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Abstract. This work is devoted to the existence and multiplicity properties of the
ground state solutions of the semilinear boundary value problem —Au=Aa(x)u|u|1-2+
b(x)u|u|> ~2 in a bounded domain coupled with Dirichlet boundary condition. Here
2* is the critical Sobolev exponent, and the term ground state refers to minimizers of
the corresponding energy within the set of nontrivial positive solutions. Using the Ne-
hari manifold method we prove that one can find an interval A such that there exist at
least two positive solutions of the problem for A € A.
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1 Introduction

We consider the following semilinear elliptic equation:

(1.1)

—Au=Aa(x)ulul1"2+b(x)ulul* 2, x€Q,
u:o, Xeaﬂ,

where ) C RN (N >3) is a smooth bounded domain, A >0, 1<g<2, and 2* =2N /(N —2)
is the critical Sobolev exponent and the weight functions a,b are satisfying the following
conditions:

(A) at =max{a,0} #0 and a € L'1(Q)) where r, = 7= for some r € (4,2"—1), with in
addition a(x) >0 a.e in Q) in case g=1;
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(B) b" =max{b,0} £0 and be C(Q).
Tsung-fang Wu [1]has investigated the following equation:

u>0, u0, xeQ), (1.2)

—Au=Aa(x)ul+b(x)uf, xeQ,
u=0, x€0Q),

where Q is a bounded domain in RY, 0<g<1l<p<2*-1 (2" = % if N>3,2* =00 if
N =2), A>0 and the weight functions a,b satisfy the following conditions:

(A’) a* =max{a,0} #0 and a € L'1(Q)) where r, = r_(q%l) for some r € (q+1,2*), with in
addition a(x) >0 a.e in Q) in case 4=0;

(B') b" =max{b,0} #0 and b L (Q2) where s, = (1) forsomes e (p+1,2*).

If the weight functions a=b=1, Ambrosetti-Brezis-Cerami [2] studied Eq. (1.2). They
established that there exists Ao>0 such that Eq. (1.2) attains at least two positive solutions
for A€ (0,Ap), has a positive solution for A = A and no positive solution exists for A > Ay.
Wau [3] found that if the weight functions a changes sign in (), b=1 and A is sufficiently
small in Eq. (1.2), then Eq. (1.2) has at least two positive solutions.

Throughout this paper we denote H} (Q) the completion of C{°(Q)) with respect to the

norm
1/2
=l gy = ( A rwerx> .

The function u € H}(Q) is said to be a weak solution of the Eq. (1.1), if u satisfies
/ <Vqu— ]u\z*’zuv—/\]u\q’zuv) dx=0, YocH}(Q).
Q

The energy functional corresponding to Eq. (1.1) is defined as follows:

1 1
()= [ [VuPdx— [ b

2*dx—&/ a(x)|u|7dx,
q.J/Q

and then ], is well defined on H}(Q). It is well-known that the solutions of Eq. (1.1) are
the critical points of the functional J,.

We denote by S; the best Sobolev constant for the embedding of H}(Q) in LY(Q),
where 1 <] <2*. We define the Palais-Smale (or (PS)-) sequences, (PS)-values, and (PS)-
conditions in H}(Q) for ], as follows:

Definition 1.1. (i) For c € R, a sequence uy is a (PS).-sequence in H}(Q) for J if Jx(uy) =
c+0n(1) and J} (un) = 0,(1) strongly in H~1(Q)) as n — oo.

(ii) c€R is a (PS)-value in H}(Q) for ], if there exists a (PS)-sequence in H}(QY) for J,.

(iii) ], satisfies the (PS)-condition in H}(QY) ifany (PS)-sequence u, in H}(Q) for ], contains
a convergent subsequence.
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We define the following constants:

/|Vu|2dx
. 1i<nf>\{} 5 2’ (1.3)
ueHy(Q)\{0 o %
(/Qb(x)|uy dx)
2—q N
_g(2=qN\r2 (2" =2 reg -
Ao.—Z(Z*_q) (2*_6])522 Bl s, (1.4)

Our main result is the following.

Theorem 1.1. Assume that the conditions (A) and (B) hold; then there exists an interval A such
that for A€ A\, Eq. (1.1) has at least two positive solutions.

We omit dx in the integration for convenience. This paper is organized as follows. In
Section 2, we give some properties of the Nehari manifold. In Sections 3 and 4 we prove
Theorem 1.1.

2 The Nehari manifold

As the energy functional J, is not bounded below on H}(Q), considering the functional
on the Nehari manifold

M ={u € Hy()\{0}: {J3(u),u) =0}

is of interest. So, u € M if and only if

s )0) = 2= [ b0

2 _
A/Qa(x) ]9 =0. 2.1

It has to be considered that M- contains every nonzero solution of Eq. (1.1). Further-
more, we have the following result.

Lemma 2.1. The energy functional |, is coercive and bounded below on M.

Proof. If u€ M, then by (1.3),(2.1) and the Holder and Young inequalities, we have

2F—2 2% —
() == HuHZ—A<qu> [ atx) ul

1 2% — -
N ”“”Z_A<qu> lulllla e S 7. 22)

Thus, |, is coercive and bounded below on M,. O
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The Nehari manifold is closely associated with the behavior of the function of the
form @, : t— J)(tu) for t >0. Such maps are known as fibering maps and were suggested
by Brown and Zhang [4]. For u € H}(Q)), we have

=Sl [ b 1uf -22 [ atjup
pult) =7 > ), 7 ;

o)) =t =21 [ o) [ =20 [ o) ul?
Pt =llulP =@ =D 2 [ b(x) [u =2 =1772 [ a(@)|ul”.

It is easy to see that for u € H}(Q)\{0} and t >0, ¢},(t) =0 if and only if tu € M, in
other words, the critical points of ¢, correspond to the points on the Nehari manifold.
Particularly, ¢}(1) =0 if and only if u € M,. Therefore, we are allow to divide M,
into three parts corresponding to local minima, local maxima and points of inflection.
Therefore, we define

MI={ueMs=:¢;(1)>0};  Mi={uecM::9¢,(1)=0};
MZ={ueM:>:¢,(1)<0},

and note that if u € M, that is ¢] (1) =0, then

Pu() =) ul2 =2 =q) [ b()[u
=(2-2") u[2~A(g=2") [ a(x) |ul" @3

Now we conclude some basic properties of M, M$ and M.

Lemma 2.2. Assume that uq is a local minimizer for ], on M and ug & MS. Then ]} (19) =0
in H=Y(Q) (the dual space of H}(Q))).

Proof. See [2, Theorem 2.3]. O
Let A=(0,A¢) where Ay is the same as in (1.4), then we have the following result.
Lemma 2.3. If A€ A, then M§ =Q.

Proof. Suppose the contrary. Then there exists A € A such that M9 #@. Then for u € M§
by (1.3) and (2.3), we have

2L ulp= [ b

% *
Julz (22L) " sm.
"—q

2 <5 ||,

and so
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Similarly, using (1.3), (2.3), and the Holder and Young inequalities, we have

JulP=As Ll alle .
Hence
2-q
2—q \" 7 (2t -2
AZ( q) ( )s Bl s 7> Ay,
2% —q 2*—q
which is a contradiction. This completes the proof. O

We consider the function ¢, : R™ — R defined by
Pu(B) =19 (¢ +A/ ¥) |, fort>0.

The following result explains the behavior of the graph of ¢,,.

Lemma 2.4. For sufficiently small A, , is strictly increasing on (0,tmax (1)) and strictly de-
creasing on (tmax (u),00) with limy_,e Py, (f) = —o0, where

tmax(u): ( (Z_q)HuHZ >ZJ_2>0
(

2 —q) [ b(x) |u

Proof. Clearly tu € M, if and only if

())=A [ a(x)|up.

Moreover,

Pu(t)=2=q)t 7 ul? —(2*—4)t2*_”’_1/0b(x) ul*, fort>0, (24)
and so it is easy to see that, if tu € M, then
N (1) =l ().
Hence, tu e M7 (or tu e M} ) if and only if ¢/, (£) >0 (¢, (¢) <0).
For u € H}(Q)\{0}, by (2.4), ¢, has a unique critical point at t = tmax(u); which is

mentioned above. Clearly 1, is strictly increasing on (0, fmax(#)) and strictly decreasing
on <tmax<u),00) with limt_mq)u(t) = —o00. O
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Remark 2.1. Note thatif A € A, then

st = (222) 7 (220) ] M

* _ 2*714 2% 2¥-2
GEE( )
Q

> Julr (322) (32%) 55

2 2
>ZAulllalln 7 = 2A [ ao)ult.
q q Ja

Moreover, we have the following lemma.

Lemma 2.5. Let A € A. For each u € H} (Q))\{0}, we have the following.
(i) There exist unique 0 <t =t* (1) < tmax (1) <t~ =t (u) such that ttue M7, t - ue My,
@y is decreasing on (0,t7), increasing on (t+,t™) and decreasing on (+~,00), and

Ja(tru)= 3 inf  Ja(tu); Ja(t u)=supJy(tu).

O,tgtmax(u) t2t+

(i) My = {u € Hy()\{0}: myrt™ (i) =1}
(iii) There exist a continuous bijection between U= {u € H}(Q)\{0}: || u||=1} and M. In
particular, t~ is a continuous function for u € H} (Q0)\{0}.

Proof. See [5, Lemma 2.6]. O

3 The existence of a ground state

By Lemma 2.3, we can write
for all A€ A. Furthermore, by Lemma 2.5 it follows that M and M are non-empty and
by Lemma 2.1 we may define

o LU W

Then we have the following result.
Theorem 3.1. If A € A then

(i) af <0;

(ii) &, >do, for some dy>0.

In particular, we have a ) = zx}“.
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Proof. (i) Letue M7 . By (2.4),

2%

g el [ o)

and so

A
| — |
N
N[ —
|
= | =
~
+
VR
= | =
|
N =
N~
7N
NN
K
~
| E—
=
o

-9

__@=2)2=q) 2
= 27 ||u||*<0.

Therefore, a} <0.
(ii) Let u € M7 By (2.3),

g P [ b ul

R

1
g\ T2
lu > (2* _‘2) S, forue M. (3.1)

Moreover, by (1.3) we have

ST ul?

This implies

By (2.3) and (3.1), we have

1 _ 2% —
hoozuuwlﬁwunzq—A(ZWﬁ)nﬂuWﬁ]

2—q
2—q s |1/ 2—g\77? N | (2"—q q
><2*—q> o [N<2*—¢7> o A( 2% )”a”mS’ '

Thus, if A€ A, then ) (u) > dy for all u € M3, for some positive constant do. d

Remark 3.1. (i) If A € A, then by (1.3), (2.3), and the Hoélder and Young inequalities, for
each u€ M7 we have

lulp<az =2 [ a(x)

A2 quuwnammsi (32)

quuwuamﬁsq
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and so )

2% — o
HuH<< 05— Haums‘?> , forallue MZ.

(i) If A€ A, then by Lemma 2.5(i) and Theorem 3.1(ii), for each u € M3 we have
Ja(u) =sup/a(tu).

t>0
Then we have the following results.

Proposition 3.1. If A€ A, then
(i) there exists a (PS),, -sequence u, C M, in H}(Q) for ]»;
(ii) there exists a (PS)“;—sequence u, C My in HY(Q) for .

Proof. See [6, Proposition 9]. O
Now, we establish the existence of local minimum for [, on ./\/ljlr

Theorem 3.2. If A€ A, then ] has a minimizer u, in M7 and it satisfies the following.

(@) Ja(up) =ar=aj.

(if) u, is a positive solution of Eq. (1.1).

(iii) || up | > 0as A—07.

Proof. By Proposition 3.1(i), there is a minimizing sequence u,, for [, on M, such that

Ja(un) =ax+04(1) and Ji(un)=04(1) in H'(Q). (3.3)

Since ], is coercive on M, (see Lemma 2.1), we get that 1, is bounded in H& (Q)). Going
if necessary to a subsequence, we can assume that there exists u, € H} (Q) such that

up,—uy  almost everywhere in (, (3.4)

up,—u,  weakly in H}(Q)),
u,—u,  stronglyin L3(Q) forall 1<s<2*.

Thus, we have
/ yunyq—A/ %) |1y |7 +0,(1) as 11— co. (3.5)

First, we claim that u, is a nonzero solution of Eq. (1.1). By (3.3) and (3.4), it is easy to see
that u, is a solution of Eq. (1.1). From u) € M, and (2.2), we deduce that

_q(2"=2) 2 27q
M) =5 N 1P = () (3.6)

Let n— o0 in (3.6), by (3.3), (3.5) and «) <0, we get

2
A 1> _
/ ) ua |1z =5

q ay>0.
q
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Thus, u, € M, is a nonzero solution of Eq. (1.1). Now we prove that u, —u, strongly in
H{(Q) and J) (up) =a,. By (3.6), if u € M, then

()= NP =275 [ o) ul. 67)

First we show that J) (1)) =a,. It suffices to recall that u,,u, € M,; by (3.7) and using
weakly lower semi continuity of ], we get

1 2% —
<) =l P A [ o)

i 1 2 2*_q q
ghglgf(ﬂunu —AW/QW)\M”; )

<Hminf ], (u,) =w,.
n—oo

This implies that J) (u)) =a, and lgn | tn ||>=]| 1 ||* Let v, =u,—u,; then by Brézis-Lieb
n—oo
lemma [7] we have
v =120 1 = |1 +0n (1)

Thus u, — u, strongly in H}(Q)). Moreover, we have u, € M. If, on the contrary, u, €
M, thenby Lemma 2.5, there are unique tj and t; such thatt;uye M7 and t; upeM; .
In particular, we have tg <t, =1. Since

d. . 2
Eh(to uy)=0 and @]A(fo uy) >0,

there exists t; <t~ <t; such that ], (t;uy) <Jr(t u,). By Lemma 2.5(i),

Ja(tgun) <Ja(tup) <Ja(tgupr)=Jr(un),

which is a contradiction. Since ], (13) =Jx(|u |) and |u, |€ M7, by Lemma 2.2, we may
assume that u, is a nonzero nonnegative solution of Eq. (1.1). By the Harnack inequality
[8] we deduce that 1) >0 in Q. Finally, by (3.2), we have

rq S?/

2% -2

and so ||u, || >0as A —0". O

4 Proof of Theorem 1.1

In this section, we establish the existence of a local minimum for ], on M (Q).
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Theorem 4.1. Let Ag>0 as in (1.4), then for A€ (0,Aq), J) has a minimizer U, in M (Q) and
it satisfies
(@) Ja(Up) =, (Q);
(if) Uy is asolution of Eq. (1.1).
Proof. By proposition 3.1(ii), there exists a minimizing sequence u,, for J on M (Q)) such
that
In(ug)=a; (Q)+0,(1),  Ji(un)=0,(1), in H1(Q).
Since ], is coercive on M (see Lemma 2.1), we get that u, is bounded in M (Q)). From

this and by compact embedding Theorem, there exists a subsequence of u, and U) € M
such that

u,— U, stronglyin L"(Q)) for all 1 <r<2%,

u, —~U, weakly in H}(Q)),
u, —U, weaklyin L2 (Q).

Since
0 (1) = (J4 (), 17) = (Jo (Un), 1) +04(1), forall € Hy(Q),
and

2%

0>91, (1) = 2=0) | a2 =(2" —g) [ b(x) s
>@-q) [P~ ~q) [ bx) UL,

thus we get U, € M (Q) is a nonzero solution of Eq. (1.1). We now prove that u, — U
strongly in H}(Q). Suppose otherwise; then || U, || <lirr_1>inf || U, || and so
n—oo

2%

AU U) =[P =A [ a(x) [Un 1= [ b) | Uy

<1ig£f<uunuz—A/Qa(x)yunyq—/ﬂb@c)\un

:lirrl)inf(jj\(un),uﬁ =0.

This contradicts Uy € M, (Q)). Hence u, — U, strongly in H} (Q2). This implies
Ja(un) = A (Up) =a; (), as n— oco.

Since Jx(Uy) =Ji(| Uy |) and | U, € M (Q2) by Lemma 2.2 we may assume that U, is
a nonzero nonnegative solution of Eq. (1.1). Finally, by the Harnack inequality [8], we
deduce that U, >0in Q). O

Now, we complete the proof of Theorem 1.1: By Theorems 3.2, 4.1, Eq. (1.1) has two
solutions u,, U, such that uy € M7 (Q), Uy € M; (Q). Since MT(Q)NM; (Q) =0, this
implies that u) and U}, are different.
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