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Abstract. In this paper, we study the existence of nontrivial weak solutions to the
following quasi-linear elliptic equations

−△nu+V(x)|u|n−2u=
f (x,u)

|x|β
, x∈Rn (n>2),

where −△nu=−div(|∇u|n−2∇u), 06β<n, V :Rn→R is a continuous function, f (x,u)

is continuous in Rn×R and behaves like eαu
n

n−1 as u →+∞.
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1 Introduction

Consider nonlinear elliptic equations of the form

−△pu= f (x,u), in Ω, (1.1)

where Ω is a smooth bounded domain in Rn, and −△pu=− div (|∇u|p−2∇u). Brézis [1],
Brézis-Nirenberg [2] and Bartsh-Willem [3] studied this problem under the assumptions
that p = 2 and | f (x,u)|6 c(|u|+|u|q−1). Garcia-Alonso [4] studied this problem under
the assumptions that p6n and p26n. When Ω=Rn and p=2, Kryszewski-Szulkin [5],
Alama-Li [6], Ding-Ni [7] and Jeanjean [8] studied the following equations in stead of
(1.1):

−△u+V(x)u= f (x,u), in R
n.
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In this paper we consider quasi-linear elliptic equations in the whole Euclidean space

−△nu+V(x)|u|n−2u=
f (x,u)

|x|β
, x∈Rn (n>2), (1.2)

where −△nu=−div(|∇u|n−2∇u), 06β<n, V : Rn →R is a continuous function, f (x,u)

is continuous in Rn×R and behaves like eαu
n

n−1 as u→+∞.
D. Cao [9] and Cao-Zhang [10] studied problem (1.2) in the case n = 2 and β = 0.

Panda [11], do Ó et al. [12,13] and Alevs-Figueiredo [14] studied problem (1.2) in general
dimension and β = 0. When β 6= 0, (1.2) was studied by Adimurthi-Yang [15], do Ó et
al. [16], Yang [17], Zhao [18], and others. Similar problems in R4 or complete noncompact
Riemannian manifolds were also studied by Yang [19, 20].

We define a function space

E,

{

u∈W1,n(Rn) :
∫

Rn
V(x)|u|ndx<∞

}

with the norm

‖u‖,

{

∫

Rn
(|∇u|n+V(x)|u|n)dx

}
1
n

. (1.3)

We say that u∈E is a weak solution of problem (1.2) if for all ϕ∈E we have

∫

Rn
(|∇u|n−2∇u∇ϕ+V(x)|u|n−2uϕ)dx=

∫

Rn

f (x,u)

|x|β
ϕ dx.

If a weak solution u satisfies u(x)>0 for almost every x∈Rn, we say u is positive.
Throughout this paper we assume the following two conditions on the potential V(x):

(V1) V(x)>V0>0;

(V2) The function 1
V(x)

belongs to L1/(n−1)(Rn).

We also assume that the nonlinearity f (x,s) satisfies the following:

(H1) There exist constants α0,b1,b2>0 such that for all (x,s)∈Rn×R+,

| f (x,s)|6b1sn−1+b2

{

eα0|s|
n

n−1
−

n−2

∑
k=0

αk
0|s|

kn
n−1

k!

}

;

(H2) There exists µ>n, such that for all x∈Rn and s>0,

0<µF(x,s)≡µ
∫ s

0
f (x,t)dt6 s f (x,s);

(H3) There exist constants R0,M0>0, such that for all x∈Rn and s>R0,

F(x,s)6M0 f (x,s);
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(H4)

lim
s→0+

sup
n|F(x,s)|

sn
<λβ

uniformly with respect to x ∈Rn, where

λβ, inf
u∈E,u 6=0

‖u‖n

∫

Rn
|u|n

|x|β
dx

;

(H5) There exist constants p>n and Cp such that

f (x,s)>Cp sp−1,

for all s>0 and all x∈Rn, where

Cp> (
p−n

p
)

p−n
n
(

nα0

(n−β)αn

)

(n−1)(p−n)
n

S
p

p ,

αn =nωn−1
1

n−1 , ωn−1 is the volume of the unit sphere Sn−1, and

Sp, inf
u∈E,u 6=0

(
∫

Rn(|∇u|n+V(x)|u|n)dx)
1
n

(
∫

Rn
|u|p

|x|β
dx)

1
p

= inf
u∈E,u 6=0

‖u‖

(
∫

Rn
|u|p

|x|β
dx)

1
p

;

(H6) when s60, f (x,s)=0 for all x∈Rn.

Our main result is the following theorem:

Theorem 1.1. Assume that V(x) is a continuous function satisfying (V1) and (V2). f :Rn×R→
R is a continuous function and the hypotheses (H1)-(H6) hold. Then Eq. (1.2) has a nontrivial
positive weak solution.

Here the assumption (H5) is different from that of [17]. (H5) was also used in [16]
and [18]. An example of f satisfying (H1)-(H6) reads

f (t)=







2l l!Cp ∑
∞
k=l

(t
n

n−1 −χ(t)t
1

n−1 )k

k! , t≥0,

0, t<0,

where l ≥ N is an integer, Cp is as in (H5), χ : [0,∞)→R is a smooth function such that
0≤χ≤1, χ≡0 on [0,A], χ≡1 on [2A,∞), and |χ ′|≤2/A, where A is a large constant, say
A>4n−1. For details we refer the reader to in [20, Proposition 2.9]. Other examples were
also given in [16] and [18] respectively.
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2 Compactness analysis

We will give some preliminary results before proving Theorem 1.1. Define a function
ζ :N×R→R by

ζ(n,s)= es−
n−2

∑
k=0

sk

k!
=

∞

∑
k=n−1

sk

k!
. (2.1)

Let s>0,p>1 be real numbers and n>2 be an integer, then there holds (see [17])

(

ζ(n,s)

)p

6ζ(n,ps). (2.2)

Problem (1.2) is closely related to a singular Trudinger-Moser type inequality [15].
That is, for all α>0, 06β<n, and u∈W1,n(Rn) (n>2), there holds

∫

Rn

eα|u|
n

n−1 −
n−2
Σ

k=0

αk |u|
kn

n−1

k!

|x|β
dx<∞. (2.3)

Furthermore, we have for all α6 (1− β
n ) αn and τ>0,

sup
∫

Rn (|∇u|n+τ|u|n)dx61

∫

Rn

eα|u|
n

n−1 −
n−2
Σ

k=0

αk|u|
kn

n−1

k!
|x|β

dx<∞. (2.4)

In this paper, we also need the following result which is taken from Lemma 2.4 in [17].
That is, if V : Rn →R is continuous and (V1), (V2) are satisfied, then for any q>1, there
holds

E →֒ Lq(Rn) compactly. (2.5)

Define a functional J : E→R by

J(u),
1

n
‖u‖n −

∫

Rn

F(x,u)

|x|β
dx,

where 06 β < n, ‖ u ‖ is the norm of u ∈ E defined by (1.3), F(x,s) =
∫ s

0 f (x,t)dt is the
primitive of f (x,s). Assume f (x,u) satisfies the hypotheses (H1), then there exist some
positive constants α1>α0 and b3 such that for all (x,s)∈Rn×R,

F(x,s)6b3 ζ

(

n,α1|s|
n

n−1

)

,

where ζ(n,s) is defined by (2.1). Thus J is well defined thanks to (2.3).
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Lemma 2.1. Assume V(x)>V0 in Rn, (H1), (H2) and (H3) hold. Then for any nonnegative,
compactly supported function u∈W1,n(Rn)\{0}, there holds J(tu)→−∞ as t→+ ∞.

Proof. We follow the line of [15]. (H2) and (H3) imply that there exists R0 > 0 such that
for all s>R0,

µ

s
6

∂
∂s F(x,s)

F(x,s)
=

∂

∂s

(

lnF(x,s)

)

,

therefore,
(

s

R0

)µ

6
F(x,s)

F(x,R0)
.

It follows that
F(x,s)>F(x,R0) R

−µ
0 ·sµ.

Let c1= F(x,R0) R
−µ
0 , then we have for all (x,s)∈Ω×[0,+∞), F(x,s)> c1sµ−c2, which is

under the assumption that u is supported in a bounded domain Ω and c2 is a positive
constant. This implies that

J(tu)6
tn

n
‖u‖n −

∫

Ω

c1tµuµ

|x|β
dx= tn

(

‖u‖n

n
−c1tµ−n

∫

Ω

uµ

|x|β
dx

)

.

Since µ>n, this implies J(tu)→−∞ as t→+∞.

Lemma 2.2. Assume that V(x)> V0 in Rn, (H1) and (H4) are satisfied. Then there exist
δ>0 and r>0 such that J(u)>δ for all ‖u‖= r.

Proof. According to (H4), there exist τ,δ>0 such that if |s|6δ,

n|F(x,s)|

|s|n
<λβ−τ.

Therefore for all x∈Rn,|s|6δ, we have

F(x,s)6
λβ−τ

n
|s|n. (2.6)

On the other hand, according to (H1), we can obtain that for any |s|>δ,

F(x,s)6Cδ|s|
n+1R(α0,s), (2.7)

where

Cδ=
b1

n|δ|·
∞

Σ
k=n−1

(α0|δ|
n

n−1 )k

k!

+
b2

|δ|n
, R(α0,s)=

∞

∑
k=n−1

(α0|s|
n

n−1 )k

k!
.

Combining (2.6) and (2.7), we have for all (x,s)∈Rn×Rn,

F(x,s)6
λβ−τ

n
|s|n+C|s|n+1R(α0,s), (2.8)



30 C. Wang / J. Partial Diff. Eq., 26 (2013), pp. 25-38

where C=Cδ. Here we also use the inequality

∫

Rn

|u|n+1R(α0,u)

|x|β
dx6C‖u‖n+1, (2.9)

which is taken from Lemma 4.2 in [15]. According to the definition of λβ, we get

∫

Rn

|u|n

|x|β
dx6

‖u‖n

λβ
. (2.10)

Thanks to (2.8), (2.9), and (2.10), we obtain

J(u)>
1

n
‖u‖n −

∫

Rn

λβ−τ

n

|u|n

|x|β
dx−

∫

Rn
C
|u|n+1R(α0,u)

|x|β
dx

>
1

n
‖u‖n −

λβ−τ

n
·
‖u‖n

λβ
−C‖u‖n+1

=‖u‖ ·

(

τ

nλβ
‖u‖n−1−C‖u‖n

)

. (2.11)

For sufficiently small r>0, we have

τ

nλβ
rn−1−Crn>

τ

2nλβ
rn−1, (2.12)

which is due to τ>0. Therefore, according to (2.11) and (2.12), for all ‖u‖ = r,

J(u)>r·
τ

2nλβ
·rn−1=

τ

2nλβ
·rn.

Finally, let δ= τ
2nλβ

·rn, we have J(u)>δ for all ‖u‖= r.

Lemma 2.3. Critical points of J are weak solutions of (1.2).

Proof. Though the proof is standard, we write it for completeness. Define a function
g(t)= J(u+tϕ), namely

g(t)=
1

n

∫

Rn
(|∇(u+tϕ)|n+V(x)|u+tϕ|n)dx−

∫

Rn

F(x,u+tϕ)

|x|β
dx.

By a simple calculation,

g
′
(t)

∣

∣

∣

∣

t=0

= J
′
(u+tϕ)·ϕ

∣

∣

∣

∣

t=0

= J
′
(u)·ϕ.

Let f1(t)= |∇(u+tϕ)|n , f2(t)= |u+tϕ|n, and

f3(t)=
∫

Rn

F(x,u+tϕ)

|x|β
dx.
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Clearly we have

f
′

1(t)

∣

∣

∣

∣

t=0

=
n

2
×2×|∇u|n−2 ·∇u·∇ϕ=n|∇u|n−2 ·∇u·∇ϕ,

f
′

2(t)

∣

∣

∣

∣

t=0

=
n

2
|u|n−2×2u×ϕ=n|u|n−2uϕ,

f
′

3(t)

∣

∣

∣

∣

t=0

=
∫

Rn

f (x,u)

|x|β
·ϕ dx.

Combining the above, we have for all ϕ∈E,

J
′
(u)·ϕ=

∫

Rn
(|∇u|n−2 ·∇u·∇ϕ+V(x)|u|n−2uϕ)dx−

∫

Rn

f (x,u)

|x|β
·ϕ dx. (2.13)

Therefore, J
′
(u)·ϕ=0 is equivalent to

∫

Rn
(|∇u|n−2 ·∇u·∇ϕ+V(x)|u|n−2uϕ)dx−

∫

Rn

f (x,u)

|x|β
·ϕ dx=0.

Hence we get the desired result.

Lemma 2.4. Assume (H5) is satisfied, then there exists a function up∈E which satisfies ‖up‖=
Sp, and for t∈ [0,+∞), we define

J(tup),
tn

n
‖up ‖

n −
∫

Rn

F(x,tup)

|x|β
dx.

There holds

max
t>0

J(tup)<
1

n

(

n−β

n

αn

α0

)n−1

. (2.14)

Proof. Similar to [18], assume {uk} is a bounded positive sequence of functions in E which
satisfies

∫

Rn

|uk|
p

|x|β
dx=1 and ‖uk‖→Sp.

Meanwhile we assume that uk⇀up in E, uk →up in Lq(Rn) for all q>1, uk(x)→up(x)
almost everywhere. Using the Hölder inequality and the Mean Value Theorem, we can
easily prove that for any ε>0, there exists a constant K such that when k>K,

∣

∣

∣

∣

∫

Rn

|uk|
p−|up|p

|x|β
dx

∣

∣

∣

∣

< ε.

Therefore,
∫

Rn

|uk|
p

|x|β
dx →

∫

Rn

|up|p

|x|β
dx=1. (2.15)
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Next we will prove
‖up‖6 lim

k→∞
inf‖uk ‖=Sp. (2.16)

Since uk ⇀ up weakly in E, we know ∇uk ⇀∇up weakly in Ln(Rn). According to the
definition of weak convergence and the Hölder inequality, we get

∫

Rn
|∇up|

n dx6 lim
k→∞

inf
∫

Rn
|∇uk|

n dx. (2.17)

Similarly to the proof of (2.15), we know
∫

Rn
V(x)|uk|

n dx→
∫

Rn
V(x)|up|

n dx. (2.18)

Thanks to (2.17) and (2.18), (2.16) holds. Meanwhile, by the definition of Sp , we know
Sp6‖up ‖. Therefore, we know ‖up ‖=Sp. According to (H5), we have

∫

Rn

F(x,tup)

|x|β
dx>Cp

tp

p
. (2.19)

Due to the definition of J(tup) and (2.19), we have

J(tup)6
tn

n
S n

p −Cp
tp

p
.

Let

f (t)=
tn

n
S n

p −Cp
tp

p
,

and by calculation we know for any real number t,

f (t)6 f

((

S n
p

Cp

)
1

p−n
)

.

This means

tn

n
S n

p −Cp ·
tp

p
6

p−n

np
·
S

np
p−n

p

C
n

p−n
p

.

If we set

Cp> (
p−n

p
)

p−n
n
(

nα0

(n−β)αn

)

(n−1)(p−n)
n

S
p

p ,

then we have

p−n

np
·
S

np
p−n

p

C
n

p−n
p

<
1

n

(

n−β

n

αn

α0

)n−1

.

In view of (H5), we get (2.14) immediately.
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Lemma 2.5. Assume that (V1), (V2), (H1), (H2) and (H3) hold and {uk}⊂E be an arbitrary
Palais-Smale sequence of J, i.e.,

J(uk)→ c, J
′
(uk)→0

in E∗ as k→∞, where E∗ denotes the dual space of E. Then there exists a subsequence of {uk}
(still denoted by {uk} ) and u∈E such that uk ⇀u weakly in E, uk →u strongly in Lq(Rn) for
all q>1, and























∇uk(x)→∇u(x), a. e.in Rn,
f (x,uk)

|x|β
→

f (x,u)

|x|β
, stronglyin L1(Rn),

F(x,uk)

|x|β
→

F(x,u)

|x|β
, stronglyin L1(Rn).

Furthermore, u is a weak solution of (1.2).

Proof. Assume {uk} is a Palais-Smale sequence of J. Since J(uk)→ c, we obtain

1

n
‖uk ‖

n −
∫

Rn

F(x,uk)

|x|β
dx→ c, as k→∞. (2.20)

According to (2.13), we know

|J
′
(uk)·ϕ|=

∣

∣

∣

∣

∫

Rn
(|∇uk|

n−2 ·∇uk ·∇ϕ+V(x)|uk|
n−2uk ϕ)dx−

∫

Rn

f (x,uk)

|x|β
·ϕ dx

∣

∣

∣

∣

6τk ‖ ϕ‖, (2.21)

for all ϕ∈E, where τk =‖ J
′
(uk)‖, and τk→0 as k→∞. Taking ϕ=uk in (2.21), we have

∣

∣

∣

∣

‖uk ‖
n −

∫

Rn

f (x,uk)

|x|β
·uk dx

∣

∣

∣

∣

6 τk ‖uk ‖ . (2.22)

By (H2), we obtain
∫

Rn

µF(x,uk)

|x|β
dx6

∫

Rn

uk f (x,uk)

|x|β
dx. (2.23)

Then considering ( µ
n −1)‖uk ‖

n, according to (2.23), we have

(µ

n
−1

)

‖uk ‖
n6

(µ

n
−1

)

‖uk ‖
n −

∫

Rn

µF(x,uk)−uk f (x,uk)

|x|β
dx

=µJ(uk)+

(

∫

Rn

uk f (x,uk)

|x|β
dx−‖uk ‖

n

)

6µ·2|c|+τk ‖uk ‖ . (2.24)
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According to (2.24), it’s easy to prove that ‖uk ‖ is bounded. Due to (2.20) and (2.22), we
get

∫

Rn

uk f (x,uk)

|x|β
dx6C,

∫

Rn

F(x,uk)

|x|β
dx6C, (2.25)

where C is a constant which depends only on µ and n. According to (2.5) we obtain that
for some u∈E and any q>1, up to a subsequence, uk → u strongly in Lq(Rn). Then we
know uk →u almost everywhere in Rn. Next we will prove that up to a subsequence

lim
k→∞

∫

Rn

| f (x,uk)− f (x,u)|

|x|β
dx=0. (2.26)

Due to f (x,·)>0, it is sufficient for us to prove that up to a subsequence

lim
k→∞

∫

Rn

f (x,uk)

|x|β
dx=

∫

Rn

f (x,u)

|x|β
dx. (2.27)

Due to
f (x,u)

|x|β
∈L1(Rn),

we know

lim
η→+∞

∫

|u|>η

f (x,u)

|x|β
dx=0.

For any δ>0, there exists M>
C
δ such that

∫

|u|>M

f (x,u)

|x|β
dx<δ, (2.28)

where C is the constant in (2.25). According to (2.25), we know

∫

|uk|>M

f (x,uk)

|x|β
dx6

1

M

∫

|uk|>M

f (x,uk)uk

|x|β
dx<δ. (2.29)

For all x∈{x∈Rn : |uk|<M}, by our assumption (H1), we can deduce that

| f (x,s)|6

(

b1+b2 eα0 M
n

n−1

)

|s|n−1. (2.30)

Let C1=b1+b2 eα0 M
n

n−1 , according to (2.30), we know

| f (x,uk(x))|6C1|uk(x)|n−1.

Since

|uk|
n−1

|x|β
→

|u|n−1

|x|β
strongly in L1(Rn), and uk →u almost everywhere in R

n,
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according to the generalized Lebesgue’s dominated convergence theorem, we know

lim
k→∞

∫

|uk|<M

f (x,uk)

|x|β
dx=

∫

|u|<M

f (x,u)

|x|β
dx. (2.31)

According to (2.28), (2.29) and (2.31), we can prove that (2.27) holds. Therefore we get
(2.26). By (H3) and (H1), we obtain that

F(x,uk)6C1 ·|uk|
n+C2 f (x,uk),

where C1=(b1/n)+b2 eα0R
n

n−1
0 and C2=M0. According to (2.5), (2.26), and the generalized

Lebesgue’s Dominated Convergence Theorem, we know

lim
k→∞

∫

Rn

|F(x,uk)−F(x,u)|

|x|β
dx=0.

Using the knowledge of (4.26) in [15], we know ∇uk(x)→∇u(x) almost everywhere in
Rn and |∇uk|

n−2∇uk⇀ |∇u|n−2∇u weakly in
(

L
n

n−1 (Rn)
)n

. Let k→∞ in (2.21), and then
we obtain that

∣

∣

∣

∣

∫

Rn
(|∇u|n−2 ·∇u·∇ϕ+V(x)|u|n−2uϕ)dx−

∫

Rn

f (x,u)

|x|β
·ϕ dx

∣

∣

∣

∣

=0,

for all ϕ∈C∞
0 (Rn). This demonstrates that u is a weak solution of (1.2).

3 Proof of Theorem 1.1

Next we will prove Theorem 1.1. By Lemmas 2.1 and 2.2, we know J satisfies all the
hypotheses of the Mountain-pass Theorem without the Palais-Smale condition:























J∈C1(E,R);

J(0)=0;

J(u)>δ>0, when ‖u‖= r;

J(e)<0, for some e∈E with ‖ e‖> r.

According to the Mountain-pass Theorem except for the Palais-Smale Condition [21],
there exists a sequence {uk}⊂E such that

J(uk)→ c>0, J
′
(uk)→0,

in E∗, where

c=min
γ∈Γ

max
u∈γ

J(u)>δ and Γ=
{

γ∈C([0,1],E) : γ(0)=0,γ(1)= e
}

.
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According to Lemma 2.5, we know that up to a subsequence































uk ⇀u weakly in E,

uk →u strongly in Lq(Rn), for any q>1,

lim
k→∞

∫

Rn

F(x,uk)

|x|β
dx=

∫

Rn

F(x,u)

|x|β
dx,

u is a weak solution of (1.2).

Next we will prove that the solution u which we get in the above is nontrivial. Suppose
u≡0. Due to F(x,u)≡0 for all x∈Rn, we get

lim
k→∞

∫

Rn

F(x,uk)

|x|β
dx=

∫

Rn

F(x,u)

|x|β
dx=0. (3.1)

According to (2.20), we have

lim
k→∞

(

1

n
‖uk ‖

n −
∫

Rn

F(x,uk)

|x|β
dx

)

= c>0. (3.2)

Combining (3.1) and (3.2), we can obtain that

lim
k→∞

‖uk ‖
n=n·c>0. (3.3)

By Lemma 2.4, we get

0<n·c<

(

n−β

n

αn

α0

)n−1

. (3.4)

According to (3.3) and (3.4), we know there exists some η0>0 and K>0, such that

‖uk ‖
n6

(

n−β

n

αn

α0
−η0

)n−1

, (3.5)

for all k>K. According to (3.5), we can choose q>1 sufficiently close to 1 such that

q α0 ‖uk ‖
n

n−1 6
(

1−
β

n

)

αn−
α0η0

2
, (3.6)

for all k>K. By (H1) and (2.1), we have

| f (x,uk)uk|6b1|uk|
n+b2 |uk| ζ(n,α0 |uk|

n
n−1 ).

It follows that

∫

Rn

| f (x,uk)uk|

|x|β
dx6b1

∫

Rn

|uk|
n

|x|β
dx+b2

∫

Rn

|uk| ζ(n,α0 |uk|
n

n−1 )

|x|β
dx. (3.7)
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Letting 1/q
′
+1/q=1, and according to (3.6), (3.7), the Hölder Inequality, (2.2), and (2.4),

we have

∫

Rn

| f (x,uk)uk|

|x|β
dx6b1

∫

Rn

|uk|
n

|x|β
dx+b2

(

∫

Rn

|uk|
q
′

|x|β
dx

)
1

q
′

·

(

∫

Rn

ζ(n,qα0|uk|
n

n−1 )

|x|β
dx

)
1
q

6b1

∫

Rn

|uk|
n

|x|β
dx+C

(

∫

Rn

|uk|
q
′

|x|β
dx

)
1

q
′

→0, as k →∞. (3.8)

According to (2.22) and (3.8), we have

‖uk ‖→0, as k→∞.

This is in contradiction with (3.3). Thus the solution u of (1.2) is nontrivial.
Testing Eq. (1.2) with u−, the negative part of u, we conclude that u− ≡ 0. Hence

u≥0.

Acknowledgments

The author is supported by the China Scholarship Council.

References
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