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Abstract. We establish sufficient conditions under which the quasilinear equation

−div(|∇u|n−2∇u)+V(x)|u|n−2u=
f (x,u)

|x|β
+εh(x) in R

n,

has at least two nontrivial weak solutions in W1,n(Rn) when ε > 0 is small enough,

0≤β<n, V is a continuous potential, f (x,u) behaves like exp{γ|u|n/(n−1)} as |u|→∞

for some γ>0 and h 6≡0 belongs to the dual space of W1,n(Rn).
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1 Introduction and main results

Let W1,n(Rn) be the usual Sobolev space in Rn(n≥2) with the norm

‖u‖W1,n =

(

∫

Rn
(|∇u|n+|u|n)dx

)1/n

.

In this paper, we consider the quasilinear differential equation

−∆nu+V(x)|u|n−2u=
f (x,u)

|x|β
+εh(x) in R

n, (1.1)
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where −∆nu=−div(|∇u|n−2∇u), V is a continuous potential, h 6≡0 belongs to the dual

space of W1,n(Rn), 0≤β<n and f (x,u) behaves like exp{γ|u|n/(n−1)} as |u|→∞.

This kind of elliptic problems involving exponential critical growth has been exten-

sively studied by many authors. To get a solution, Moser-Trudinger type inequality and

critical point theory are two fundamental tools. For the homogeneous and nonsingular

case, that is when h≡0 and β=0, the existence result in a bounded domain was obtained

in [1, 2]. When the domain is the whole space, the problem was studied in [3–5]. We can

also consider the problem in a Riemannian manifold. For this case one can refer to [6–8]

and the references therein. Because of the variational structure of this kind of equations,

usually there are both minimum type and mountain-pass type solutions. A nature ques-

tion is that whether these two types of solutions are different. When n = 2 and β = 0,

do Ó, Medeiros and Severo [9] proved that these are two distinct solutions. For general

dimensional case, the same authors got the result in [10]. In our paper, the nonlinearity of

Eq. (1.1) becomes singular. In [11], do Ó proved that there are two distinct solutions for

this singular equation when n= 2. Then relevant issues about the general dimensional

case should be asked. Our main theorem is to give sufficient conditions under which

there are still two solutions to (1.1).

To present our results, we assume the following conditions on the nonlinearity f (x,s):

(H1) There exist constants α0,b1,b2>0 such that for all (x,s)∈Rn×R+,

| f (x,s)|≤b1sn−1+b2

{

exp{α0|s|
n/(n−1)}−Bn−2(α0,s)

}

,

where

Bn−2(α0,s)=
n−2

∑
m=0

(αm
0 |s|

mn/(n−1))/m!.

(H2) There exist constants p>n and Cp such that

f (s)≥Cpsp−1 for all s≥0,

where

Cp>

(

p−n

p

)(p−n)/n( nα0

(n−β)αn

)(n−1)(p−n)/n

S
p
p,

Sp := inf
u∈E\{0}

(∫

Rn(|∇u|n+V(x)un)dx
)1/n

(

∫

Rn
|u|p

|x|β
dx
)1/p

.

(H3) There exists µ>n such that for all x∈Rn and s>0,

0<µF(x,s)≡µ

∫ s

0
f (x,t)dt≤ s f (x,s).
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(H4) There exist constants R0,M0>0 such that for all x∈Rn and s≥R0,

F(x,s)≤M0 f (x,s).

(H5) f (x,s)≥0 for all (x,s)∈Rn×R+ and f (x,s)=0 for all x∈Rn and s≤0.

Throughout this paper we also assume the following hypotheses on V:

(V1) V(x)≥V0>0.

(V2) The functionV−1(x) belongs to L1/(n−1)(Rn).

Define a function space

E,

{

u∈W1,n(Rn) :
∫

Rn
V(x)|u|ndx<∞

}

with the norm

‖u‖,

{

∫

Rn
(|∇u|n+V(x)|u|n)dx

}1/n

.

Moreover denote the dual space of E by E∗. Under our assumptions on V, for any q≥1,

the embeddings from E into W1,n(Rn) and Lq(Rn) are continuous and compact(cf. [12]).

For any 0<β<n, we define a singular eigenvalue by

λβ, inf
u∈E,u 6=0

‖u‖n

∫

Rn
|u|n

|x|β
dx

. (1.2)

Furthermore, we assume

(H6) limsup
s→0+

nF(x,s)
|s|n

<λβ uniformly with respect to x∈Rn.

Problem (1.1) is closely related to Moser-Trudinger type inequalities (see, e.g., [13–

15]). Here we need the following result of Adimurth and Yang which is a singular Moser-

Trudinger type inequality in the whole space Rn.

Theorem A ( [16, Theorem 1.1]) For all α≤ (1−β/n)αn and 0≤β<n,

sup
u∈W1,n(Rn),‖u‖

W1,n≤1

∫

Rn

exp{α|u|n/(n−1)}−Bn−2(α,u)

|x|β
dx<∞, (1.3)

where αn = nω
1/(n−1)
n−1 , ωn−1 is the area of the unit sphere Sn−1. Furthermore this inequality is

sharp: when α> (1−β/n)αn , the integrals in (1.3) are still finite, but the supremum is infinity.

Another key ingredient in our arguments is a singular version of Lion’s inequality in

Rn.
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Theorem 1.1. Let {uk} be a sequence in E such that ‖uk‖=1, uk ⇀u in E, uk →u in Ln(Rn),
and ∇uk(x)→∇u(x) for almost every x∈Rn. Then for any p<(1−β/n)αn(1−‖u‖n)−1/(n−1),

sup
k

∫

Rn

exp{p|uk |
n/(n−1)}−Bn−2(p,uk)

|x|β
dx<+∞.

Combining the above inequalities, we can prove the following multiplicity result.

Theorem 1.2. Assume (V1),(V2) and (H1)-(H6). Then there exists ǫ1 > 0 such that for each

0<ǫ<ǫ1, Eq. (1.1) has at least two nontrivial solutions.

Remark 1.1. After this paper was finished, we know from Yang that he had obtained

similar results [17, 18]. Although the methods are both in the framework of variation,

but there are differences between the assumptions on the nonlinearity f (x,.) in these two

papers. In fact, the assumption (H5) in [18] and our assumption (H2) can not cover each

other. When n=2, for some constant p>2, consider the example in [11]:

f0(s)=











0 s∈ (−∞,0),

Cpsp−1+2s(es2
−1) s∈ [0,1],

Cpsp−1+(e−1)((2s−1)es2−s+s) s∈ (1,+∞).

It is obvious that assumptions (H1), (H2) and (H5) are satisfied by f0. Since

F0(s)=
∫ s

0
f0(t)dt=























0 s∈ (−∞,0),

Cp

p
sp+es2

−1−s2 s∈ [0,1],

Cp

p
sp+(e−1)

(

es2−s+(s2−1)/2
)

−1 s∈ (1,+∞),

we have

lim
s→0+

2F0(s)

s2
=0,

which implies (H6). For (H3), if 0≤ s<1 and 2<µ1≤min{4,p}, then

µ1F0(s)=
µ1

p
Cpsp+µ1(e

s2
−1−s2)

≤Cpsp+µ1

∞

∑
m=2

s2m

m!
≤CPsp+

µ1

2
s2

∞

∑
m=2

s2(m−1)

(m−1)!

=CPsp+
µ1

2
s2

∞

∑
m=1

s2m

m!
= s f0(s).

When 1≤s<∞, straightforward computations show that there exists some constant µ2>2

such that

µ2F0(1)≤ f0(1) and 0<
d(µ2F0(s))

ds
≤

d(s f0(s))

ds
,
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which implies that

µ2F0(s)≤ s f0(s) for 1≤ s<∞.

Thus the assumption(H3) is satisfied for µ = min{µ1,µ2}> 2. (H4) can be checked by

similar computations and we omit them here. But at the same time we have

lim
s→+∞

s f0(s)e
−s2

=0.

Thus f0(s) can not satisfy the assumption (H5) in [18].

2 Preliminaries

For readers’ convenience, we first list some lemmas indicating the geometric conditions

of the mountain-pass theorem for the functional

Jǫ,β(u)=
‖u‖n

n
−
∫

Rn

F(x,u)

|x|β
dx−ǫ

∫

Rn
hudx. (2.1)

For proofs, one can refer to [16] (see earlier work [10] for the case β=0).

Lemma 2.1. ( [16, Lemma 4.1]) If (H3) and (H4) are satisfied, then for any nonnegative, com-

pactly supported function u∈W1,n(Rn)\{0}, there holds Jǫ,β(tu)→−∞ as t→∞.

Lemma 2.2. ( [16, Lemma 4.2]) If (H1) and (H6) are satisfied, then there exists ǫ1>0 such that

for 0<ǫ<ǫ1, there exist ρǫ,rǫ >0 such that Jǫ,β(u)≥ρǫ for all u with ‖u‖=rǫ . Furthermore, rǫ

can be chosen such that rǫ →0 as ǫ→0.

Lemma 2.3. ( [16, Lemma 4.3]) Assume (H1) and h 6≡0. Then there exist τ>0 and v∈W1,n

with ‖v‖=1 such that Jǫ,β(tv)<0 for all 0< t<τ. In particular,

inf
‖u‖≤τ

Jǫ,β(u)<0.

Next we analyze the compactness of Palais-Smale sequences of Jǫ,β.

Lemma 2.4. ( [16, Lemma 4.6]) Assume (H1) and (H3). If {uk} is a Palais-Smale sequence for

Jǫ,β such that

liminf
n→∞

‖uk‖
n/(n−1)≤

(

1−
β

n

)

αn

α0
,

then {uk} has a subsequence which converges strongly to a weak solution of (1.1).

Lemma 2.5. For ǫ small enough, Eq. (1.1) has a minimum type solution u0 with Jǫ,β(u0)=c0<0,

where c0 is defined by

−∞< c0= inf
‖u‖≤rǫ

Jǫ,β(u)<0. (2.2)
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Proof. By Lemma 2.2, we can choose ǫ sufficiently small such that

(rǫ)
n/(n−1)

<

(

1−
β

n

)

αn

α0
.

Since B̄rǫ is a complete, convex and Jε,β is of class C1 and bounded below on B̄rǫ , by

Ekeland variational principle, there exists a sequence {uk} in B̄rǫ such that

Jǫ,β(uk)→ c0= inf
‖u‖≤rǫ

Jǫ,β(uk) and ‖J′ǫ,β(uk)‖E∗ →0.

Observing that

‖uk‖
n/(n−1)≤ (rǫ)

n/(n−1)
<

(

1−
β

n

)

αn

α0
,

by Lemma 2.4, there exists a subsequence of {uk} which converges strongly to a solution

u0 of (1.1). It is obviously that Jǫ,β(u0)= c0<0.

Lemma 2.6. ( [16, Lemma 4.4]) Assume (H1) and (H3). Let {uk}⊂E be an arbitrary Palais-

Smale sequence. Then there exist a subsequence of {uk}, still denoted by {uk}, and u∈ E such

that


















f (x,uk)

|x|β
→

f (x,u)

|x|β
in L1

loc(R
n),

∇uk(x)→∇u(x) for almost every x∈Rn,

|∇uk|
n−2∇uk ⇀ |∇u|n−2∇u in (Ln/(n−1)(Rn))n.

Furthermore, u is a weak solution of (1.1).

Lemma 2.7. Assume (H1)-(H6). Then for sufficiently small ǫ, the problem (1.1) has a mountain-

pass type solution v0.

Proof. We know from the previous lemmas that Jǫ,β satisfies the mountain-pass condi-

tions except the Palais-Smale condition. Thus, there exists a sequence {vk} in E such

that

Jǫ,β(vk)→ c1>0 and ‖J′ǫ,β(vk)‖E∗ →0,

where c1≥ρǫ>0 is the mountain-pass level. Then by Lemma 2.6, there exists v0 such that

vk ⇀v0 in E and v0 is a weak solution of (1.1).

To get some more precise information of the minimax level obtained by the mountain-

pass theorem, we have

Lemma 2.8. If (H2) satisfied, then there exist a constant ǫ0 > 0 and a function up ∈ E which

satisfies ‖up‖=Sp such that for Mǫ(t) : [0,+∞)→R which is given by

Mǫ(t) :=
tn

n
‖up‖

n−
∫

Rn

F(tup)

|x|β
dx−t

∫

Rn
ǫhupdx,
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we have

max
t≥0

Mǫ(t)<
(n−β)n−1

nn

(

αn

α0

)n−1

f or all ǫ<ǫ0.

Proof. Choose a bounded sequence of functions {uk}⊂E such that

∫

Rn

|uk|
p

|x|β
dx=1 and ‖uk‖→Sp.

Then we can assume that

uk ⇀up in E,

uk →up in Lq(Rn) for all q∈ [1,+∞),

uk(x)→up(x) almost everywhere.

These imply that
∫

Rn

|uk|
p

|x|β
dx→

∫

Rn

|up|p

|x|β
dx=1.

On the other hand, we have

‖up‖≤ liminf
k→∞

‖uk‖=Sp.

Thus we get ‖up‖=Sp. By (H2) and
∫

Rn |up|p/|x|βdx=1, we have

Mǫ(t)≤
tn

n
‖up‖

n−Cp
tp

p

∫

Rn

u
p
p

|x|β
dx+ǫt‖h‖(W1,n)∗‖up‖

=
tn

n
Sn

p−Cp
tp

p
+ǫt‖h‖(W1,n )∗‖up‖

≤
(p−n)

np

S
np/(p−n)
p

C
n/(p−n)
p

+ǫt0‖h‖(W1,n)∗‖up‖,

where t0 is a constant which belongs to [0,+∞) and is independent of the choice of ǫ. By

choosing ǫ small enough, we get the desired results from (H2) immediately.

Remark 2.1. By Lemmas 2.2 and 2.8, we can conclude that for ǫ sufficiently small

0< c1< c0+
(n−β)n−1

nn

(

αn

α0

)n−1

.
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3 Proof of the main results

For simplicity, we define

Rn−2(α,s)=exp{αsn/(n−1)}−
n−2

∑
m=0

αm
0 |s|

mn/(n−1)/m!.

Lemma 3.1. Let α>0 and r>1. Then for any β>r there exists a positive constant C which only

depends on α such that for all s∈R+

(Rn−2(α,s))r ≤CRn−2(αβ,s).

Proof. By using L’Hospital’s rule (n−1) times, we get

lim
s→0

Rn−2(α,s)

Rn−2(αβ,s)
= lim

s→0

1

βn−1

exp{αsn/(n−1)}

exp{αβsn/(n−1)}
=

1

βn−1
.

Then we can conclude that

lim
s→0

(Rn−2(α,s))r

Rn−2(αβ,s)
= lim

s→0
(Rn−2(α,s))r−1 Rn−2(α,s)

Rn−2(αβ,s)
=0·

1

βn−1
=0.

On the other hand, we also have

lim
s→∞

(Rn−2(α,s))r

Rn−2(αβ,s)

= lim
s→∞

exp{rαsn/(n−1)}

exp{αβsn/(n−1)}

{

1−Bn−2(α,s)/exp{αsn/(n−1)}
}r

1−Bn−2(αβ,s)/exp{αβsn/(n−1)}
=0.

Thus we complete the proof of the lemma.

Proof of Theorem 1.1. Notice that uk →u in Ln(Rn), ∇uk →∇u almost everywhere, and

‖uk‖
n =1, we obtain from Brezis-Lieb Lemma (cf. [19]) that

‖uk−u‖n =1−‖u‖n+o(1). (3.1)

Then for k large enough, we have

p‖uk−u‖n/(n−1)
<

(

1−
β

n

)

αn. (3.2)

We claim that for every x∈Rn, we have

|uk(x)|n/(n−1)≤ (1+η)|uk(x)−u(x)|n/(n−1)+C|u(x)|n/(n−1) (3.3)
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for some constant C depending only on n and η, where ǫ is a small positive number to be

chosen later. In fact, define a set S by

S,{x∈R
n : |uk(x)−u(x)|>2|u(x)|} .

For x /∈S, the inequality in the claim is obvious. For x∈S

|uk(x)|n/(n−1)= |uk(x)−u(x)+u(x)|n/(n−1)

=|uk(x)−u(x)|n/(n−1)

(

1+
|u(x)|

|uk(x)−u(x)|

)n/(n−1)

≤|uk(x)−u(x)|n/(n−1)+n/(n−1)(3/2)1/(n−1)|u(x)||uk(x)−u(x)|1/(n−1)

≤(1+η)|uk(x)−u(x)|n/(n−1)+(3/2)n/(n−1)2
η−1/(n−1)(n−1)−1/(n−1)|u(x)|n/(n−1),

where we use the mean value theorem at the first inequality and Young’s inequality at

the second inequality. By a straightforward calculation, we get

∫

Rn

Rn−2(p,uk)

|x|β
dx

≤
∫

Rn

Rn−2

(

p,
(

(1+η)|uk−u|n/(n−1)+C|u|n/(n−1)
)(n−1)/n

)

|x|β
dx

≤
∫

Rn

1
q exp{pq(1+η)|uk−u|n/(n−1)}−Bn−2((1+η)p,(uk−u))

|x|β
dx

+
∫

Rn

1
r exp{pCr|u|n/(n−1)}−Bn−2(Cp,u)

|x|β
dx

=
1

q

∫

Rn

Rn−2

(

pq(1+η)‖uk−u‖n/(n−1),(uk−u)/‖uk−u‖
)

|x|β
dx

+
∫

Rn

n−2

∑
m=0

(qm−1−1)pm(1+η)m|uk−u|mn/(n−1)

m!|x|β
dx

+
∫

Rn

1
r exp{pCr|u|n/(n−1)}−Bn−2(α,u)

|x|β
dx, (3.4)

where 1/q+1/r= 1. At the first inequality of the above computations, we use (3.3) and

the fact that Rn−2(α,s) is increasing in sn/(n−1). The second inequality is from Young’s

inequality and the fact that for any a,b ≥ 0 and m∈N+, (a+b)m ≥ am+bm. Combining

(3.2) and the embedding E →֒Lq, we conclude that the second term on the right hand side

of (3.4) is finite. From (3.2) again, we can choose q, r and η such that

pq(1+η)‖uk−u‖n/(n−1)
<

(

1−
β

n

)

αn.
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Then Theorem 1.1 follows from (3.4) and Theorem A. �

Proof of Theorem 1.2. Recall that u0 and v0 are the two solutions got in Lemma 2.5 and

2.7. From the constructions of u0 and v0, we have that there are two sequences {uk} and

{vk} in E such that

uk→u0 and vk ⇀v0,

Jε(uk)→ c0<0 and Jε(vk)→ c1>0,

J′ε(uk)uk→0 and J′ε(vk)vk →0.

We will show a contradiction under the assumption that u0=v0.

Here we claim that F(vk)/|x|
β → F(u0)/|x|β in L1(Rn). To this end, we only need to

show that f (vk)/|x|
β → f (u0)/|x|β in L1(Rn). Then the dominated convergence theorem

implies the claim immediately. Since f (x,s)≥0, it is sufficient to prove that

lim
n→∞

∫

Rn

f (x,vk)

|x|β
dx=

∫

Rn

f (x,u0)

|x|β
dx.

Let M denotes a constant to be determined later. We have
∣

∣

∣

∣

∫

Rn

f (x,vk)

|x|β
dx−

∫

Rn

f (x,u0)

|x|β
dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

|vk|<M

f (x,vk)

|x|β
dx−

∫

|u0|<M

f (x,u0)

|x|β
dx

∣

∣

∣

∣

+
∫

|vk|≥M

f (x,vk)

|x|β
dx+

∫

|u0|≥M

f (x,u0)

|x|β
dx. (3.5)

Since {vk} is a Palais-Smale sequence, we have

1

n
‖vk‖

n−
∫

Rn

F(x,vk)

|x|β
dx−

∫

Rn
εhvkdx→ c1, (3.6)

∣

∣〈J′ε(vk),ϕ〉
∣

∣≤τk‖ϕ‖ for all ϕ∈E, (3.7)

where τk→0 as k→∞. Multiplying (3.6) by µ and subtracting (3.7) with ϕ=vk, we obtain

from (H3) that
(µ

n
−1
)

‖vk‖
n ≤C(1+‖vk‖).

This implies that {vk} is a bounded sequence and thus

∫

Rn

f (x,vk)vk

|x|β
dx≤C. (3.8)

Since u0 and f (x,u0)/|x|β are in L1(Rn), for any δ>0, we can choose some M sufficiently

large, for example, M>C/δ, where C is the constant in (3.8), such that

∫

|u0|≥M

f (x,u0)

|x|β
dx<δ. (3.9)
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From (3.8), we also have

∫

|vk |≥M

f (x,vk)

|x|β
dx≤

1

M

∫

|vk|≥M

f (x,vk)vk

|x|β
dx<δ. (3.10)

By (H1), for x ∈ {x ∈ Rn : |vk|< M}, there exists a constant C1 depending on M such

that | f (x,vk)|≤C1|vk|
n−1. Since we have |x|−β|vk|

n−1 →|x|−β|u0|n−1 strongly in L1(Rn)
and vk → u0 almost everywhere in Rn, the Lebesgue’s dominated convergence theorem

implies that

lim
k→∞

∫

|vk|<M

f (x,vk)

|x|β
dx=

∫

|u0|<M

f (x,u0)

|x|β
dx. (3.11)

Combining (3.5)-(3.11), we get our claim proved. Let

wk=
vk

‖vk‖
and w0=

u0

lim
k→∞

‖vk‖
.

We have ‖wk‖= 1 and wk ⇀w0 in E. In particular ‖w0‖≤ 1. To proceed, we distinguish

two cases:

Case 1. ‖w0‖=1. In this case, we have

lim
k→∞

‖vk‖=‖u0‖.

Therefore, vk →u0 in E. Combining the fact that

F(vk)

|x|β
→

F(u0)

|x|β
in L1(Rn),

we have

Jǫ,β(vk)→ Jǫ,β(u0)= c0,

which is a contradiction with our assumption.

Case 2. ‖w0‖<1. Since

0< c1< c0+
(n−β)n−1

nn

(

αn

α0

)n−1

= Jǫ,β(u0)+
(n−β)n−1

nn

(

αn

α0

)n−1

,

we can choose some q>1 sufficiently close to 1 and δ>0 such that

qα0‖vk‖
n/(n−1)≤ (1−β/n)

αn‖vk‖
n/(n−1)

(n(c1− Jǫ,β(u0)))1/(n−1)
−δ.

Notice that

lim
k→∞

‖vk‖
n(1−‖w0‖

n)= lim
k→∞

‖vk‖
n−‖u0‖

n =n(c1− Jǫ,β(u0)),
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where we have used vk ⇀u0 in E, vk →u0 in Ln(Rn) and F(x,vk)/|x|
β → F(x,u0)/|x|β in

L1(Rn), we get for k sufficiently large,

qα0‖vk‖
n/(n−1)

<

(

1−
β

n

)

αn

(1−‖w0‖n)1/(n−1)
.

Then it follows from Lemma 2.6 and Theorem 1.1 that
∫

Rn

Rn−2(qα0‖vk‖
n/(n−1),wk)

|x|β
dx≤C.

Therefore by (H1) and Lemma 3.1 we have
∣

∣

∣

∣

∫

Rn

f (x,vk)(vk−u0)

|x|β
dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∫

Rn

b1vn−1
k (vk−u0)

|x|β
dx

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Rn

b2Rn−2(α0,vk)(vk−u0)

|x|β
dx

∣

∣

∣

∣

∣

≤C‖vk−u0‖Lp +C‖vk−u0‖Lp

(

∫

M

Rn−2(qα0‖vk‖
n/(n−1),wk)

|x|qβ
dx

)1/q

≤C‖vk−u0‖Lp →0.

From this convergence and J′ε(vk)(vk−u0)→0, we get
∫

M
|∇vk|

n−2∇vk(∇vk−∇u0)dx+
∫

M
|vk|

n−2vk(vk−u0)dx→0.

Moreover, since vk ⇀u0, we have
∫

M
|∇u0|

n−2∇u0(∇vk−∇u0)dx→0 and
∫

M
|u0|

n−2u0(vk−u0)dx→0.

Using the inequality (|a|n−2a−|b|n−2b)(a−b)≥22−n |a−b|n , ∀a,b∈Rn, it follows that
∫

M
|∇vk−∇u0|

ndx+
∫

M
|vk−u0|

ndx

≤C
∫

M
(|∇vk|

n−2∇vk−|∇u0|
n−2∇u0)(∇uk−∇u0)dx

+C
∫

M
(|vk|

n−2vk−|u0|
n−2u0)(vk−u0)dx→0.

Therefore we get vk →u0 in E. This implies Jε(vk)→ Jε(u0)= c0, which is still a contradic-

tion and the proof is finished. �
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[6] do Ó J. M. and Yang Y. Y., A quasi-linear elliptic equation with critical growth on compact

Riemannian manifold without boundary, Ann. Glob. Anal. Geom., 38 (2010), 317-334.
[7] Yang Y. Y. and Zhao L., A class of Adams-Fontana type inequalities and related functionals

on manifolds, Nonlinear Diff. Eqn. Appl., 17 (2009), 119-135.
[8] Zhao L., Exponential problem on a compact Riemannian manifold without boundary, Non-

linear Analysis, 75 (2012), 433-443.
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