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1 Introduction

In this paper, we consider the following Cauchy problem for the incompressible microp-

olar fluid equations :





∂tu+(u·∇)u−∆u+∇π−∇×ω=0,

∂tω−∆ω−∇divω+2ω+u·∇ω−∇×u=0,

∇·u=0,

u(x,0)=u0(x), ω(x,0)=ω0(x),

(1.1)

where u = u(x,t) ∈ R
3, ω = ω(x,t) ∈ R

3 and π = π(x,t) denote the unknown velocity

vector field, the micro-rotational velocity and the unknown scalar pressure of the fluid at

the point (x,t)∈R
3×(0,T), respectively, while u0, ω0 are given initial data with ∇·u=0

in the sense of distributions.

The global regularity of the weak solution in the 3D case is still a big open problem.

Therefore it is interesting problem on the regularity criterion of the weak solutions under
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assumption of certain growth conditions on the velocity or on the pressure. As for the ve-

locity regularity, Dong and Chen [1] (see also [2]) proved the regularity of weak solutions

under the velocity condition

∇u∈Lq(0,T;Ḃ0
p,r(R

3)),
2

q
+

3

p
=2,

3

2
< p≤∞, r≤

2p

3
.

As for the pressure criterion, Yuan [3] studied the regularity of weak solutions in Lorentz

spaces

π∈Lq(0,T;Lp,∞(R3)), for
2

q
+

3

p
=2,

3

2
< p<∞

or

∇π∈Lq(0,T;Lp,∞(R3)), for
2

q
+

3

p
=3, 1< p<∞.

Zhang et al [4] recently improved the regularity from Lorentz to Besov spaces

π∈Lq(0,T;Br
p,∞(R

3)),
2

q
+

3

p
=2+r,

3

2+r
< p<∞, −1< r≤1.

The aim of the present study is to investigate Logarithmically improved regularity

criterion for the micropolar fluid equations in terms of the gradient of velocity and pres-

sure in Besov spaces.

2 Preliminaries and main result

We recall the definition and some properties of the space we are going to use.

Definition 2.1 ( [5]). Let {ϕj}j∈Z be the Littlewood-Paley dyadic decomposition of unity that

satisfies ϕ̂∈C∞
0 (B2\B1/2), ϕ̂j(ξ)= ϕ̂(2−jξ) and ∑j∈Z ϕ̂j(ξ)=1 for any ξ 6=0, where BR is the

ball in R
3 centered at the origin with radius R> 0. The homogeneous Besov space is defined by

Ḃs
p,q={ f ∈S ′/P :‖ f‖Ḃs

p,q
<∞} with norm

‖ f‖Ḃs
p,q
=

(

∑
j∈Z

∥∥∥2js ϕj∗ f
∥∥∥

q

Lp

) 1
q

for s ∈ R, 1 ≤ p,q ≤ ∞, where S ′ is the space of tempered distributions and P is the space of

polynomials.

It is easy to see the inequality

‖ f‖ .
B

0

∞,∞

≤C‖ f‖BMO≤C‖ f‖ .
B

0

∞,2

holds for f ∈BMO, where BMO is the space of the bounded mean oscillations.
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In the above estimates, we have used an interpolation inequality [6]:

‖ f‖2
L4 ≤C‖ f‖L2‖ f‖BMO . (2.1)

We will also use the following inequality, which is established in [7]

‖ f ·∇ f‖Lr ≤C‖ f‖Lr‖∇ f‖BMO for 1< r<∞. (2.2)

Now, we recall the following lemma due to Kozono-Ogawa-Taniuchi [8].

Lemma 2.1. Let s>5/2. Then There exists a constant C such that the following estimate

‖∇ f‖ .
B

0

∞,2

≤C
(
1+‖∇ f‖ .

B
0

∞,∞

ln
1
2 (1+‖ f‖Hs)

)
(2.3)

holds for all f ∈Hs
(
R

3
)

.

Our main result now read as follows:

Theorem 2.1. Suppose T> 0, (u0,w0)∈ L2(R3)∩L4(R3) and ∇·u0 = 0 in the sense of distri-

butions. Assume that (u,w) is a weak solution of the 3D micropolar fluid flows (1.1) on (0,T). If

either ∫ T

0

‖∇u‖Ḃ0
∞,∞

(
1+ln(e+‖∇u‖Ḃ0

∞,∞
)
) 1

2

dt<∞ (2.4)

or ∫ T

0

‖π‖Ḃ0
∞,∞

(
1+ln(e+‖π‖Ḃ0

∞,∞
)
) 1

2

dt<∞, (2.5)

then the weak solution (u,w) is regular on (0,T].

3 Proof of Theorem 2.1

As to Lp−theory for the Navier-Stokes equations established by Kato [9] and Giga [10], it

is sufficient to show the L4−norm of the solution is bounded up to time T under (2.4). If

(2.4) holds, one can deduce that for any small ǫ>0, there exists T∗<T such that

∫ T

T∗

‖∇u(t)‖Ḃ0
∞,∞

(
1+ln(e+‖∇u(t)‖Ḃ0

∞,∞
)
) 1

2

dt≤ǫ.

Multiply both sides of the first equation in (1.1) by u|u|2 , and integrate over R
3. After

suitable integration by parts, we obtain

1

4

d

dt
‖u(t)‖4

L4+‖|∇u||u|(t)‖2
L2+

1

2

∥∥∥∇|u|2(t)
∥∥∥

2

L2

≤

∣∣∣∣
∫

R3
∇π ·(|u|2u)dx

∣∣∣∣+
∫

R3
|ω||u|2 |∇u|dx. (3.1)
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Similarly, for the second equation of (1.1), we get

1

4

d

dt
‖ω(t)‖4

L4+‖|∇ω||ω|(t)‖2
L2+

1

2

∥∥∥∇|ω|2(t)
∥∥∥

2

L2
+

1

2

∥∥∥∇|ω|2(t)
∥∥∥

2

L2

+
∫

R3
|divω|2dx+2

∫

R3
|ω|4dx≤

∫

R3
|u||ω|2 |∇ω|dx. (3.2)

Combining (3.1) and (3.2) together, it follows that

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)
+‖|∇u||u|(t)‖2

L2+
1

2

∥∥∥∇|u|2(t)
∥∥∥

2

L2

+‖|∇ω||ω|(t)‖2
L2+

1

2

∥∥∥∇|ω|2(t)
∥∥∥

2

L2
+
∫

R3
|divω|2dx+2

∫

R3
|ω|4dx

≤

∣∣∣∣
∫

R3
∇π ·(|u|2u)dx

∣∣∣∣+
∫

R3
|ω||u|2 |∇u|dx+

∫

R3
|u||ω|2 |∇ω|dx

=A1+A2+A3. (3.3)

Due to Hölder’s inequality and Young inequality, A2 can be estimated as

A2≤‖|ω||u|‖L2‖|u||∇u|‖L2 ≤
1

2
‖|u||∇u|‖2

L2+
1

4

(
‖u‖4

L4+‖ω‖4
L4

)
. (3.4)

Similarly, we can bound

A3≤
1

2
‖|ω||∇ω|‖2

L2+
1

4

(
‖u‖4

L4+‖ω‖4
L4

)
. (3.5)

Let us now estimate the integral A1. Before turning to estimate A1, we recall the well-

known equality given by taking ∇div on both sides of the first equation in (1.1) for

smooth (u,ω,π), one can obtain

−∆(∇π)=
3

∑
i,j=1

∂i∂j

(
∇(uiuj)

)
.

The Calderón-Zygmund inequality implies

‖∇π‖Lq ≤C‖|u||∇u|‖Lq , 1<q<∞.

Now, by the Hölder inequality and (2.2), we have

A1≤‖∇π‖L4‖u‖3
L4 ≤C‖|u||∇u|‖L4‖u‖3

L4 ≤C‖∇u‖BMO‖u‖4
L4 . (3.6)

Then, due to (3.3)-(3.6) and the above equality, we derive

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)
≤C‖∇u‖BMO‖u‖4

L4+C
(
‖u‖4

L4+‖ω‖4
L4

)
,
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which implies by Lemma 2.1,

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)
≤C‖∇u‖BMO‖u‖4

L4+C
(
‖u‖4

L4+‖ω‖4
L4

)

≤C
‖∇u‖Ḃ0

∞,∞

(
1+ln(e+‖∇u‖Ḃ0

∞,∞
)
) 1

2

(
1+ln(e+‖∇u‖Ḃ0

∞,∞
)
) 1

2

×ln
1
2 (1+‖u‖Hs)‖u‖4

L4+C
(
‖u‖4

L4+‖ω‖4
L4

)
. (3.7)

Since it is well known that the Sobolev space Hs
(
R

3
)

with s> 5/2 is continuously em-

bedded into L∞
(
R

3
)

this yields

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)

≤C
‖∇u‖Ḃ0

∞,∞

(
1+ln(e+‖∇u‖Ḃ0

∞,∞
)
) 1

2

(1+ln(e+‖u‖Hs))‖u‖4
L4+C

(
‖u‖4

L4+‖ω‖4
L4

)

≤C
‖∇u‖Ḃ0

∞,∞

(
1+ln(e+‖∇u‖Ḃ0

∞,∞
)
) 1

2

(1+ln(e+y(t)))‖u‖4
L4+C

(
‖u‖4

L4+‖ω‖4
L4

)
,

where we have used the fact that L∞ ⊂ Ḃ0
∞,∞ and where y(t) is defined by

y(t)= sup
T∗≤τ≤t

‖u(τ,.)‖Hs , for all T∗≤ t<T.

Applying Gronwall’s inequality on (3.7) for the interval [T∗,t], one has

‖u(t)‖4
L4 +‖ω(t)‖4

L4 ≤C0exp(Cǫ(1+ln(e+y(t))))

≤C0exp(2Cǫln(e+y(t)))

≤C0(e+y(t))2Cǫ, (3.8)

where C0=‖u(·,T∗)‖4
L2+‖ω(·,T∗)‖4

L2 .

Next, multiplying the first equation of (1.1) by −∆u, after integration by parts and

taking the divergence free property into account, we have

1

2

d

dt
‖∇u(t)‖2

L2+‖∆u(t)‖2
L2 =

∫

R3
(u·∇)u·∆udx≤‖u‖L4‖∇u‖L4‖∆u‖L2

≤C‖u‖
6
5

L4‖∆u‖
9
5

L2 ≤
1

2
‖∆u(t)‖2

L2+C‖u(t)‖12
L4 ,

where we used

‖∇ f‖L4 ≤C‖ f‖
1
5

L4‖∆ f‖
4
5

L2 .
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Integrating the above inequality over (T∗,t), we have

sup
T∗≤τ≤t

‖∇u(τ)‖2
L2 ≤C(e+y(τ))Cǫ.

Then we go to the estimate for Hs norm. Taking the operation Λs =(−∆)s/2 on both

sides to the first equation of (1.1), then multiplying them by Λsu, after integrating over

R
3, we have (since ∇·u=0)

1

2

d

dt
‖Λsu(t)‖2

L2 +‖Λs+1u(t)‖2
L2 =−

∫

R3
Λs(u·∇u)Λsudx

=−
∫

R3
[Λs(u·∇u)−u·Λs∇u]·Λsudx=Π.

In what follows, we will use the following inequality due to Kato and Ponce [11]:

‖Λα( f g)− f Λαg‖Lp ≤C
(∥∥∥Λα−1g

∥∥∥
Lq1

‖∇ f‖Lp1 +‖Λα f‖Lp2 ‖g‖Lq2

)
, (3.9)

for α>1, and 1/p=1/p1+1/q1 =1/p2+1/q2. Hence Π can be estimated as

Π≤
1

2
‖Λs+1u‖2

L2+C‖∇u‖
2+ (2s−3)s

s−1

L2 ‖Λsu‖
s

s−1

L2 , (3.10)

where we used (3.9) with α=s, p=3/2 , p1=q1=p2=q2=3, and the following inequalities

‖∇u‖L3 ≤C‖∇u‖
2s−3
2s−2

L2 ‖Λsu‖
1

2s−2

L2 ,

and

‖Λsu‖L3 ≤C‖∇u‖
1
2s

L2‖Λs+1u‖
2s−1

2s

L2 .

If we use the existing estimate (3.8) for T0< t<T, (3.10) reduces to

Π≤
1

2
‖Λs+1u‖2

L2+C0C(e+y(t))
s

s−1+
(

2+ (2s−3)s
2s−2

)
Cǫ

.

Combining (3.8) and (3.10), we easily get

d

dt
‖Λsu(t)‖2

L2 ≤C0C(e+y(t))
s

s−1+
(

2+ (2s−3)s
2s−2

)
Cǫ

. (3.11)

Choose ǫ to be sufficiently small, then applying Gronwall’s inequality to (3.11) yields

sup
T∗≤τ≤t

‖Λsu(τ)‖2
L2 ≤C.
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We assume that the condition (2.5) holds true. We start from (3.3), we have

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)
+‖|∇u||u|(t)‖2

L2+
1

2

∥∥∥∇|u|2(t)
∥∥∥

2

L2

+‖|∇ω||ω|(t)‖2
L2+

1

2

∥∥∥∇|ω|2(t)
∥∥∥

2

L2
+
∫

R3
|divω|2dx+2

∫

R3
|ω|4dx

≤

∣∣∣∣
∫

R3
∇π ·(|u|2u)dx

∣∣∣∣+
∫

R3
|ω||u|2 |∇u|dx+

∫

R3
|u||ω|2 |∇ω|dx

=B1+A2+A3. (3.12)

Let us now estimate the integral B1. The Cauchy inequality implies that

B1=

∣∣∣∣
∫

R3
∇π ·(|u|2u)dx

∣∣∣∣=
∣∣∣∣
∫

R3
π ·div(|u|2u)dx

∣∣∣∣

≤2
∫

R3
|π||u|2 |∇u|dx≤C‖πu‖2

L2+
1

2
‖|u||∇u|‖2

L2 . (3.13)

Let us estimate the integral I=‖πu‖2
L2 on the right-hand side of (3.13). Before turning

to estimate I, we recall the well-known inequality given by

‖π‖Lq ≤C‖u‖2
L2q , 1<q<∞.

Now, by the Hölder inequality and (2.1), we have

I≤C‖π‖2
L4‖u‖2

L4 ≤C‖π‖BMO‖u‖4
L4 .

The estimates for A2 and A3 do not change.

Then, due to (3.4), (3.5), (3.12), (3.13) and the above equality, we derive

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)
≤C‖π‖BMO‖u‖4

L4+C
(
‖u‖4

L4+‖ω‖4
L4

)
,

which implies by Lemma 2.1 that

1

4

d

dt

(
‖u(t)‖4

L4+‖ω(t)‖4
L4

)

≤C
(

1+‖π‖Ḃ0
∞,∞

ln
1
2 (1+‖π‖Hs−1)

)
‖u‖4

L4+C
(
‖u‖4

L4+‖ω‖4
L4

)
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≤C
‖π‖Ḃ0

∞,∞

(
1+ln(e+‖π‖Ḃ0

∞,∞
)
) 1

2

(
1+ln(e+‖π‖Ḃ0

∞,∞
)
) 1

2
×ln

1
2 (1+‖π‖Hs−1)‖u‖4

L4

+C
(
‖u‖4

L4+‖ω‖4
L4

)

≤C
‖π‖Ḃ0

∞,∞

(
1+ln(e+‖π‖Ḃ0

∞,∞
)
) 1

2

(1+ln(e+‖π‖Hs−1))+C
(
‖u‖4

L4+‖ω‖4
L4

)

≤C
‖π‖Ḃ0

∞,∞

(
1+ln(e+‖π‖Ḃ0

∞,∞
)
) 1

2

(1+ln(e+‖u‖Hs))+C
(
‖u‖4

L4+‖ω‖4
L4

)
, (3.14)

where we used

‖π‖Hs−1 ≤C
∥∥∥|u|2

∥∥∥
Hs−1

≤C‖u‖L∞‖u‖Hs−1 ≤C‖u‖2
Hs .

Using the same calculations as that in Theorem 2.1 and due to the Gronwall inequality, it

follows from (3.14) that

sup
T∗≤τ≤t

‖Λsu(τ)‖2
L2 ≤C.

This completes the proof of Theorem 2.1.
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