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Abstract. In this paper we prove the existence of an open interval ()t,,)t”) for each A
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1 Introduction

Here and in what follows, QCRRN(N>1) is a non-empty bounded open set with a bound-

ary 0Q) of class C!, p; > N for 1<i<n and A is a positive parameter.
Let us consider the following quasilinear elliptic system

( Aplul—i—/\Ful(x,ul,-o-,un):al(x)\uﬂ”l*%q in Q),

Apuo+AF, (x,u1, ) = a2 (x) [ua |22y in Q)

Ap, iy +AF,, (x,u1, i) = (X) || 20,  inQ,
Py
ﬁ:o for1<i<n on dQ),
ov
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where Ay u;:=div (|Vu;|Pi~Vu;) is the p;-Laplacian operator and v is the outer unit nor-
mal to 0Q). Here, F: QXxR" — R is a function such that the mapping (t1,t2,---,tn) —
F(x,t1,t2,-++,t,) is measurable in Q) for all (t;,---,t,) €R" and is C! in R" for almost every
x € () satisfying the condition

sup  |F(-ty,,tn)|€L1(Q)
Lialtili/pi<e
for every o >0, F,. denotes the partial derivative of F with respect to u;, and a; € L®(Q))
with essinfna; >0 for 1 <i<n.
Throughout this paper, we let X be the Cartesian product of n spaces W¥i(Q) for
1<i<n, ie, X=WLr(Q)x WP2(Q) x --- x WP (Q)) equipped with the norm
G, ) [ := e [ [z | 4= 4[],

where :
Juli= ([ Vi Pt [ a(olu()rax)
Q (@)

for 1 <i<mn, which is equivalent to the usual one.
Put

— |1y pi
c::max{ sup MaXxeq \u,.(x)\ cfor1<i< n}. (1.2)
u, e WHi(Q)\{0}

Since p;> N for 1<i<n, X is compactly embedded in (C°(Q2))", so that c < +c0. It follows
from [2, Proposition 4.1] that
max, g |1 (x)|P 1

for 1<i<n
(EA ;|1 '

sup
w €WHi(Q)\{0}

where [|a; |1 := [ |ai(x)|dx for 1<i<n, and so 1/||a;||; <c for 1<i<n. In addition, if ()

is convex, it is known [2] that

max, . |ui(x)]

su
b I

u €W (Q)\{0}

pi-1 +di i— =y
<25 max ( 1 >plld1aml(ﬂ)(lﬂl 1m(0)> wi Nl
i1 N7 \Pi—N il

for 1<i<n, where m(Q) is the Lebesgue measure of the set (), and equality occurs when
Q) is a ball.
By a (weak) solution of the system (1.1), we mean any u = (uy,us,---,u,) € X such that

/Qf:‘VW(X)‘pi_ZVui<x)Vvi(x)dx
i=1

—)\/Qi_xn:ll:ui(xr”l(x)r“'/”n(x))vi(x)dX-i-/Qi_Zn:lai(X)Iui(x)lp"zui(x)vi(x)dxzo
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for all v=(vy,v5, -+ ,v,) € X.

We shall establish the existence of a definite interval, in which A lies, the system (1.1)
admits at least three weak solutions in X, by means of a recent abstract critical points
result of Averna and Bonanno [1] which is actually a refinement of a general principle
of Ricceri [3]. Various applications and extensions of this principle are already available;
see, for instance, [4-16]. For other basic notations and definitions we refer to [17].

2 Main results

First we here recall for the reader’s convenience the three critical points theorem of [1]
which is our main tool to prove the results. Here, Y* denotes the dual space of Y.

Theorem 2.1. ([1, Theorem B]) Let Y be a real reflexive Banach space; @:Y —IR a continuously
Giteaux differentiable and sequentially weakly lower semicontinuous functional whose Gateaux
derivative admits a continuous inverse on Y*; ¥ :Y — R a continuously Giteaux differentiable
functional whose Gateaux derivative is compact. Assume that

(1) iy oo (P () +AY (1)) = +o0 for all A € [0,+00;
(ii) there is r € R such that:
irl}fcb <r, and 1(r) < @a2(r),

where

¥ (1) —infae ¥

= inf il
1 <r) uE@jI(‘]l—oo,r[) r—<I>(u)

. ¥(u)—¥(v)
r):= 1nf su 7N A N/
#2(7) uequ(}_oo,r[)v@,l([lz+oo[)<I>(v) D(u)

and ®1(]—oo,r[) is the closure of @ 1(] —oo,r|) in the weak topology.

Then, for each A €]1/ @2(r),1/ @1(r)[ the functional ®+AY has at least three critical points in
Y.

For all ¥ >0 we denote by K(7) the set
o[t
(t1,- tn) ER™: Y 2 —<1y 5. (2.1)
i=1 Pi
We formulate our main result as follows:

Theorem 2.2. Assume that there exist two positive constants v and 6 with Y 1(671/p;) >
(7v/TT pi) such that
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()
F(x,6,---,0)d
%/ Sup F(X,tlz'",tn)dx<% ;;[Q (nx ) a s
Q
(tl,...,tn)eK(H?;pi) CZ( H pj HﬂzHly)l
i=1 j=1,j#i
where
v =i P v
K{=—)=<(t1,-,ty): < 22
< LP:‘) {<1 ) 1; pi i=1Pi 22
(see (2.1)) and c is given by (1.2);
(1))
limsup m'tl'—WSO;
|t | =400+, |t | —+00 ?:1?
(jij) F(x,0,---,0) =0 for every x € Q).
Then, setting
n P
, 157 laill
A= = b , 23
fQF(x,(S,---,(S)—stup (1wt EK (o p_)F(x,tl,---,tn)dx (2.32)
i=1"1
" Y
A= , (2.3b)
(CH?:lpl') fnsup(tll.“’tn)eK(ﬁ)F(X,tll-«.,tn)dx
for each A €]A',\" | the system (1.1) admits at least three weak solutions in X.
Proof. For each u=(uy,---,u,) €X, put
Sl g
=) (u): =— [ Flxuy(x), - ,uy(x))dx. (2.4)
i=1 pi Q

It is well known that ® and Y are well defined and continuously Gateaux differentiable
functionals with

:/ iWui(x)lpfZvui(x)Vvi(x)dx-i-/ iai(x)!Mi(x)!pifzui(x)vi(x)dx'
iz i1
_/Qil—“ui(x,ul(x),‘-',Mn<x))vi(x)dx
i=1

for every u = (uy, -, uy), v=(v1,---,0,) € X, as well as ¥’ : X — X* is continuous and
compact operator (see [17, Proposition 26.2]). Also, ®': X — X* is an uniformly monotone
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operator in X, and since @’ is coercive and semicontinuous in X, by applying [17, The-
orem 26.A ], ®' admits a continuous inverse on X*. Furthermore, by [17, Proposition
25.20], @ is sequentially weakly lower semicontinuous.

Thanks to the assumption (jj), for each A >0 one has that

lim (D(u)+A¥(u))=+oo0.

HuH~>+oo

Put r:=v/(cITi pi). From the hypothesis (j), we get

l/ sup F(x,t1, -, ty)dx
VI (1 ) eK ()

/ F(xé,d)dx |
< 0 —-= sup F(x,ty,---,ty)dx, (2.5)

YJQ
CZ( H > la;]|16%" (t1,/tn) <K (g 1P1)

j=Lj#

thus, since Y ' 107 /p; > /T11 pi, and cl|a;||1 > 1 for 1 <i<n, we have

l/ sup F(x,ty, - ,t,)dx
Y Q(t

)€K (g )
/F(x,é,o-o,é)dx—/ sup F(x,t1, -+, ty)dx
Q O (b1, ) K ()
< — , (2.6)
CZ( IT Pj) [[ai][16"
i=1 \j=1,j#i

from which, multiplying by c[ ], p;, we obtain

1 n
- i F /t /"'/ti’l d
’Y(CEP)/Q sup (x,t )dx

(t1, tn)eK(H,1 )

/ F(x,6,--,0)dx— / sup F(x,t1, -+, ty)dx
Q Q. ) €K ()
< = . 2.7)

Y —laillx

i=1 't
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We claim that

r)< 1 (cnp )/ sup F(x,t1, - ,ty)dx (2.8a)
v Dty ) <K ()
JoF(x,0,---,8)dx— / sup F(x,ty,--,ty)dx
( tn)eK( )
¢a2(r) > 57 , (2.8b)
Z_ |az||l
—1 Pi

from which (ii) of Theorem 2.1 follows. In fact, taking into account that the function
identically 0 obviously belongs to ®!(] —co,r[), and that ¥(0) =0, we get

—_

p1(r) <= sup /QF(x,ul(x),-o-,un(x))dx, (2.9)

TS0 ]"

and, since ®1(] —oo,r[)w =® (] —00,r]), we have

1 1
~_ sup /F(x,ul(x),---,un(x))dx:; sup F(x,uq(x), -, uy(x))dx.
ST -1(J—eor)) 70

Since for each u; € W7i(Q))
sup|u; (x) [P < cffu [P
xcQ)

for 1<i<mn (see (1.2)), we have that

sup P

erz i1 Pi

’Pz

. =cP(u) (2.10)

for every u=(uy,---,u,) € X. Thus, taking into account that Y} ; |u;(x) |1/ p; < /T1i1 pi,
for every u=(uy,---,uy) € X such that ®(u) <r and for each x € (), we obtain

! sup F(x,ul(x),-o-,un(x))dxg1/ sup F(x,t1, -, ty)dx.
"1 (]-c0p]) /0 TI0 ) eK ()

So, (2.8a) follows at once by the definition of r.
Moreover, for each v=(v1,:-+,v,) € X such that ®(v) >r, we have

o JoF(x,01(x),,0n(x))dx— [ F(x,uq(x), 1, (x))dx
U D(0) —®(u) ’
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Thus, from Y.} [u;(x) [P/ pi <y /TT,—1 pi, for every u= (u1,---,uy) € X such that &(u) <r
and for each x € (), we obtain

Y /QP(x,vl(x),---,vn(x))dx—/QF(x,ul(x),---,un(x))dx
ued-1(]—cor|) @ (v) —P(u)

/ F(x,vl(x),---,vn(x))dx—/ sup F(x,ty,-- ,t,)dx
. o O (b1 ) €K ()
> . i=1Pi
_ueq)*}r(l]—oo,r[) CD(U) —CD(u) !
from which, being 0 < ®(v) —®(u) < ®(v) for every u € ®~!(] —oo,r[), and under further
condition

/ P(x,vl(x),---,vn(x))dxz/ sup F(x,ty,---,ty)dx, (2.11)
o Q (b tn) €K (1)

we can write

/QF(x,vl(x),n-,vn(x))dx—/ sup F(x,t1, -+, ty)dx

o Ot ) K ()

in
Ued1(]—oo,r[) D(v)—D(u)
/F(x,vl(x),~-~,vn(x))dx—/ sup F(x,t1, - ,ty)dx
Q Q- tn)eK(nLlpi)

>

n

’UZHPI
X

Pi

If we put v(x):=(4,---,9), for each x € (), we have ||v;|| = ||a; ||}/pi5 for 1<i<n.

Now since Y_}' 10 /p; > v /T1i-1 pi, bearing in mind that 1/||a;||; <c for 1<i<n, we
get ®(v)=Y"" ;(6||a;||1)/ pi>r. Moreover, with this choice of v, (2.7) ensures (2.11), thus
(2.8b) is also proved.

Taking into account that the weak solutions of the system (1.1) are exactly the solu-
tions of the equation @' (1) +A¥’ (1) =0, we have the conclusion by using of Theorem 2.1.
Namely, by observing that

5P
) Z— |ail[x
< =1 i . (2.12a)
2(r) /F(x,é,o-o,é)dx—/ sup F(x,ty, - ,t,)dx
Q Q- tn)EK(l_[n )
LIS o , (2.12b)

¢1(r) ~ (Cﬁ?i)/ﬂ sup F(X,fl,"',fn)dx
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for each A €]A’,A"| the system (1.1) admits at least three weak solutions in X. O

Since [, F(6,---,0)dx=m(Q)F(J,---,6), we have the following remarkable consequence
of Theorem 2.2.

Theorem 2.3. Let F: R" —R be a C-function and assume that there exist two positive constants
v and 6 with Y1671/ p; > v /T pi such that

(j/) 1 1 F@o,---,0
;( 1')na)(( X )F<t1//tn)<§ - 75 PRER ) ,
t1, o tn) EK(=— )
CEe cE( m) Jail6”
i=1 \j=1,j#i
where K is defined by (2.2) and c is given by (1.2);
(i) .
limsup 7(?'“.'%) <0;
] +00, 0t ooy [Fi]””
i—1 Pi
() F(0,-++,0)=0.
Then, setting
x5 llaill
! i=1""
A= , (2.13a)
m(Q) (1:(5,.-.,5)— max  F(t e b))
(b1 tn) €K (55

= _ ) (2.13b)
m(Q)(cEpi)(t max  F(t, - t)

1,...,t,,)eK(H;_qj] pi)

for each A €]A',\" | the system

( Ap1u1+AFul(u1,~-~,un):a1(x)]u1]”1_2u1 in Q,

Ap,uz+AFy, (1, uy) =a2(x) ]uzlpz’zuz inQ),

: (2.14)
Ap,un+AFy, (1, ) =an () |un [P 20, inQ,

ou:

%zOforlgign on 0Q),

admits at least three weak solutions in X.



On a Class of Neumann Boundary Value Equations

Now, we give an example to illustrate Theorem 2.3.

Example 2.1. Consider the system

2 2 2
A3u1+)\e”1u%1(12—u1):w1u1|u1 inQ,

2 2 2
A3u2+/\e_”2u%3(14—u2) = w’”ﬂw in Q,
Ju;  duy

FE T on 90,

29

(2.15)

where Q= {(x,y) € R?: x®>+y? <9}. Note that c=1536/7 and we choose § =10, 7 =3,

a;(x,y) =2(x>+y?)/m fori=1,2 and
F(ty, ) =e N1tl2 4244
for each (t1,t2) € IR%. We see that

max (e ""H2 4o 2t14) <maxe 12+ maxe 2t} =2e,
[t113+(t2]3<1 |t1]<1 |t2]<1

which gives that

1 F(5,5) 1 e Fltum)
2¢ paflar[1671 +prllazll1072 oy (1 ek

_ _ —t1412 —tr414
T e 101012+€ 101014 max‘tﬂﬁle 1t1 +max‘t2‘§le 21—2

>
—2x1536  6x81x103 3
_ e 0% 4e 108 20
1536 972 37
and
F(tl,tz)

limsup  ———="—=0.
(b ltal)— (1oo,+0) 3 1E113+ 3 2]

Hence, Theorem 2.3 is applicable to the system (2.15) for every

AE} 54x10° 1 [
971(e~1010'24-¢-1010™ —2¢)" 1536 x108e L’

(2.16)

(2.17)

(2.18)

Finally, we conclude this paper by giving an immediate consequence of Theorem 2.3

when n=1.

Corollary 2.1. Let f:IRR— R be a continuous function. Put F(t) = fotf(é)dgfor each t e R and

assume that there exist two positive constants <y and 6 with 6P > vy such that
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G")

p
Y tel- o, 4/ 2clal|1é WEWIP(O)\ {0} ]
Gi")
limsup& <0.
[t|—+o00 ’t’P
Then, setting
/\/ = HaHl(Sp (219a)
p<m(0) (F((S) —mMaXie|— /7, 4/7] F(t)))
A= ! (2.19b)

m(Q) (pe)maxe|— g, g F (1)

for each A €]A',\" | the problem

Apu+Af(u)=a(x)ulP~2u inQ,

2.2
a—u:O on 0Q), (220)
ov

admits at least three weak solutions in WP (Q)).
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