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1 Introduction

The investigation of the exact solutions for nonlinear evolution equations plays an im-
portant role in the study of soliton theory. In recent years, many powerful methods to
construct exact solutions of nonlinear evolution equations have been established and
developed such as the inverse scattering transform method [1], the Hirota method [2],
the Backlund transform method [3], the exp- function method [4], truncated Painleve
expansion method [5], the Weierstrass elliptic function method [6], the tanh- function
method [7] and the Jacobi elliptic function expansion method [8,9]. There are other meth-
ods which can be found in [10, 11].

*Corresponding author. Email address: kagepreel@yahoo.com (K. A. Gepreel)

http:/ /www.global-sci.org/jpde/ 55



56 K. A. Gepreel / J. Partial Diff. Eq., 24 (2011), pp. 55-69

Wang et al. [12] have introduced a simple method which is called, the (G/G)- ex-
pansion method to look for traveling wave solutions of nonlinear evolution equations,
where G = G(¢&) satisfies the second order linear ordinary differential equation G (&) +
AG'(&)+puG(¢) =0 and A u are arbitrary constants. For further references, see the ar-
ticles [13,14]. Recently, Zayed [15] introduced an alternative approach, which is called
a generalized (%)— expansion method . The main idea of this alternative approach is
that the traveling wave solutions of nonlinear differential equations can be expressed by
a polynomial in (G/G),where G = G(¢&) satisfies the Jacobi elliptic equation [G'(&)]?> =
e2G*(&)+e1G?(¢) +eg, E=x—Vtand ey, e1, ey, V are arbitrary constants while '=d/d¢.
The objective of this article is to apply the generalized (G/G)-expansion method to con-
struct the traveling wave solutions for nonlinear evolution equations in the mathematical
physics via the modified Kawahara equation, the coupled KdV equations and the classi-
cal Boussinesq equations, in terms of the Jacobi elliptic functions.

2 Description of a generalized (G/G)-expansion method
Suppose we have the following nonlinear partial differential equation
F<u/utluXIuttluxt/uxX/'") :O/ (21)

where u = u(x,t) is an unknown function, F is a polynomial in u(x,t) and its various
partial derivatives, in which the highest order derivatives and the nonlinear terms are
involved. In the following we give the main steps of a generalized (G/G)-expansion
method [15]:

Step 1. We start with, the traveling wave variable
u(x,t)=u(g), =x-Vt, (2.2)

where V is a constant which, permits us reducing Eq. (2.1) to an ODE for u=u(¢) in the
form
P(u,u',u",u",---)=0. (2.3)

Step 2. Suppose the solution of Eq. (2.3) can be expressed by a polynomial in (G/G)
as follows

n G’ i
u(C)IDi(—) , (2.4)
= \G
where G=G(¢) satisfies the following Jacobi elliptic equation:

[G'(8)?=e2G* (&) +e1G*(E) +eo, (2.5)

where «; ,e5,e1,60 and V are arbitrary constants to be determined later provided a, # 0.

"1

The positive integer “n” can be determined by considering the homogeneous balance
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between the highest order derivatives and the nonlinear terms appearing in Eq. (2.1) or
(2.3). Therefore, we can get the value of n in (2.4).

~ Step 3. Substituting (2.4) into (2.3) and using Eq. (2.5), we obtain polynomials in
G/(¢), G'(¢)G/(¢) (j=0,£1,%£2,---). Equating each coefficient of the resulted polynomial
to zero, yields a set of algebraic equations for «; ,e,e1,60 and V.

Step 4. Since the general solutions of (2.5) have been well known for us (see Appendix
A), then substituting «;,V and the general solution of (2.5) into (2.4) we have many exact
traveling wave solutions of the nonlinear partial differential equation (2.1).

3 Some applications

In this section, we apply the generalized (G/G)-expansion method to construct a new
traveling wave solutions for the modified Kawahara equation, the nonlinear coupled
KdV equations and the classical Boussinesq system, which are very important nonlin-
ear evolution equations in mathematical physics and have been paid attention by many
researchers.

3.1 Example 1: the modified Kawahara equation

We start with the modified Kawahara equation [16] in the form:

a_u_|_a_u_|_uzau _|_lga?’_u_|_“a5_u—
¥ Toxd

ot ' ox ox 9 0, (3.1)

where « and B are arbitrary constants. This equation has been derived by Kawahara [16]
as a model for water waves in the long- wave regime for moderate values of surface
tension. The Kawahara equation (3.1) gives an appropriate description of several phe-
nomena observed in the dynamics of the water- wave problem.

Let us now solve Eq. (3.1) by the generalized (G/G)-expansion method. To this end,
we see that the following traveling wave variable:

u(x,t)=u(g), ¢=x-Vi, (3.2)
where V is a constant, permits us converting Eq.(3.1) into the following ODE:
3(1—V)u—|—u3—|—3ﬁu“—|—3au(4)+3C1:O, (3.3)

where C; is the integration constant.
We suppose that the solution of Eq. (3.3) can be expressed by a polynomial in (G /G)
as the following form:

u(e) =Z§zxi <%> (34)
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where w; (i=0,1,2,---,n) are arbitrary constants, while G(&) satisfies the Jacobi elliptic
equation (2.5).

Considering the homogeneous balance between the highest order derivative and the
nonlinear term in (3.3), we deduce that n =2. Thus, we get

G\° G
u(g) =m <6> +aq <6> +uy, ap #£0. (3.5)
From (2.5) and (3.5) we have the following derivatives:
u'=20,G'leaG —eoG 3]+ a1 [e2G* —eoG 2],
u" =2ay[2e160G*+2e10G 2 +3e5G* +3e3G * +2eqe2] +-201 G' [eaG+-e9G 7,
u" =2u1[2e160G* —2e1e9G 2 +3e3G* —3e3G 4] +8a,G'[e12G +3e5G® —e109G > —3e¢5G ),
and
u® =84, G' [16epe162+ 16626% G2 4120e1e3G* 472639 G>
+12063 G®+120e2e1 G~ +16e0e? G2 +120e3 G 0 +72¢2e,G 2]
+8a1G'[e162G+3e3G° +e1e0G > +3e3G ). (3.6)
Substituting (3.6) and (3.5) into (3.3) we get the following polynomial:
GO[360 aae3 +a3e3] +GH18Buzes +3aaze3 +360 anoese; +3aseie3+3a5x0e3]
+3apa3er +3a3eder +48anaeret +12Buzerer +6a2areier +3a3e3e0 +6a3nger eo]
+G'G [6/30(162—1—@62—1—240(0(16261 + 601120082 +6a1a%e1ez] +G'G™! [—3Vaq
+ 601056000+ 6001 p 081 —i—zx%el +3aq —|—3lezx%e% —|—3zx1zx%] +G2 [48&&2606%
+ 60(%0(261 eo+ 30(%0(060 —3Vaseyg+ 60(%0(06160 + 3zxzzx%eo +3ape0+ 216&&26562
+-3a3e2e3+3a3e2eg +12Baseper ] + G H[6Bareo+6a1a3e1e0+adeg+24an;eqer ]
+G'G 33600z ede; +6a1amoeg+3a3anel +18Bazel +3aasel +3a5e1 €3]
+G'G [Barased +72amy €3]+ G O[aded +360anaed] +3aZarel +6a3u0ere0 —3Vaze
—3Vap+ad43a2age; +12Baseper +3aza3e; +3a3moes +ades +3u+3C
-1-604%0426260 +3ureq +60€%€1€2€0 +48xnyegerep =0. (3.7)

By equating the coefficients of the polynomial (3.7) to zero, we have a system of algebraic
equations which can be solved by the Maple or Mathematica to obtain the following
results:

4 —
a=6v—108, m=0, =P

0/ —10a
V= % [240a2€3 + B* — 10 +2880 a’eqer],
~10
Ci= \/—“{240 o262 B— 3200033 — B+ 115200 aleger e +2880 a’eger B}, (3.8)

15002
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Substituting (3.8) into (3.5) yields

2
(&) =6v/—10 (g) +%,
where

E=x+ 10%( [240a%e2 4 B2 — 100 +2880 a’epey).

According to appendix A, we have the following families of exact solutions:

Family 1. If eg=1, e; = — (m?+1), eo=m?, then we get

u(a):w—wacsz@)dnz(@—40"‘%%
or _40a(1+m*)+p

u(§) =67/ =10a(1—m?)sc*({)nd* (g)

V=102 '
where &= x+$[240a? (m?+1)?+ 2 — 10a +2880a>m?] / (10a).
Family 2. If ep=1— m2, e;=2m%—1, e = —m?, then we get
40a(2m?—1)—B
V=102
where¢ = x+ (2404 (2m*—1)?+ p> — 10a — 2880a> (1 —m?>)m?] / (10a).
Family 3. If eg=m?—1, e;=2—m?, e;=—1, then we get

u(§) =6v/=10asc*(§)dn*(Z) +

400(2—m?)—B
v —10a ’

where ¢ = x+1[240a% (2—m?)?+ > — 10a —2880a> (m*—1)] / (10a).
Family 4. If eg=m?, e; = —(m?+1), ex =1, then we get

u(&) =6v—10am*sd?(&)en? (&) +

u(§)=6\/—10wdsz(é)cn2(§)—40“(\73—0103%,
> _ 40a(m*+1)+B

u(§) =67/ =10a(1—m?)?sd? ()nc*(g)

v —10u«
where &= x+$[240a?(m?+1)?+ 2 —10a +2880a2m?] / (10a).

2

Family 5. If eg= —m?, e; =2m>—1, ey =1—m?, then we get

40a(2m>—1)—B
v —10a ’

u(§) =6v/~10asn?(&)dc? (8) +

59

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



60 K. A. Gepreel / J. Partial Diff. Eq., 24 (2011), pp. 55-69

where &= x+t[240a? (2m? —1)2+ B2 — 100 — 288042 (1 —m?)m?] / (10a).
Family 6. If eg=—1, e =2—m?, ey =m?*—1, then we get

400(2—m?)—B
u(&) =67V —10am*sn? (&) cd* (&) + , 3.18
@ (@)ed(©)+ = = @19
where ¢ = x+1[240a% (2—m?)?+ B> — 10a —2880a> (m*—1)] / (10a).
Family 7. If eg=1—m?, e;=2—m?, e, =1, then we get
— 400(2—m?)—p
u(g)=6v—10anc*(&)ds*(&)+ , 3.19
(6) =6/~ 10une* (©)as? () + .19
where ¢ = x+1(240a% (2—m?)?+ B> — 10a+2880a> (1 —m?)] / (10a).
Family 8. If e =1, ¢; =2—m?2, ep=1—m?, then we get
— 40a(2—m?)—B
(&) =6v/—10ans*(&)dc* (&) + , 3.20
(6) =63/~ 10wns* (©)ae* )+ = =02 (.20
where ¢ = x+1(240a% (2—m?)?+ B> — 10a+2880a> (1 —m?)] / (10a).
Family 9. If e =1, ¢; =2m?—1, e, :mz(mz—l), then we get
— 40a(2m>—1)—B
(&) =6v—10a ns*(&)cd* (&) + , 3.21
(0 =63/ —100 n(@)ed (€) + e @21
where &= x+$[240a? (2m? —1)% 4 B2 — 10a +2880a>m?(m?>—1)] / (10&).
Family 10. If eg = mz(m2 -1), =2m?—1, e =1, then we get
40a(2m>—1)—B
u(&) =6v—10and?(&)cs® (&) + 3.22
where &= x+$[240a? (2m? —1)2 4 B2 — 10a +2880a>m?(m?>—1)] / (10&).
Family 11. If g =1/4, e; = (1—-2m?) /2, ey =1/4, then we get
20a(1—2m?)—B
u(&)=6v—10ads? (&) + , 3.23
where &= x+t[60a%(1—2m?)?+ B2 —10a+180a?] / (10a).
Family 12. If eg = (1—m?) /4, e; = (1+m?) /2, ea=(1—m?) /4, then we get
2y _
u(g) :6\/—100¢dc2(§)+20“<1+m )—F (3.24)

V=10 '
where &=x+t[60 a?(1+m?)?+ p*—10a+180a?(1—m?)?] /10a.
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Family 13. If eg =m? /4, e; = (m*—2) /2, ey =1/4, then we get

_ 2_9)_
(&) =6/ —10mcs® (&) + 20“% 3 (3.25)
where ¢ =x+$[60a2 (m?—2)?+ B2 —10a +180a?m?] /10a.
Family 14. If eg = m2/4, e;= (m2 —2)/2,e2= m? /4, then we get
_ 2_97)_
u(&)=6v—10adn*(&)+ 200(m”—2) =P (3.26)

v —10u« ’
where &= x+$[60a2 (m?—2)?+ B2 —10a +180a’m*] /10a.

3.2 Example 2: the nonlinear coupled KdV equations

In this subsection, we consider the following nonlinear coupled KdV equations [17] in
the forms:

U+ Lty +Lou ty+ Latyyy + L0y =0,
U4+ L50x 4+ Lg0 Uy + L7Uyyx + Lgu, =0, (3.27)

where L1 — Ls is the detaining parameter which measure the difference in the linear long-
wave speed of uncoupled system, Ly, Lg are the coupling parameter, while L;,L¢ and
L3, L7 are nonlinear and linear dispersive coefficients, respectively .

Let us now solve Egs. (3.27) by the proposed method. To this end, we see that the
traveling wave variables u=u(¢),v=v(¢) and {=x— V¢, permit us converting (3.27) into
the following ODEs:

1
C1+(Ly —V)u+§L2u2+L3u“+L4v:0,

1
C2+(L5—V)v+§L6zzZ +L70"+ Lsu=0, (3.28)

where C; and C; are the integration constants. Suppose that the solutions of Egs. (3.28)
can be expressed by a polynomials in (G/G) as follows:

u(e) =§ai (g) | (3.29)

@ -1 5() ) 330)

where V, a; (i=0,1,---,n) and B; (i=0,1,---,n) are arbitrary constants to be determined
provided ay,, B, #0, while G(¢) satisfies the Jacobi elliptic equation (2.5). Considering the
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homogeneous balance between the highest order derivatives and the nonlinear terms in
(3.28), we get n=m =2. Thus, the solutions of Egs. (3.28) have the following forms:

u(g)=ar (g)z‘i‘“l <g> +ag, (3.31)

and o /
v(é)zﬁz(%) +B1 <%> +Bo. (3.32)

Substituting (3.31) and (3.32) into system (3.28) and collecting all terms with the same
power of G/(¢) , G'(¢)G/(&) (j=0,41,42,--+). By equating the coefficients of the polyno-
mials to zero, yields a set of simultaneous algebraic equations and for the sake of brevity
we omit them. Solving these algebraic equations by Maple or Mathematica, we have the
formulae of the solutions of system (3.28) as follows:

2
12L; (G
u(@)=-=2 (E) a0, (3:39)
and
o~ 2
. 12L; (G 1 )
v(¢)=— o <E> +m (L7L2L3060L6+L7L2L1L3L6
—8L7L2L§elL6+L%L§L4—L3L6L5L7L2—L§L§L8+8L3L6L%e1L2), (3.34)
where ;
C=x—— <L3IX0L6L2+L1L3L6 —8L§€1L6+L4L7L2>, (3.35)
LsLe
1
Ci=———(L3a3L3L2L; —16L3n0e1 L2LyLy —2L4LyL3La0gLg —2L4 Ly Ly L1 L3L
1 2L3L§L7L2<2a0367 3kp€1LgLlyL) 4L7L;L3koLe 4L7lplql3Le
+16L4LyLoL3e1 Lo — 21213154+ 2L4 L3 LeLsLyLy+2L4[312Lg—16L4L2%e1L3LsL,
+2aOL6L%L§L4—192L§e0e2L§L7+48L§e§L§L7), (3.36)
and
1
Co=r—=>55 (—2L;L3L4L3L6L5+L§L§L§L$L§ —LALAL3—2LsaL3L313L,
213121213

—192L3e0er L2313 +16LgL3e LIL2L, — 1622 L2135+ LALAL2 + L2153 120312
+2L2L5 L300 L2 — 161313 L3agL2e; +-2L3 L5 Lang Lo Ly —2L3L3 L300 L2 s

+ L3313 1302 — 16131311 L3L2e1 + 203131 LsLe Ly — 20331 L3L2L5

+64L213 156312 —16L3L313e1 LeLy+ 16L§L§L§e1L§L5) : (3.37)
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According to appendix A, we have the following families of exact solutions:
Family 1. If eg=1, e = — (m?+1), e, =m?, then we get

1215
u(g)=- 5 cs*(§) dn*(§) +ao,
and
U(g)——L—6C5 (¢) dn <§)+m<L7L2L3040L6+L7L2L1L3L6
+8L7LoL3(m? +1)Le+L3L5Ly — L3LgLsLyLy— L3L2Lg
—8L3L6L%(m2+1)L2),
u(C)Z—L—zsd (¢) nc*(¢) +ao,
and
12L;(1—m?)?
v(¢) :—% sd*(€) ”C2<§)+m <L7L%L3IXOL6+L7L2L1L3L6
6
+8L7LoL3(m? +1)Le+L3L5Ly — L3LgLsLyLy— L3L2Lg
—8L3L6L%(m2+1)L2),

where {=x— t[L3£t0L6L2—|-L1L3L6+8L§<m2—|—1)L6—|-L4L7L2] / <L3L6).

2

Family 2. If eg=1—m?, e =2m>—1, e =—m?, then we get

12L
u(g) === s (€) dn*(¢) +a,
and
=—— d ——————( L7L5LangLs+ Lo L1 L3L
v(¢) Le sc™(¢) dn <C)+L3L%L7L2< 7L5L3aoLe+LyLoL1L3Le

—8LyLoL3(2m* —1)Le+L3L3Ls—L3LsLsL;Ly—L3L2Lg
+8L3L6L§(2m2—1)L2),

where gIx—t[L3£t0L6L2—|-L1L3L6—81._.%(211’[2 —1)L6+L4L7L2]/<L3L6).
Family 3. If eg=m?—1, e;=2—m?, e;=—1, then we get

u(g)=—~——msn*(g) cd*(g)+ao,

63

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)
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and
=—"—" d -
0(8) === Fon (@) e @)+ L (
—8L7LoL3(2—m?)Le+L3L3L,— L3LgLsL;Ly— L3121

+8L3L6L%(2—m2)L2), (3.45)

L7L%L3£to Le+L7LyL1L5L¢

where¢ =x— t(L3a0L6L2—|—L1L3L6 —8L§(2—m2)L6—|—L4L7L2) / (L3L6).
Family 4. If eg=m?, ey = —(m*+1), e, =1, then we get

121
u(@) === 25 (8) en’(¢) +ao, (3.46)
and
_ 12L7 . » 2 2
() =7 7ds*() en (C)-l—m<L7L2L3aoL6+L7L2L1L3L6
+8LyLyL3(m?+1)L+L3L3Ly— L3LgLsLyLo — L3L2Lg
—8L3L6L%(m2+1)L2>, (3.47)

whered =x— t(L3060L6L2+L1L3L6+8L§(m2+1)L6+L4L7L2) / (L3L6).

Similarly, we can write down the other families of exact solutions of Eq. (3.28) which
are omitted for convenience.

3.3 Example 3: the classical Boussinesq equations

Lastly, we consider the classical Boussinesq equations [18,19] in the form:

1
v+ [(1+0)uls+ 1t =0, (3.48a)
ut+u ux+vx:O, (3.48b)

The system (3.48) is integrable and has three Hamiltonian structures [18]. Wu and Zhang
[19] derive three sets of classical Boussinesq model equations for modeling nonlinear and
dispersive long gravity wave traveling in two horizontal directions on shallow water of
uniform depth.

Now let us solve system (3.48) by the proposed method. To this end, we see that the
traveling wave variables u=u(¢), v=0({) and {=x—Vt, permit us converting (3.48) into
the following ODEs:

1
Cl—Vv—l-(l-i-v)u-l—gu” =0,

1
CZ—Vu+§u2+v:0, (3.49)
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where C; and C; are the integration constants. By considering the homogeneous balance
between the highest order derivative and the nonlinear term in (3.49), we get n =1 and
m=2. Then, the solutions of Egs. (3.49) have the following forms:

u(g)=a <%> +ao, w170, (3.50)
and . /
v(C)Zﬁz(%) +B1 (g) +Bo,  P2#0. (3.51)

Substituting (3.50) and (3.51) into system (3.49) , collecting all terms with the same power
of G/(¢), G'(¢€)G/(&) (j=0,£1,4£2,---) and equating the coefficients of the polynomials
to zero, yield a set of simultaneous algebraic equations. For the sake of brevity we omit
them. Solving these algebraic equations by Maple or Mathematica, we have the formulae
of the solutions of Egs. (3.49) as follows:

u(g):i% (%) LV, (3.52)
2
v(g):—g (%) +§e1—1, (3.53)

where C1=-V,C= V72+1— %el and {=x—-Vt.
According to the appendix A, we have the following families of exact solutions
Family 1. If eg=1, e; = — (m?+1), eo=m?, then we get

u(g) :j:\%cs(é) dn(g)+V, (3.54)
and ) 5
0(F) = —gcsz(g) dnz(é)—g(mz—i—l)—l, (3.55)
or
u(g) =¢%u—m2> sd(&) ne (&)+V, (3.56)
and
o) :-%(1—m2)2 sd2 (&) nc® (g)-%(m2+1)-1. (357)
Family 2. If eg=1—m?, e =2m>—1, e =—m?, then we get
(@) =F sel) dn(@)+V, (358)

and 5 5
v(F) = —gscz(é) dn2(§)+§(2m2—1) ~1. (3.59)
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Family 3. If ey = m2—1, ey =2—m?, e =—1, then we get

u(e) = ﬂF\%mzsn(C) cd(E)+V, (3.60)
and
v(g):—%m‘lsnz(g)cdz(é)+§(2—m2)—1. (3.61)

Family 4. If eg=m?, e; = —(m?+1), eo =1, then we get

(@) =¢%ds(€>cn(€>+v, (3.6
and
(&) =~ 2d(E)en? ({)— 3 (mP +1) 1, 369
or
u(f) :i\%(l—mz)nc(g)sd(é)—l—V, (3.64)
and
v(¢) :—gncz(g)sdz(g)—%(mz-l-l)—l. (3.65)

Similarly, we can write down the other families of exact solutions of Egs. (3.48) which are
omitted for convenience.

Remark 3.1. Some of these solutions presented in this latter have been checked with
Maple by putting them back into the original equations.

Remark 3.2. The generalized (G/G)-expansion method is simple but its results are very
cumbersome. The results of this method contain many arbitrary constants compare to
the results of other method. The performance of generalized (G / G)-expansion method is
reliable, simple, direct, concise and gives more new exact solutions compared to the other
method. This method allowed us to solve more complicated PDEs in the mathematical
physics.

Appendix A

The general solutions to the Jacobi elliptic equation (2.5) and their derivatives (see for
example [8,9,15]) are listed as follows:
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€o e1 e G(¢) G'(¢)
2 2 sn(¢g) cn(§) dn(¢)

T g | —aomsd(@nd)

1—m? 2m?—1 —m? cn (&) —sn(&)dn(g)
m?—1 2—m? -1 dn(¢) —m?sn(&)cn(¢)

2 2 ns(g) —ds(g)es(¢)
T T | @)
—m? 2m?—1 1—m? ne(&) sc(&)de(&)

-1 2—m? m?—1 nd(&) m?sd(&)cd (&)

1—m? 2—m? 1 cs(§) —ns(&)ds (&)

1 2—m? 1—m? sc(&) ne(&)de(&)

1 2m?—1 | m?>(m?>—1) sd(¢) nd(&)cd(g)

m?*(m*—1) | 2m?—1 1 ds(¢) —cs(&)ns(&)
i 7(1—-2m?) i ns(¢)Ees(§) | —ds(g)es(5) Fns(¢)ds()
i(1=m?) | 3(+m?) | 3(1=m?) | ne(@)£sc(§) | sc(&)de(§)£ne(§)de()
w 3(m*=2) i ns(¢)+ds(5) | —ds(¢)c ()UFCS(C)nS(C)
wo [dm-2) [ [sn(@)£ien(§) [ en(@)dn(@)Fi sn(&)dn(E)

where 0 <m <1 is the modulus of the Jacobi elliptic functions and i =+/—1.

Appendix B
The Jacobi elliptic functions sn(&),cn(&),dn (), ns(&),cs(E),ds(&),sc(¢),sd(E) generate into
hyperbolic functions when m — 1 as follows:

sn(¢) —tanh(g), | cn(g) —>sech(¢), | dn(¢) —sech({), | ns(&) — coth(§),
cs(&) —> cosech(§), | ds¢) — cosech(§), | sc(§) — sinh(&), | sd(&) — sinh(),

and into trigonometric functions when m —0 as follows:

sn(&) —sin(g), | cn(&) —> cos(§), dn(g) —1, ns(&) — cosec(§),
cs(g) —>cot({), | ds€) —> cosec(E), | sc(&) —tan(E), | sd(&) —sin(E).

Appendix C
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4 Conclusions

The main idea of the generalized (G/G)-expansion method is that the traveling wave
solutions of nonlinear partial differential equations can be expressed as a polynomial in
(G/G), where G(¢) satisfies the Jacobi elliptic equation (2.5) to some nonlinear PDEs in
mathematical physics via the modified Kawahara equation, the nonlinear coupled KdV
equations and the classical Boussinesq system. We have obtained families of exact solu-
tions of these equations in terms of Jacobi elliptic functions. Finally, we conclude accord-
ing to the Appendix B that our results in terms of Jacobi elliptic functions generate into
hyperbolic functions when m —1 and generate into trigonometric functions when m —0.
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