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Abstract. In this paper, we study a nonlinear hyperbolic-parabolic system modeling
some biological phenomena. By semigroup theory and Leray-Schauder fixed point
argument, the local existence and uniqueness of the weak solutions for this system are
proved. For the spatial dimension N =1, the global existence of the weak solution will
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1 Introduction

The movement behavior of most species is guided by external signals, such as, amoeba
moving upwards chemical gradients, insects orienting towards light sources. Let u(x,t)
and v(x,t) represent the population of an organism and an external signal at place x €
Q C RN and time t respectively. It is well known that the external signal is produced by
the individuals, which is described by a nonlinear function g(v,u). If the spatial spread
of the external signal is driven by diffusion, the full system for u and v reads (see [1-3])

u=V(dVu—x(v)Vo-u), (1.1)
vr=dAv+g(v,u). (1.2)

Depending on what the type of the external stimulus is, one distinguishes among
chemotaxis, haptotaxis, aerotaxis, geotaxis and others. Taking in account of that the ex-
ternal stimulus were based on the light (or the electromagnetic wave), Chen and Wu [4]

*Corresponding author. Email addresses: wush8@sina.com (S. Wu), chenhua@whu. edu.cn (H. Chen)

http:/ /www.global-sci.org/jpde/ 1



2 S. Wu and H. Chen / J. Partial Diff. Eq., 24 (2011), pp. 1-14

introduced a hyperbolic-parabolic-type chemotaxis system as follows:

u=V(dVu—x(v)Vo-u), (1.3)
op=dAv+g(v,u). (1.4)

In [4], Chen and Wu considered the systems (1.3)—(1.4) with

g(ou)=—v+f(u)

on a bounded open domain () with smooth boundary. For the Neumann boundary prob-
lem, they showed the local existence and uniqueness of the solutions, and also achieved
the global existence and uniqueness of the solutions of systems (1.3)-(1.4) for N=1. In
this paper, taking our attention to the case that ¢(v,u) is nonlinear, on a N-D, compact
Riemanian manifold M without boundary, we will obtain some results similar to those
given in [4].

Throughout this article, we assume that

1<o<2, (1.5)

N<20<N+2, (1.6)
2N

o1 °PS N-2(c—1)’ (1.7)

p>4, (1.8)

where 0,p are some constants.

It is easy to check that there exist some constants ¢ and p such that the above four
conditions can be satisfied simultaneously for 1 <N <3. In fact, we take o =11/8 for
N=1,0=13/8 for N=2 and 0 =15/8 for N =3, which satisfy (1.5) and (1.6), at the same
time there exists some constant p such that (1.7) and (1.8) are stratified. The conditions
of (1.5)-(1.8) are crucial to our proof of the main results, since the conditions ensure the
relevant Sobolev theorems. Set

C([0,t0], H7(M)), Xoo=C([0,400),H’(M)),
= C([0,t0], H*(M))NC'([0,t0], H' (M),
=C([0,400),H*(M))NC(]0,+00),H' (M)),
Ziy=C'([0,t0],L*(M)), Zoo=C'([0,00),L*(M))),
WtO:CZ([O,to],Lz(M)), Wao = C2([0,00),L2(M)),

where M is a N-D, compact Riemannian manifold without boundary.
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2 Main results

Consider

uy=V(Vu—xuVvo),
Utt:AU+g(U,M), (21)
u(0,-) =uo, v(0,-) =@, v:(0,-) = ¢,

where yx is a constant.
Our main results are as follows:

Theorem 2.1. Under the conditions of (1.5) and (1.6), for each ug € H’ (M), ¢ € H*(M) and
peHY(M), (2.1) admits a unique local in time solution (u,v) € Xy,NZs, X Y3, "Wy, provided that

g(vu)=h(v)+f(u),

where h(x), f(x) €C3(RY),h(0)=0. If N=1, 0=5/4 and 1o >0, then (2.1) has a global solution
(1,0) € XooNZoo X Yoo NMWeo.

Theorem 2.2. Suppose (1.5), (1.7) and (1.8) are satisfied, then for each ug€ H? (M), o € H*(M)
and Y € H' (M), (2.1) has a unique local in time solution (u,v) € Xy, NZs, X Yi, "W, provided
that g(v,u) =auv.

3 The case of ¢(v,u)=h(v)+ f(u)

First, we consider two problems below:

uy=V(Vu—xuVvo),
{u 0) =1 (3.1)
O = AU+”I(U) +f(1/l)/
3.2
{v<o,->:¢, 0(0,)=. 2

Lemma 3.1. If ug € Xy, and v €Yy, o and N satisfy the conditions (1.5) and (1.6), then the
problem (3.1) has a unique solution
uc Xt() ﬂZtO .

Lemma 3.2. Under the conditions (1.5) and (1.6), if u€ Xy, is a solution of (3.1), then there exists
a constant C which is independent of t, such that

1-¢
[1llx,, < Clluollo2+Cto *[[0lly, -llullx, - (33)

where ||-||,. , is the norm of the Sobolev space wke.
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The proof of the above lemmas is identical to the proof of [4, Lemma 3.2-3.3].

Lemma 3.3. If p€ H*(M),p € H (M), f(u) € L*(0,T;H' (M)) and h(x) € C3(R?'), then there
exists a unique local in time solution v for (3.2) satisfying

veC([0,t];H*(M)),
v, € C([0,to]; H (M), 34
Uy € LZ(O;tO;L2<M))’

and
[o(t, ) 1 a0t ) 2 an

SCeto(||¢||H2<M)+H¢HH1(M)+/O e, Dlpndr),  0<t<t.  G5)

Proof. We verify this lemma by the Leray-Schauder’s fixed point argument. Take e € [0,1]
and consider

vy =Av+eh(v)+ef (u), (3.6)

v(0,-)=¢e@, v;(0,-)=e. '
Choose X = L2(0,ty;H*(M)). Then X is a Banach space. For each w € X, consider

vy =Av+eh(w)+ef (u), (37)

0(0,-)=eqp, 0i(0,-)=¢eyp.

It follows that there is a unique solution v for (3.7) from the hyperbolic regularization of
the equation (cf. [4, Lemma 3.1]), and v is subjected to

veC([0,to);H*(M)), v €C([0,t0];HY(M)), vy € L*(0,tg;L*(M)),

and
oGt ) W qany 101 (8 ) )<Cezet°(!!pr%z<M>+H¢H%1(M)

+/0 (e |\H1dr+/ 1w DBpandt),  0<t<n.  (G8)

Define
T:Xx[0,1]—=X, T(we)=v(w),

where v(w) denotes the unique solution of (3.7). It is obvious that T is compact, and
weX, T(w,0)=0.
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If T(w,e) =w, then (3.8) implies

to
lw0(t, )y <Cee fo<|\qo||%pM+||l/»n%p(M>+ [ (e, ) e

+ [ It Do)

<ce fo(uqouHﬁuwuHﬁ/ Itz )) i)
+Ce%eh -ty sup ||h(w(T,))|[5n,  0<t<to. (3.9)

OSTStO

Noting that (0) =0, we have
2 2 2 2 2
1) e < [Pl 1wl < [l [Jwofl e

Consequently,

to
sup [0t a2 NolBun 191+ [ 177 ) s )

0<t<ty

+Ce2elo-ty-||h)| % sup |lw(T, )| (3.10)

OTfO

Take tg small enough, we have

to
sup [, <2 (o + 19+ | 1Dt

0<t<t
namely
to
||w||§(§cef°(||(PH%42(M)+H1/J||%41(M)+/O I (T ) 1 dT) (3.11)

for each w (T(w,e) =w, e € [0,1]).
Now Leray-Schauder fixed point theorem indicates that the operator T(v,1) has a
fixed point v, which gives our lemma. O

The proof of Theorem 2.1. For g€ X;,, g(0) =up, let v=0(g) solves

{Utt:AU+h() f(8),
v(0,-)=¢, v:(0,)=1.

Then Lemma 3.3 indicates v € Y}, and

(3.12)

fo
|v<t,~>|%p<M)gcao<|¢|éz<M>+|w|§1<M>+ A |f<g<r,~>>|é1<M>dr), 0<t<ty. (313)
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Furthermore, for above v, i.e., the solution of (3.12) consider

{uf:V(Vu—xqu)/ (3.14)

u(0,-) =ug=g(0).

It follows that (3.14) admits a unique solution from Lemma 3.1. Let u =u(v(g)) rep-
resent the solution of (3.14). Lemma 3.1 also shows that

G: Xy, — Xi,, Gg=u(v(g)).

Set

Bu={g€ X, [s(0)=uo|g(t)]| ,, <M, 0<t<ho},

where
M:ZC]]uo\\a,2+1, Cc>1

is given by (3.3). It is easy to check that G maps By into By .
Assume ¢1,92 € X}, and let v;(i =1,2) denote the corresponding solutions of (3.12).
We have

Gg1—Ggr=u1—uy
t t
:—X/ T(t—s)ulAvlds—X/ T(t—s)Vu1Voids
0 0
t t
—1—7(/ T(t—s)uZszds—I—)(/ T(t—s)VuaVupds
0 0

t t
:—X/ T(t—s)(ulAvl—uzsz)ds—X/ T(t—s)(Vu1 Vo —VuyVoy)ds,
0 0

which yields
1G&1=Ggallx, =1 —uzllx,
<20ty * Jor—vally, +Cty (02, +llorlly, ) 1G81~Gaally, . (315)
and
(v1—v2) st =A(v1 —v2) +h(01) —h(v2) + £ (1) — f(82), (3.16a)
(v1—12)(0,-)=0, (v1—v2)¢(0,-) =0. (3.16b)

It follows from of Lemma 3.3 that

o, <Cet [ Ine,)~he2)+ ()~ o) e
<Ceéty sup |[h(v1) ~h(v2)+f(g1)—f(g2) i

OSTSI‘O
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<céto sup (Ii(or) ~h(e)ll i +5 (1)~ F (g2 )

OSTSI‘O
2
<Celotg( sup [|i(or) —h(o2) ]+ sup [1f(g1)—F(g2) )
OSTSI‘O OSTStO

<Ctoe" (( sup (o) ~h(e2)lin) +( sup (80~ F(s2) 1))

0<t<ty 0<t<ty

<Ctoe (]2 [[o1 =22 ly, >+ (| fllez g1~ 221l )?)- (3.17)

If ty is sufficiently small, then

o1 =2a]ly, <Ctie | fllellgr—g2llx, - (3.18)
Since
t 2 2 o 2
lenl, <Ce°(H<oHHz+H¢HH1+ / Hf(gl(f))HHldT>
fo
<ce (gl +IplBa-+C [ (17 () = FO L+ 1Ol )27
to
sc:efo(||<o|\éz+ulpu%p+ / <|\f||cz.||g1<r>||Hl+nf<o>||H1>2dr)
<ce (llgle+ 119l +to(M+I£(0)]2)?), (319)
and

2
oIy, <Ce (llgle+ 19l +to(M+1£(O)ll2)"), (3.20)

by virtue of (3.15), (3.18), (3.19) and (3.20), we have that G is a contraction provided that
to is small enough. Therefore (2.1) admits a local solution (u,v) € X;,NZy, X Y, MWy, and
the uniqueness follows from the contraction of the operator.

Observe that if s <2, as done in [4, Lemma 5.2], the local solution (u,v) € Xy, NZ;, X
Y, NW;, obeys

to
Jote, )1 <Cet (o [ A e ), 0e<t, (21)

where Cy= ||q0||§{2 + ||l/)|\§{1 and C is independent of f.
For the unique local solution (u,v) € (X, X Y3, ) N (Zs, X Wy, ) of (2.1), if we take s=1/2
in (3.21), then

fo
Jo(t,) |y < Cecet <C0+ / Hf(u('f,-))H;;dT>, 0<t<h.  (322)
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Since N=1, it follows from the Sobolev imbedding theorems, that W' (M)—H —2(M).
Hence we have

Jote, )1 < (ot [ FGue IRy )
Ctho<CO+/ I f(u )HUdT)

<ce (Go [l s+ 1O 1)
=Ce?“0 (Co+to(M |Juol| 1+ £(0)[|1)%),  0<t<to, (3.23)

where M; = || f|| 2. On the other hand, for each s <¢ and 0 <0y <2,

%
1t )| g <Cllutol o +Cty > sup ||V (VD) |1
0<t<ty
_q
<Clluollye+Cty 2 sup |[uVo|ywn, O0<t<t. (3.24)
0<t<ty
In particular for s=—1/241/4 and 0p=2—-1/8, we have
lu(t, )] 1, 1<CHu0HHU+Ct sup HuVUH 0<t<ty. (3.25)
H 7% 0<t<to

By the Sobolev imbedding theorems and (3.23), we have
[uvoll g <Cllull, 4190l -\ o <Cllullya- Vo]l <Cllull-loll

1 1
<Clluol1-e“(Cg +tg (M [uoll a +1I £ (O)[[1)),  0<t<to.  (3.26)

Consequently,

Hu(t,-)HH,igCHuoHH0+Cta sup [[uVol

0<t<ty
<Cllugl o+ CH loll 3¢ (G5 +1 (My o |+ O) 1)), 0<t<to.  (327)

Takes=1/241/4=3/4 in (3.21), then (3.21) and (3.27) give

ot 3<Ce26fo<c + [Nt )12 )

Ce2h (Co+to(My sup [[u(z, ),y +(FO), 1))

0<T<tg

<Ce { Cor+ 10 M [C ol o+ CH o] 1 -e(C
(M

g (Mol + SO+ O, 4 12), 0<t<h. (29
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Take s=—1/2+1/441/4=0 and 0p=2—1/8 in (3.24), we obtain

1-%
lu(t,) |2 <Clluto]| g +Cty * sup [[V(uV0)[|y-<

0<t<ty

1
<Clluolge+CHF sup [40] 5 e
0<t<ty

1
<Cllugl| o +Cty® sup H”V7)HH4+§I 0<t<ty. (3.29)
0<t<ty

Since
luvol oy <Cllull - IVo]
<Cllull - 1-IVoll 1

<Clull, y-lloll 3, 0<t<t, (330)

1
WlH e

we have that

(

1-2
[t )| 2 <Clluoll o +Cty = sup |V (uV0)[[g-a

0<t<ty

1
<Clluol| o +Ctg* sup [[uVol .,
0<t<ty
1

<Clluoll o +Ctg® - sup [lull 1-lloll ;3.  0<t<to. (3.31)

0<t<ty 4

It follows from (3.27) and (3.28) that [|u(t,-)||;» grows by a bounded manner in time
from (3.31).

If we take s=1/2+1/4+1/4=11in (3.21), then (3.21) and (3.31) imply that ||[v(t,-)|| ;1
grows also by a bounded manner in time.

Take s = —-1/2+1/4+1/44+1/4=1/4 and 0yp =2—1/8 in (3.24) once more. Since
lo(t,-)]| i grows by a bounded manner in time, similar to what we have done in (3.29),
(3.30) and (3.31), we can deduce that ||u(t,)|| ;1/4 grows by a bounded manner in time.

If we repeat the above processes four times, we can prove that ||u(t,-) || .3 and lo(t, )| 2

grow by a bounded manner in time, as desired. U

4 The case of g(v,u) =wauv

In this section we consider the case of g(v,u) =auv as follows:
ur=V(Vu—xuVo),
v = Av+auv, 4.1)
u(0,-)=uo,v(0,-)=¢,0:(0,-) =1.
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We will establish the local in time solution for this case. To obtain Theorem 2.2, we
first divide (4.1) into two parts:

uy=V(Vu—xuVvo), 42)
u(0,-) =uo,
vy =Av+auv,
" (4.3)
0(0,-)=¢, ©v(0,)=19.
Lemma 4.1. If u € X;,, v€ L2(0,t;; W4 (M)), then uv € L2(0,t0; H (M)) and
w0l < C(llull s lollwrs+ ol o el ), O<t<to. (4.4)

Proof. Since u € Xy, we know that u(t,-) e H” (M), (0<t<ty). Using the Sobolev theorem
gives that H” C W9, where g =2n/[n—2(c—1)]. Using (1.5), (1.7)~(1.8), we have W4 C
W14, Thus u € W4, Now the Cauchy inequality implies

[uoll2 < [lullpa-llolls, 0<t<to. (4.5)
Furthermore V(uv) =Vu-v+u-Vo, so
IV o) 2 < [ Vol o+l Vol 2, 0<t<to. (46)
Again applying the Cauchy inequality gives
IVu-olla <[ Vulla-oll s 0<t<to. 47)

IVo-ulle <[ Voll - lull o 0<t<to, 48)

Consequently, (4.5)-(4.8) indicate that (4.4) is valid.
Because u € C([0,tp];H’(M)) and H” C W4, u € C([0,to];W'*(M)) and the lemma
follows from (4.4) immediately. O

Lemma4.2. If pe H*(M), € HY (M) and u € Xy,, then (4.3) has a unique local in time solution
ve Yy, and

2 2 2 2 2
o1, <Cel™ (gl + 1l +tollullk, -IolF, )- (49)

Proof. We use the Leray-Schauder fixed point argument. Choose X = L2(0,ty;W'4(M)),
then X is a Banach space.
For each w € X, let v=0(w) solve following initial value problem:

(4.10)

vy = ANv+eawu,
v(0,-)=¢ep, v:(0,-)=c¢yp,
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where ¢ € [0,1]. Thanks to Lemma 4.1, we have wu € L?(0,tp;H'(M)). Thus hyperbolic
regularity of the equation asserts that (4.10) admits a solution v € Y}, and

to
fott,) e <Ce (Hglfet Il [ lronlfipde),  0<t<t @

Under the condition of 1 <7 <3, the Sobolev theorems show H? — W4, Thus (4.11)
asserts v € X. Now we define

T: Xx[0,1] =X, T(w,e)=0v(w).

It is obvious that T is compact and T(w,0) =0. If T(w,e) =w, then

to
e, ) < e (llglia+lglfct [ lwnlfuce),  0<r<n @

Using Lemma 4.1 once more, we have

Juzoll o <C (Nl Nl s+ el -l e
<2C Jullyns- 0l
<L2C||u|| g - l|w|| g2, 0<t<ty. (4.13)

Hence

(e, e <G (gl I+ [ il Il
<c(glBa+llplntiollull, Il ), 0<t<n. @14
In other words,
lwol3, < Celto (gl 9]3n) + Croe ™ ], [l (415)

As Yy, C X, (4.15) implies ||w||y < M; provided that ty is small enough, where M; is
independent of w and «.

The Leray-Schauder fixed point theorem indicates that T(w,1) has a fixed point v =
T(v,1), which shows that there is a solution of (4.3), and (4.15) asserts that (4.9) is true.
The uniqueness follows from the estimation of (4.4). 0

Proof of Theorem 2.2. Choose g € X;,, g(0) =ug and let v =1v(g) be the solution of the
following problem:

vy =Av+agu,
{ t § (4.16)

0(0,-)=¢, v:(0,)=¢.
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It follows from Lemma 4.2 that (4.16) has a unique solution v € Y, and

ol1%,, < el (@[l +l1lFn) +Croe* g1, -Ilo], . (4.17)
Let u=u(v(g)) solves the following problem:
uy=V(Vu—xuVvo),
u(0,-) =ug=g(0).

Note that the conditions of (1.7)—(1.8) imply (1.6), in fact, (1.7) indicates N >2(c—1) and
N/(c—1)<2N/[N—2(c—1)], thus N <4(c—1). Using (1.5), we get N < 20.
Thus Lemmas 3.1 and 3.2 show that G: X;, — X;,, where Gg=u(v(g)), and

olly, - 1681, - (4.19)

(4.18)

g
2

1
1G8 lx,, < Clluoll o +cty

Set
Bu={g€ Xi,|g(0) =uo, 3t )]| ,, <M, 0<t<to },

where M=2Cl|[ug||, ,+1 (C>1) is determined by (4.19). For g € By, by (4.17) we have

o1l <Cel“fo(llgl3a+ 1913 ) +Croe g%, -0,
<Cel*l (Jlg|Fa+ 1[5 ) +Coe oM o], . (4.20)
If ty is small enough, then
lolly,, <2Ce (Y ll g+ 191l )- (421)
Combining (4.19) and (4.21), yields that
1-¢
1G], <Clluollotety *-2Ce™ (||l o+l ) -1Ggllx, -
0 0

Choose to small enough such that 2C2tg-el*/* (|| @|| o + |9 ;1) <1/2. Then
1Ggllx,, < 2C[luoll o =M,

so G maps By into By,.
Finally we prove that the operator G is contract provided that ty is small enough. To
this end, for 1,92 € X3, let v; (i=1,2) be corresponding solutions of (4.16),

Gg1—Gg=u;—us
t t
:—)(/ T(t—s)ulAvlds—X/ T(t—s)Vu1Voids
0 0
t t
—1—7(/ T(t—s)uQszds—i—)(/ T(t—s)VuaVoupds
0 0

t t
:—X/ T(t—s)(ulAvl—uzsz)ds—X/ T(t—s)(Vur1 Vo —VupVoy)ds,
0 0
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we have
1Gg1=Ggallx, =t —uzllx,
<2Cty " Jor—vally, +Cty * ([[o2]ly,, +lloally, )1 Gg1—Geallx, -
Otherwise

(v1—02)u=A(v1 —v2) +a(g101 — §2702)
A(v1—v2)+av1 (g1 —92) +ag2(v1 —1v2),
(01—=02)(0,-)=0, (v1—22)¢(0,)=0,

and by using Lemma 3.3 gives

1

fo 2
o1 =oally, <Cet ([ avr (1 —g2) +aga(on —) e

1
<Clalel®-t;- sup [lv1(g1—82)+82(v1—2)|In
OSTStO

1
<Clafel-t5 - sup [[o1(g1—-82) I
0<t<ty

1
+Clafel-t5 - sup ||g2(v1—v2)| g
0<t<ty

Furthermore we declare

1
lor—2ally, <Clafel-t3- sup (o1l y2-llg1— 82l e )
0<t<ty

1
+Clafel-t5- sup ([|gallpe[[o1 =02l )
0<t<ty

1
<Clalelo-t3-[|vy Iy, g1 =82l x,,
1
+Clafel®lfo-¢3 1821, o1 =22lly, -

For sufficiently small ty, it is obvious that

lor—oally, <2Clalt5e™ - [for |y, -1 —g2llx,

lonll, < Celeto (gl 9l +ollgal, o, )
<ol (| |+ 9113 +toM2 o3, ),

leall, < Cello (gl + 19l +ollgall, - Iol, )
<CeM (|| |29 1+ toM? 0], )-

13

(4.22)

(4.23a)
(4.23b)

(4.24)

(4.25)

(4.26a)

(4.26b)

(4.26¢)
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Consequently, for ty small enough we have

o1y, < Cre*- (llgll g+ 191l 1), (4.27)

o2y, < Crel - (gl g+ 1l ). (4.28)

In view of (4.22),(4.26a),(4.27) and (4.28), we have show that G is a contract mapping,

as required. O
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