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Abstract. In this paper, we study the existence of nontrivial weak solutions to the
following quasi-linear elliptic equations

Anu+V(x)u”_2u:f(x’g), xeR" (n>2),
x

where — A u=—div(|Vu|*~2Vu), 0<B<n, V:R"—R is a continuous function, f(x,u)
_n_
is continuous in R” x R and behaves like ¢**" ' as u — +-co.
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1 Introduction

Consider nonlinear elliptic equations of the form
—Apu=f(x,u), in O, (1.1)

where ) is a smooth bounded domain in R”, and — A pu= — div (|Vu[P~*Vu). Brézis [1],
Brézis-Nirenberg [2] and Bartsh-Willem [3] studied this problem under the assumptions
that p=2 and |f(x,u)| <c(|u|+|u|7!). Garcia-Alonso [4] studied this problem under
the assumptions that p <7 and p? <n. When Q =R" and p =2, Kryszewski-Szulkin [5],
Alama-Li [6], Ding-Ni [7] and Jeanjean [8] studied the following equations in stead of
(1.1):

—Au+V(x)u=f(x,u), inR".
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In this paper we consider quasi-linear elliptic equations in the whole Euclidean space

—Anu+V(x)]u|”_2u:f’<;’;), YER" (n32), (12)

where —A,u=—div(|Vu|"2Vu),0<f<n, V:R"—= R is a continuous function, f(x,u)

is continuous in R” x R and behaves like e**" ' as 1 — -+oo.

D. Cao [9] and Cao-Zhang [10] studied problem (1.2) in the case n =2 and g =0.
Panda [11], do O et al. [12,13] and Alevs-Figueiredo [14] studied problem (1.2) in general
dimension and B =0. When B #0, (1.2) was studied by Adimurthi-Yang [15], do O et
al. [16], Yang [17], Zhao [18], and others. Similar problems in R* or complete noncompact
Riemannian manifolds were also studied by Yang [19,20].

We define a function space

Eé{uewlfﬂ(mﬂ):/WV(x)yudeoo}

with the norm :

HuHé{/Rn(]Vu]”-l—V(x)]uP)dx}n. (1.3)

We say that u € E is a weak solution of problem (1.2) if for all ¢ € E we have

/Rn(\Vu\”_ZVuV(p—I-V(x)\u]”_zuq))dx: Rnf’(;c";l)qodx.

If a weak solution u satisfies u(x) >0 for almost every x € R", we say u is positive.
Throughout this paper we assume the following two conditions on the potential V (x):

(V1) V(x) = Vo>0;

(V2) The function %belongs to L/ ("1 (R™).

We also assume that the nonlinearity f(x,s) satisfies the following:
(Hy) There exist constants ag,by,b; > 0 such that for all (x,s) e R" xRT,

n N T
£ (x,8)| <b1s" "+ eao\sm_ﬂz%ysw ;
- K

(H,) There exists pt >n, such that for all x € R" and s >0,

S
0<uF(x,s) E]/l/ flx,t)dt<sf(x,s);
0
(H3) There exist constants Ry, My >0, such that for all x €R" and s > Ry,

F(x,5) <Mof(x,s);
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(Ha)
. n|E(x3)]
A, sup g <Ap
uniformly with respect to x €R", where
n
e el
ueE,u#OfIRn de

(Hs) There exist constants p >n and C, such that
f(x,8)=CpsP?,

forall s>0 and all x€IR", where

cp><p_n)7(7(nf2°)%) Loy,

1 . . _
Ky =Nwy_1"1, w,_1 is the volume of the unit sphere 5" 1 and

|Vul"+v " dax) T
S,2 inf (g [Vl + <x)‘”1’ 40T e [ .
u€E,u#0 (fan %dx)? ueE,u;éO(fIRn %dx)7
x x

(Hg) whens<0, f(x,s)=0 forall xeR".

Our main result is the following theorem:

Theorem 1.1. Assume that V(x) is a continuous function satisfying (V1) and (V). f:R" x R—
R is a continuous function and the hypotheses (Hy)-(Hg) hold. Then Eq. (1.2) has a nontrivial
positive weak solution.

Here the assumption (Hs) is different from that of [17]. (Hs) was also used in [16]
and [18]. An example of f satisfying (H;)-(Hpg) reads

_n_ 1
e,y WA s

0, t<0,

flt)=

where [ > N is an integer, C, is as in (Hs), x:[0,00) = R is a smooth function such that
0<x<1,x=00n[0,A], x=10n[2A,0), and |x'| <2/A, where A is a large constant, say
A>4""1 For details we refer the reader to in [20, Proposition 2.9]. Other examples were
also given in [16] and [18] respectively.
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2 Compactness analysis

We will give some preliminary results before proving Theorem 1.1. Define a function
{:INxR—R by

I(n,s)=e _Zk' E 0 (2.1)
k=n—1
Lets>0,p>1 be real numbers and n > 2 be an integer, then there holds (see [17])

(6009) " <) 22)

Problem (1.2) is closely related to a singular Trudinger-Moser type inequality [15].
That is, for all « >0, 0< B <n, and u € W (R") (n>2), there holds
n_ p-2 kn_
o |u| T _kEO ’Xk|”k|!” !
R |x|P

dx < o0. (2.3)

Furthermore, we have for all a < (1— g) a, and >0,

" K|y |2
s "
sup |’;|}§ * dx<co. (2.4)

S (| Vet 1)dxe <1/ R

In this paper, we also need the following result which is taken from Lemma 2.4 in [17].
That is, if V:R" — R is continuous and (V;), (V») are satisfied, then for any g4 > 1, there
holds

E—L1(R") compactly. (2.5)

Define a functional J: E — R by

A 1 n F 7
el - [ 55 g

where 0< B <, ||u] is the norm of u € E defined by (1.3), F(x,s) = [, f(x,t)dt is the
primitive of f(x,s). Assume f(x,u) satisfies the hypotheses (H;), then there ex1st some
positive constants aq >wg and b3 such that for all (x,5) € R"” X,

F(x,s) <bs €<n,w115|ﬁ>,

where {(n,s) is defined by (2.1). Thus ] is well defined thanks to (2.3).
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Lemma 2.1. Assume V(x)>Vpin R", (Hy), (Ha) and (H3) hold. Then for any nonnegative,
compactly supported function u € W (R")\{0}, there holds J(tu) — —oo as t — + co.

Proof. We follow the line of [15]. (Hy) and (Hs3) imply that there exists Rp > 0 such that
for all s> Ry,

9 F(x,s 0
% = asF(x,s)) 3 (lnl—"(x,s)) ’
therefore,
(i)” F(x,s)
Ro/ ~ F(x,Ro)
It follows that

F(x,s) > F(x,Ro) Ry"-s".

Let c; =F(x,Ry) R&”, then we have for all (x,s) € QA x[0,+00), F(x,s) > c15* —cp, which is
under the assumption that u is supported in a bounded domain () and ¢; is a positive
constant. This implies that

t" cttut || o || _ ut
tu) < —||u ”—/ dx=t" —ct' " [ ——dx ).
e <l = [ A= (L e [

Since p > n, this implies J(tu) — —oo as t — 4-o0. O

Lemma 2.2. Assume that V(x) > Vy in R", (Hy) and (Hy) are satisfied. Then there exist
d>0and r>0 such that J(u) =6 forall || ul||=r.

Proof. According to (Hy), there exist 7,6 >0 such that if |s| <4,

n|F(x,s)|
T </\‘3—T.
Therefore for all x€IR”,|s| <J, we have
Ag—T
F(x,s) < E—|s|™. (2.6)

On the other hand, according to (H7), we can obtain that for any |s| >,

F(x,5) <Csls|" ™ R(wo,s), (2.7)
where .
b b ad onls| n—1
Co= = e ﬁ R(ao,s)= ), %
n[&]-kzgili(m ,‘d ) k=n—1 :

Combining (2.6) and (2.7), we have for all (x,5) € R" xR",

A —
F(x,8) < ﬁTT\syuqsy"HR(aO,s), (2.8)
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where C = Cs. Here we also use the inequality

n+1R
[ Rlaot) 4o ffu e, (2.9)
n |_x|/S

which is taken from Lemma 4.2 in [15]. According to the definition of Ag, we get

|l [u]"
dx < . 2.10
/]R” |JC|/g X Aﬁ ( )

Thanks to (2.8), (2.9), and (2.10), we obtain

|| R (o, u)

]x]ﬁ dx

1 Ap—T |ul”
> ull'— | 22—l dx—[ C
)zl = g e [

O e
> -2
B

T _
SRR T @)

—Clluf™!

For sufficiently small » >0, we have

T a1 n T n—1
— —Cr'*> , 212
Tl)\ﬁr 4 Zn)&ﬁr ( )

which is due to 7 >0. Therefore, according to (2.11) and (2.12), for all || u|| =7,

T T
> [ n—l:
W 2r s = 2

-

Finally, let = 571", we have J(u) 26 for all || ul|=r. -

Lemma 2.3. Critical points of | are weak solutions of (1.2).
Proof. Though the proof is standard, we write it for completeness. Define a function
g(t)=J(u+tep), namely
1 F(x,u+t
g<t):—/anwuﬂ(p)\"w(x)yu+t(py")dx—/w(Xf‘T;q’)dx.

n
By a simple calculation,

=] (u)-9.

t=0

=] (u+tg)-¢
t=0

Let f1(t) = [V (u-+t)|", f2(t) = |u+tg|", and

f3(t):/nw dx.

g (t)
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Clearly we have

f1(1) :gXZX\Vu\”’z-Vu-V(p:n\Vu\”’2~Vu~qu,
=0
d n n— n—
| =2 2ux p=nlulug,
=0
/ f(x,u)
t = - dx.
C N
Combining the above, we have forall p€E,
] (u)-p= Vul"2.Vu-Vo+V(x)|u" 2up)dx— f(x,u)_ dx. (2.13)
% % @ [P ¢
R* R”

Therefore, | (1)-¢ =0 is equivalent to

/]Rn(]Vu!”_z-Vu-Vgo-l-V(x)|u]”_2uq))dx—/Rnf’(;i”;l)-q) dx=0.

Hence we get the desired result. O

Lemma 2.4. Assume (Hs) is satisfied, then there exists a function u, € E which satisfies ||u, ||=
Sy, and for t € [0,+00), we define

N " F(x,tup)
e
There holds
1/n—pBay, ol
ntn§0>< J(tuy,) < E( " zx_o> . (2.14)

Proof. Similar to [18], assume {u; } is a bounded positive sequence of functions in E which
satisfies

|ug|P
dx=1 d —Sp.
Jo Tapdx=1 and s,
Meanwhile we assume that uy —u, in E, uy—u, in L9(R") forallg>1, ux(x)—u,(x)
almost everywhere. Using the Holder inequality and the Mean Value Theorem, we can
easily prove that for any £ >0, there exists a constant K such that when k> K,

Therefore,

p p
/ 4el” —>/ )" g1, (2.15)
TP TP
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Next we will prove
|up|| < liminf||uy ||=S,. (2.16)
k—o0

Since uy — u, weakly in E, we know Vu; — Vu, weakly in L"(R"). According to the
definition of weak convergence and the Holder inequality, we get

/ IV, |* dx < liminf / Vitg|" dox. 2.17)
R” k—oc0 R"
Similarly to the proof of (2.15), we know
/ V() ug|" dx—>/ V() up|" dx. (2.18)
R” R"

Thanks to (2.17) and (2.18), (2.16) holds. Meanwhile, by the definition of S, , we know
Sy <||up||. Therefore, we know | u,||=S,. According to (Hs), we have

F(x,t p
[ R g, 219)
v |xlP p

Due to the definition of J(tu,) and (2.19), we have

Let

and by calculation we know for any real number t,

wer(2))

This means np

ﬂsn_cp.ﬁ<p_n.sp -’

n P = n =

p p on]
If we set
—n (n=1)(p—n)

p—n, nug E p
Cp,> ) ( ) Sy,
r> p (n—p)an g

then we have

In view of (Hs), we get (2.14) immediately. O
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Lemma 2.5. Assume that (V1), (V2), (Hy), (Hy) and (H3) hold and {uy} C E be an arbitrary
Palais-Smale sequence of |, i.e.,

J(ug) —c, T (ux)—0

in E* as k— oo, where E* denotes the dual space of E. Then there exists a subsequence of {uy}
(still denoted by {uy} ) and u € E such that uy — u weakly in E, uy — u strongly in L1(R") for
all g>1, and

Vug(x)— Vu(x), a.e.inR",
flxu) | flxu) I
1 n
<P — P stronglyin L' (R"),
F(x,ux)  F(x,u) . T 1/om
L — P stronglyin L' (R").

Furthermore, u is a weak solution of (1.2).

Proof. Assume {u;} is a Palais-Smale sequence of J. Since J(u;) — ¢, we obtain

dx—c¢, as k—o0. (2.20)

1 " / F(x,uy)
— u J—
= [

n |x|P

According to (2.13), we know

I )9l = /Rnﬂwkl”‘z-wk-V¢+V<x>|ukr"-2uk¢>dx—/wf(rfcﬁ") g dx

<ull el (2.21)

for all p €E, where 1, =||J () ||, and 7, —0 as k— co. Taking ¢ =y in (2.21), we have

xX,u
el [ L5

By (Hz), we obtain

HE(ou) o o / uef (1) g (2.23)
R" \x\ﬁ " ‘x"B

Then considering (£ —1) || ux||", according to (2.23), we have

() el (2 =0 g [ BRG] g

n |x|P
uf(x,u
=i+ (T e )
SNF
<p-2lel 4+ [ ug || (2.24)
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According to (2.24), it’s easy to prove that || uy || is bounded. Due to (2.20) and (2.22), we

get

/ wef ) g o / Flowd) 4. <, (2.25)
n ’x ’ .B n |x | ﬁ

where C is a constant which depends only on y and n. According to (2.5) we obtain that

for some 1 € E and any q > 1, up to a subsequence, uy — u strongly in L7(R"). Then we

know u — u almost everywhere in R". Next we will prove that up to a subsequence

im [ - fmly o (2.26)
k—o0 JIR" ]x]ﬁ

Due to f(x,-) >0, it is sufficient for us to prove that up to a subsequence

lim [ f (”;’;") dr= [ f ‘(z‘ﬁ”) dx. (2.27)
Due to
f ’(;c’;t) cLI(R"),
we know
lim ACAD

oo jujzy [x]P

For any 4 >0, there exists M > % such that

/ CZD WS (2.28)
u>m  [x[P

where C is the constant in (2.25). According to (2.25), we know

f(x,ug) 1 f (o, ug )
dxr<— i~ 7~ dx <. 2.29
Juors 5 <5 o 22)

For all xe {x€R": |ux| < M}, by our assumption (Hy), we can deduce that
)1 (b ™ Yo (230)

Let C; =by+by e*oM™ T according to (2.30), we know

\f(x,uk(x))ygclyuk@c)‘nq‘
Since

L

P — P strongly in L'(R"), and u; —u almost everywhere in R",
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according to the generalized Lebesgue’s dominated convergence theorem, we know

im foue) gy / ACAD (2.31)
|u| <M

k—oodu|<m [x[P |x|P

According to (2.28), (2.29) and (2.31), we can prove that (2.27) holds. Therefore we get
(2.26). By (H3) and (H; ), we obtain that

F(x,uy) < Cp-|ug|"+Cof (x,uy),

n

where C1=(b1/n)+b; "R and Co=M)p. According to (2.5), (2.26), and the generalized
Lebesgue’s Dominated Convergence Theorem, we know

im |F(x,ui) —F(x,u)|

dx=0.
oo SR x|P *

Using the knowledge of (4.26) in [15], we know Vuy(x) — Vu(x) almost everywhere in
R" and |Vuy|" 2V — |[Vu|"-2Vu weakly in (L71(R"))". Let k— co in (2.21), and then
we obtain that

/ (|Vu|"2-Vu-Vo+V(x)|u"*up)dx— flxu) P dx':O,
ke ko Jx]P

for all p € C5°(R"). This demonstrates that u is a weak solution of (1.2). O

3 Proof of Theorem 1.1

Next we will prove Theorem 1.1. By Lemmas 2.1 and 2.2, we know ] satisfies all the
hypotheses of the Mountain-pass Theorem without the Palais-Smale condition:

JeCY(E,R);

J(0)=0;

J(u)>6>0, when |u|=r;

J(e) <0, for somee€ E with ||e||>r.

According to the Mountain-pass Theorem except for the Palais-Smale Condition [21],
there exists a sequence {u } C E such that

J(u) —¢>0, T (ux)—0,
in E*, where

c:$é?Tg$](u)>5 and F:{'yGC([O,l],E):'y(O):O,'y(l):e}.
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According to Lemma 2.5, we know that up to a subsequence

ur—u weakly in E,

ur—u strongly in L(R"), for any g >1,

lim/ F(xuy) dx:/ Fxu) dx,
k—ooJRr |x|P Re |x|P

| # is a weak solution of (1.2).

Next we will prove that the solution # which we get in the above is nontrivial. Suppose
u=0. Due to F(x,u) =0 for all x € R", we get

lim/ P ) dx:/ FOou) 4o —o, 3.1)
k—ooJRr  |x|P no|x|P
According to (2.20), we have
. 1 F(x,uy)
im (= [|u )" — / dx ) =c>0. 2
lim (nH“kH S x> c>0 (3.2)
Combining (3.1) and (3.2), we can obtain that
lim |Juy||"=n-c>0. (3.3)
k—o0
By Lemma 2.4, we get
n —,3 . n—1
O<n-c< — . (3.4)
n o
According to (3.3) and (3.4), we know there exists some 7p >0 and K >0, such that
-1
n—pay !
n < oo =-n .
o< (B8 ) 65)
for all k> K. According to (3.5), we can choose g > 1 sufficiently close to 1 such that
n_ B X010
1 < (1= ), — 22
g o || ug || 71 \<1 n)ocn > (3.6)

for all k>K. By (Hj) and (2.1), we have
|F i) ug | < b fuag|" +b2 [1ag] S (1,0 ug|7°T).

It follows that

| f (g Jug| / |ug|" i | {(n,00 g 71)
2 dx<b dx+b dx. 3.7
/n Ix|? ST o TxfP e, [P X (3.7)
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Letting 1/4 +1/g=1, and according to (3.6), (3.7), the Holder Inequality, (2.2), and (2.4),

we have
/ 1 e 1
[ i) sl
n ’_x’.B R” ’_x’.B

<b |”"’”d C il 4 0 k 38
<b TP x4+ T x) —0, as k —oo. (3.8)

=

/ |f (e ug ) ug |
o xf

==

According to (2.22) and (3.8), we have
|ug||—0, as k—oo.

This is in contradiction with (3.3). Thus the solution u of (1.2) is nontrivial.
Testing Eq. (1.2) with u~, the negative part of u, we conclude that u~ =0. Hence
u>0. |
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