdt
S//QT (Zj:cw@jq_%)%(uiq_%)’1) dxdt-i—//()Trci(uiq_%)rldth

+/()<uiq—%>r(x,0)dx. (2.8)

Applying Young’s inequality, we have

T 1\ % 1y7—1
/o Acijr(”jq_a> (uiq_a) dxdt
! %ij 1ys (s—ay) N
< il — i — — . N ij .
_/O /Q<cz]r . (u]q q) +cijr . (uzq q) dxdt, (2.9)

where w;; <s <r will be suitably chosen. Applying the Sobolev embedding theorem, we
have

s(r=1) pitr—2 pi(r=1)s

1 S—ais 1
w2\ dx:/ B T (AT
) (=) [ (=)

pitr=2 pi %
(] W) e
Q

1 .
\Y% (uiq — —> .
q
where C denotes various constants independent of  and 4. In different formulae these
constants will in general have different values. Choose ajj<s<r,s.t.

(r—1)s
<1.
(pit+r—2)(s—ay)
Then
i+r—2
> (p;il >£K,‘j>lxl']'. (2.11)

According to assumption &;; < p; —1, we know that s <r. i.e. we can choose such s.
From Young’s inequality, we obtain

IACE 2 ) ax<? [ (uj- %)rdx-l-C, (2.12)

1\7—1 IN\T
/()cir<uiq—5> dec,yC%—m/Q (uiq_g) dx. (2.13)

and
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By (2.9)-(2.13), we get
E/ uzq__ dex-l—er 1) H ey
Pi m
S—IXZ‘]‘ /T / i g
< Cci: dx dt
—; G 0 <Q
1N\7
+Ecij“i]'// (u]-q——) dxdt+TECi]‘TC+TECirC
ij QT q ij i
—i—Zc'r// (u' —1>rdxdt+2/ (M' _1)r<x 0)dx (2.14)
i i a, iq q ~ Jo 1q q ’ ’ '

pitr-2

V(uiq—%> &

Therefore
1 r
2/ uiq—— (x,T)dx
<Cr2// ulq—— dxdt—i—Z/ Ujg—— xO)dx—l—Cr (2.15)

Using Gronwall’s lemma (see e.g. [14]) and that (2.15) is true for every T >0, for every
t< T, we have

Z/()(uiq—1>r(x,t)dx
C”Z/ ulq—— xO)dx+ (Z( (CKT';/%U)#—I%C)eC”.
Therefore
2l (= ) (D))

CK
SeCtZH (”iq_%) (xlO)HU(Q)'i'eCt <Z((1,71n)1‘31]) (/5” +T’C’> (216)

ol

Let r — 400, we have

ZH(”W ) () Iz <€CtZH<u,q ) (2,0) [l L= (0 —I—me

from which (2.6) follows.
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(2) The proof is similar to case (1) when max{a;;} < p; —1. If max{a;;} = p;—1, then
the first part of right hand of (2.8) is as follows.

//QT;CUV (”jq_%)aij<uiq—%>r_ldxdt
S//()Tciir(uiq_%)pf+r dedt-i—// ch]r i — _)”i—l (uiq—%)r_ldxdt. o1

Orji

Applying Young’s inequality, we have

1 pi—1 1\7—1
// cijr ujq—— (uiq—a) dxdt
pl—l 1 pitr—2 r—1 ' _1 pitr—2
//c r(p e 2( q) +7pi+r—2<ul‘7 q) dxdt.  (2.18)

Applying Poincaré inequality, we have

/Q(uiq—%)piJrr_zdx:/Q(uiq—%yiz‘pidx

pitr=2 pi
<Cnpi) (diam (@) [ |V (wg—2) " | dx, (2.19)
Q
and
1\ pitr—2 1\ 55
/()(u]-q—§> dx_/0<ujq_§) dx
1 pitr—2|Pi
. ; Pi
SC(n,pi)(dlam(Q))p’/Q V(ujq—5> dx. (2.20)
Similar to case (1), we can get (2.14)-(2.16) provided that diam(Q}) is sufficiently small.
Then (2.6) follows. ]
Lemma 2.3. Under the assumptions of Lemma 2.2, we have
/ / |V, |Pdxdt < Gy, (x,1) €O, (2.21)
Qr
/ / |t *dxdt < Cs, (x,1) €O, (2.22)
Qr

where C;(j=2,3) are constants independent of q, 4 > 1.
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Proof. Multiplying (2.1a) by u;; and integrating over Qr, we have

. 1\ 1
//OT <uiquiqt—dlv(<\Vuiq’2—|—a) Vuiq> uiq> dxdif:/QTfib7 (uq—§>uiqudt. (2.23)

Furthermore

1'*2
)2 2 1\ N
// 2 dtdx+// [Vitig "+ ) Vg dth_/QTfiq (uq

pi2
// ywiq|2+1 |V, Pdxdt
1
_ // fi (19— ulqudt 7 - (g, 7)) = (g (,0))2) k.

By (2.6) and the property of fiq, we have

//()T‘Vuiq

where C/2 is a constant independent of 4. By (2.6) and (2.24), (2.21) follows.
Multiplying (2.1a) by u;;; and integrating over ()1, we have

1\ 2"
)2 _ ; 12 = . .
// (i) "dxdt //Qwa((Wuzq] -|-q> Vuzq)ulqtdxdt
—// f,q Ug— ulqtdxdt

By Holder inequality and integrating by parts, we obtain

// (uiqt)zdxdt

// |leq’2 Vuquulqtdxdt-l-// flq %) ul‘qthdt

2,
// 3 ]Vu,q\ ) dtdx|+

(19 (2 TP+ )gl—(\wioq\%%)i

2 / fzq Ug— dxdt+2// u,qt dedt

. 1\ % ,
pi < 2, 1 2 <
dxdt_//QT(]Vu,q\ +q> (V| “dxdt < Cp,

Pz

1 1

Pi

dx

1
— 5) ujgdxdt,

(2.24)

(2.25)

+5 /QTflq )dxdt+ // (1111 ?dixdt
N
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Therefore
/ / (1iqr)2dxdt < s, (2.26)
Qr

The proof is complete. O
Now we are able to prove an existence theorem for (1.1a)-(1.1c).

Theorem 2.1. Under the assumptions in Lemma 2.2 and uo€L®(Q)) ﬂW&’pi (Q),i,j=1,2,---,m,
for every T >0, then there exists a generalized solution u= (uy,---,uy,) to problem (1.1a)-(1.1c)
in Q. Furthermore,

1u; € L®(Qp)NLP (o,T;w(}"’f(Q)), (2.27)
and
uy € L?(0,T;L*(Q))). (2.28)

Proof. Due to lemma 2.2, lemma 2.3 and the property of fiq, foreveryi, i=1,2,---,m, there
exist a function u;(x,t) and a subsequence of {u;, }, which we denote again by {u;, }, s.t.

uy—u;, aeinQr, Vu,—Vu;, inLF(Qr),
pi
.2 —2 R
Uige =i, in LY(Qr), |VuylP ™ g, —wiy, inLiT(Qr), for some wjy,,

where — stands for weak convergence, and
P . o 2
Wiy, € L7 T (Qr) is the weak limit of [Vug|"™ “u;qy,.

We can prove that w;y, = |Vu;|Pi~?u;y, using similar method as in [11].
Multiplying (2.1a) by (u;,—u;)¢; and integrating over Qr, ¢; € C'(Qr), ¢; >0, we get

1\ %
//QT(Piuiqt(uiq_ui)dth+//()T¢i(’V”iqlz""a) Vuiy (Vg —Vu;)dxdt
, 1\
+//QT(!Vuiq| +5> Vi Vi (ttig — ;) dxdt

://()T(Pifiq (uq— %) (ujq—u;)dxdt.

Hence

lim / / 1| Vitig P2V i (Vs — Vg dxdt =0, (2.29)
Qr

q——+oo
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On the other hand, since Vu; € LPi(Qr), we have

lim / /Q IV itsy P2V a5y (Vs — Vg )yl xdt =0, (2.30)
T

g+ oo
Note that
(|Vuig \”i_ZVuiq — | Vu| P2V u;) (Vijg—Vu;)
> /01 |V (sujg+(1—5)u;) |”i_2ds|V(uiq —u;)|?. (2.31)

By (2.30) and (2.31), we have

1
fim //Q ¢ / IV (sttig + (1 —5)u7) | P2ds |V (1, — ;) [P xd =0,
T 0

q——+oo
Since .
// /]V(suiq+(1—s)ui)\”i_2dsdxdt§C,
arJo
and
W”iﬂpi_zuiqm - ’V“i\pﬁz”ixz
'd pi—2
:/0 EHSVuiq—i—(l—s)Vui (Sttigy,+ (1—5)ujy, ) bds
1
< / |sVuiq+(1—S)Vui|pi_2(uiqxl—uix])ds
0
1
i—4
—I—'/O (pi—2)|sVuiq+(1—s)Vui|p (Sttigr, + (1 —5) iy, ) (tigy, — Ui, )ds
1
§C|V(uiq—ui)|/ |sVuiq—|—(1—s)Vui|pi_2ds, (2.32)
0
we have
‘// ¢i(|vuiq pizuiqx/_|Vui’pi_2uix/)dth‘
Qr
1 . 5 3
§C<// cpi/ |V(suiq—|—(1—s)ui)‘p’ ds|V (ujg—u;)| dxdt>
ar' Jo
1
1 3
(// 4’/ \V(suiq+(1—s)ui)|p"_2dsdxdt> —0, g—+oo, (2.33)
ar ' Jo
i.e.

//Q (wix,—\Vui]pi’zuix,)cl)idxdt:O, for any ¢;.

T
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Hence wiy, = | Vu;|Pi 2y, i=1,2,-- ,m.

Following a standard limiting process, we obtain that = (u1,---,u,,) satisfies the ini-
tial and boundary value conditions and the integrating expression. Thus u is a general-
ized solution to (1.1a)-(1.1¢). O

Theorem 2.2. Assume f=(f1,f2,+-,fm) is local Lipschitz continuous in u, then the solution is
unique.

Proof. Assume that u=(uy,--,uy) and v= (v, --,vy) are two solutions to (1.1a)-(1.1¢),
then u,v are bounded. Considering that f is local Lipschitz continuous in u, we get that
f is Lipschitz continuous on [0,max{|[u|| =g |?]l1=(0r) }]-

Let ¢;=u;—v;, then by (1.2),

/ui(x,T)(pi(x,T)dx-i-// |V, |P2Vu;V ¢;dxdt
Q Qr

_ //Q T(fi(u)qvi-l-qoitui)dxdt+ /Q uio(x) @i(x,0)dx, (2.34a)
/Qvi<x/T)qoi(x,T)dx+//QT\vvi\Pi—Zvviv%dth
://QT(fi(v)qoi-l-(pitvi)dxdt+/()vi0(x)goi(x,O)dx. (2.34b)

Subtracting the two equations, we get

2/ (%, T)—v;(x,T))*dx = — // |V |P2Vu;— | Vo P2V, V (u; —v; ) dxdt

" /0 [ i) = £i(@)) (=0, dxl.

(IVu P2V u; — | Vo |Pi2Vo;) V (u;— ;) > 0.

Note that

Using the previous inequality and the Lipschitz condition, a simple calculation shows
that

/Q(!m—01\2+-~-+\um—vm\2)dx
T
§21</ /(|u1—vl|+---+!um—vml)2dxdt
0 JO
T
gme/ /(|u1—vl|2+---+yum—vmyz)dxdt.
0 JQ

Set .
:/o /Q(lul—vllz-l-----I-!um—vm]z)dxdt,
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then the above inequality can be written as
F'(T) <2™KF(T).

A standard argument shows that F(T)=0 since F(0)=0, u;=v;. The proof is complete. []
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