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Abstract. In the study of the regularity criteria for Leray weak solutions to three-
dimensional Navier-Stokes equations, two sufficient conditions such that the horizon-
tal velocity ũ satisfies ũ∈ L2(0,T;BMO(R3)) or ũ∈ L2/1+r(0,T; Ḃr

∞,∞(R
3)) for 0< r< 1

are considered.
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1 Introduction and main results

The incompressible fluid motion in the whole space R3 is governed by the Navier-Stokes
equations with unit viscosity















∂tu+(u·∇)u+∇π=∆u,

∇·u=0,

u(x,0)=u0.

(1.1)

Here u= (u1,u2,u3) and π present the unknown velocity field and the unknown scalar
pressure field, u0 is a given initial velocity.

Since the pioneer study of Leray [1] in 1930s, there is a large literature on the well-
posedness of weak solutions to the incompressible Navier-Stokes equations. Many con-
tributions have been made in an effort to understand the regularity of the weak solutions.
However, the problem on the regularity or finite time singularity for the weak solution

∗Corresponding author. Email addresses: boqingdong@yahoo.edu.cn (B. Q. Dong), xwzhang2008@yahoo.cn
(X. Zhang), zhangwenliang0729@163.com (W. Zhang)

http://www.global-sci.org/jpde/ 70



Regularity Criteria of 3D Navier-Stokes Equations in Margin Case 71

still remains unsolved. Regularity can only been derived when certain growth condi-
tions are satisfied. This is known as a regularity criterion problem. The investigation of
the regularity criterion on the weak solution stems from the celebrated work of Serrin [2].
With the extended examinations given by Struwe [3], Serrin’s regularity criterion can be
described as follows:

A weak solution u is regular if the growth condition

u∈Lp(0,T;Lq(R3))≡ LpLq, for
2

p
+

3

q
=1, 3<q≤∞, (1.2)

holds true.
The condition described by (1.2) which involves all components of the velocity vector

field u=(u1,u2,u3) is known as degree −1 growth condition (see Chen and Xin [4]), since

‖u(λ·,λ2·)‖Lp Lq =‖u‖Lp(0,λ2T;Lq(R3))λ
− 2

p−
3
q =‖u‖Lp(0,λ2T;Lq(R3))λ

−1.

The degree −1 growth condition is critical due to the scaling invariance property. That
is, u(x,t) solves (1.1) if and only if uλ(x,t)=λu(λx,λ2t) is a solution of (1.1).

Moreover, this result has been extended by many authors in terms of velocity u(x,t),
the gradient of velocity ∇u(x,t) or vorticity w(x,t) =∇×u in Lebesgue spaces, BMO
space or Besov spaces, respectively (refer to [5–10] and reference therein).

Actually, the weak solution remains regular when a part of the velocity components
is involved in some growth conditions. For example, regularity of the weak solution
was recently obtained by Beirão da Veiga [11] (see also Dong and Chen [12]) when the
horizontal velocity denoted by

ũ=(u1,u2,0)

satisfies the critical growth condition

ũ∈LpLq, for
2

p
+

3

q
=1, 3<q≤∞. (1.3)

And some critical growth conditions on the two vorticity components were obtained by
Kozono and Yatsu [13], Zhang and Chen [14]. One may also mentioned that the weak
solution remains regular if the single velocity component satisfies the higher (subcritical)
growth conditions (see Zhou [15, 16], Penel and Pokorý [17], Kukavica and Ziane [18],
Cao and Titi [19]).

The margin case q=∞ in (1.3) appears to be more challenging. The aim of the present
paper is to improve the regularity criterion (1.3) from Lebesgue space L∞ to BMO space
and Besov space (see the definitions in Section 2), respectively.

Before statement the main results, we firstly recall the definition of Leray weak solu-
tion of Navier-Stokes equations (see, for example, [20]).

Definition 1.1. Let u0 ∈ L2(R3) and ∇·u0 =0. A vector field u(x,t) is termed as a Leray weak
solution of (1.1) if u satisfies the following properties:
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(i) u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)) for ∀ T>0;

(ii) ∂tu+(u·∇)u+∇π=∆u in the distribution space D′((0,T)×R3);

(iii) ∇·u=0 in the distribution space D′((0,T)×R3);

(iv) u satisfies the energy inequality

‖u(t)‖2
L2 +2

∫ t

0

∫

R3
|∇u(x,s)|2 dxds≤‖u0‖

2
L2 , for 0≤ t≤T. (1.4)

By a strong solution we mean a weak solution u(x,t) of Navier-Stokes equations (1.1)
with the initial velocity u0∈H1(R3) satisfies

u∈L∞(0,T;H1(R3))∩L2(0,T;H2(R3)). (1.5)

It is well known that strong solution is regular and unique. In this case one also has the
energy equality in (1.4) instead of the inequality.

The main results now read:

Theorem 1.1. Suppose ∀ T>0, u0∈H1(R3) and ∇·u0=0 in the sense of distributions. Assume
that u is a Leray weak solution of (1.1) in (0,T). If the horizontal velocity denoted by ũ=(u1,u2,0)
satisfies the following growth condition

∫ T

0
‖ũ(t)‖2

BMOdt<∞. (1.6)

Then u is a regular solution on (0,T].

Theorem 1.2. On substitution of the condition (1.6) by the following growth condition

∫ T

0
‖ũ(t)‖

2
1+r

Br
∞,∞

dt<∞, 0< r<1, (1.7)

the conclusion of Theorem 1.1 holds true.

Remark 1.1. Theorems 1.1 and 1.2 improve the earlier results [6, 10–12] and it is easy
to verify that the spaces (1.6) and (1.7) satisfy the degree −1 growth conditions. The
results are in the spirit of the Beale-Kato-Majda [21] criterion for 3D Euler equations.
It should be mentioned that for the case r = 1 in Theorem 1.2, Dong and Zhang [22]
have recently refined the regularity of weak solution if the horizontal derivatives of the
horizontal velocity satisfies

∫ T

0
‖∇hũ(t)‖Ḃ0

∞,∞
dt<∞, ∇hũ=(∂1ũ,∂2ũ, 0).

The case r=0, however, still remains unsolved.
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2 Preliminaries

Throughout this paper, c stands for a generic positive constant which may vary from line
to line. Lp(R3) with 1≤p≤∞ denotes the usual Lebesgue space of all Lp integral functions
associated with the norm

‖ f‖Lp =



















(

∫

R3
| f (x)|pdx

)
1
p

, 1≤ p<∞,

esssup
x∈R3

| f (x)|, p=∞.

In order to define Besov space and Triebel-Lizorkin space, let us first recall the Littlew-
ood-Paley decomposition theory (see Chemin [23]). Let S(R3) be the Schwartz class of
rapidly decreasing function, given f ∈S(R3), its Fourier transformation F or f̂ is defined
by

F f (ξ)= f̂ (ξ)=(2π)−
3
2

∫

R3
e−ix·ξ f (x)dx.

Choose two nonnegative radial functions χ,φ∈S(R3) supported in B={ξ∈R3 : |ξ|≤4/3}
and C={ξ∈R3 : 3/4≤|ξ|≤8/3}, respectively, such that

∑
j∈Z

ϕ(2−jξ)=1, ξ∈R3\{0}.

Let h=F−1 ϕ and h̃=F−1χ, and then we define the dyadic blocks as follows:

∆j f = ϕ(2−jD) f =23j
∫

R3
h(2jy) f (x−y) dy,

Sj f =χ(2−jD) f = ∑
k≤j−1

∆k f =23j
∫

R3
h̄(2jy) f (x−y) dy.

By telescoping the series, we thus have the following Littlewood-Paley decomposition

f =
∞

∑
j=−∞

∆j f . (2.1)

Moreover, from the Young inequality, the following classic Bernstein inequality reads:

Lemma 2.1. (Chemin [23]) Assume 1≤ p≤q≤∞. Then

sup
|α|=k

‖∂α∆j f‖Lq ≤ c 2jk+3j(1/p−1/q) ‖∆j f‖Lp , (2.2)

with c being a positive constant independent of f , j.



74 X. Zhang, W. Zhang and B. Q. Dong / J. Partial Diff. Eq., 24 (2011), pp. 70-82

With the introduction of ∆j, the homogeneous Besov space Ḃs
p,q(R

3) for s∈R,p,q∈[1,∞]
is defined by the full-dyadic decomposition such as

Ḃs
p,q(R

3)=
{

f ∈S ′(R3)/P(R3) : ‖ f‖Ḃs
p,q
<∞

}

,

where

‖ f‖Ḃs
p,q
=



















(

∞

∑
j=−∞

2jsq‖∆j f‖
q
Lp

)
1
q

, 1≤q<∞,

sup
j∈Z

2js‖∆j f‖Lp , q=∞,

and S ′(R3),P(R3) are the spaces of all tempered distributions on R3 and the set of all
scalar polynomials defined on R3, respectively. For p = q = 2,Ḃs

2,2(R
3)∼= Ḣs(R3), where

Ḣs(R2) is the homogeneous Sobolev space.
In a similar way, the homogeneous Triebel-Lizorkin space Ḟs

p,q(R
3) can also be defined

by

Ḟs
p,q(R

3)=
{

f ∈S ′(R3)/P(R3) : ‖ f‖Ḟs
p,q
<∞

}

,

where

‖ f‖Ḟs
p,q
=

∥

∥

∥

∥

∥

∥

(

∞

∑
j=−∞

2jsq|∆j f |q
)

1
q

∥

∥

∥

∥

∥

∥

Lp

,

for 1≤ p<∞, 1≤q≤∞ and p=∞, 1≤q<∞.
It is readily seen that space definitions imply the following continuous embeddings

L∞(R3)⊂ Ḟ0
∞,2(R

3)⊂ Ḃ0
∞,∞(R

3). (2.3)

Especially, the following interesting relation between the Lizorkin-Triebel spaces and
the BMO is due to Triebel [24, Section 2.3.5].

Lemma 2.2. Ḟ0
∞,2

∼=BMO. Namely, there exist two positive constants c1,c2 such that

c1‖ f‖Ḟ0
∞,2

≤‖ f‖BMO ≤ c2‖ f‖Ḟ0
∞,2

, (2.4)

where BMO is the space of the bounded mean oscillations defined by

BMO=

{

f ∈L1
loc(R

3); sup
x,r

1

|Br(x)|

∫

Br(x)
| f (y)− f̄Br(x)|dy<∞

}

,

with

f̄Br(x)=
1

|Br(x)|

∫

Br(x)
f (y)dy.

For more properties of these function spaces, one may refer to [24].
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3 A priori estimates

In order to prove Theorems 1.1 and 1.2, it is sufficient to examine a priori estimates for
smooth solutions of (1.1) described in the following.

Theorem 3.1. Let T>0, u0∈H1(R3) with ∇·u0=0. Assume that u(x,t) is a smooth solution
of (1.1) on R3×(0,T) and satisfies the growth conditions (1.6). Then

sup
0≤t<T

‖∇u(t)‖L2 ≤ c
(

‖∇u0‖L2+e
)exp

{

c
∫ T

0 ‖ũ(s)‖2
BMOds

}

holds true.

Theorem 3.2. Under the same conditions on Theorem 3.1 with the smooth solution u(x,t) satis-
fies (1.7). Then

sup
0<t<T

‖∇u(t)‖L2 ≤‖∇u0‖L2 exp

{

c
∫ T

0
(e+‖ũ(t)‖Ḃr

∞,∞
)

2
1+r dt

}

holds true.

3.1 Proof of Theorem 3.1

Taking inner product of the momentum equations of (1.1) with ∆u and integrating by
parts, one shows that

1

2

d

dt
‖∇u(t)‖2

L2 +‖∆u(t)‖2
L2 ≤−

3

∑
i,j,k=1

∫

R3
ui∂iuj∂kkuj dx. (3.1)

We will show that the right hand side of (3.1) is bounded by

−
3

∑
i,j,k=1

∫

R3
ui∂iuj∂kkuj dx≤ c

∫

R3
|ũ| |∇u| |∇2u| dx. (3.2)

It should mentioned that the assertion (3.2) is more or less obtained by Beirão da Veiga
[11], for the readers’ convenience, we present a simple proof.

Firstly, with the aid of the divergence free condition ∑
3
i=1∂iui = 0 and integration by

parts, observe that,

−
3

∑
i,j,k=1

∫

R3
ui∂iuj∂kkuj dx=

3

∑
i,j,k=1

∫

R3
∂k(ui∂iuj) ∂kuj dx

=
3

∑
i,j,k=1

∫

R3
∂kui∂iuj∂kuj dx+

1

2

3

∑
i,j,k=1

∫

R3
ui∂i(∂kuj∂kuj) dx

=
3

∑
i,j,k=1

∫

R3
∂kui∂iuj∂kuj dx
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=
2

∑
i=1

3

∑
j,k=1

∫

R3
∂kui∂iuj∂kujdx+

2

∑
j=1

3

∑
k=1

∫

R3
∂ku3∂3uj∂kujdx+

3

∑
k=1

∫

R3
∂ku3∂3u3∂ku3dx

=
3

∑
m=1

Im. (3.3)

The estimation of the terms Im is demonstrated one by one in the following.
In order to estimate I1 and I2. we apply integration by parts to have

I1=
2

∑
i=1

3

∑
j,k=1

∫

R3
ui∂k(∂iuj∂kuj)dx≤ c

∫

R3
|ũ| |∇u| |∇2u| dx,

I2=
2

∑
j=1

3

∑
k=1

∫

R3
uj∂3(∂ku3∂kuj)dx≤ c

∫

R3
|ũ| |∇u| |∇2u| dx.

For I3, the divergence free condition ∂3u3=−∂1u1−∂2u2 and integration by parts imply

I3=
3

∑
k=1

∫

R3
∂ku3(∂1u1+∂2u2)∂ku3dx

≤−
3

∑
k=1

∫

R3
(u1∂1(∂ku3∂ku3)+u2∂2(∂ku3∂ku3)) dx

≤c
∫

R3
|ũ| |∇u| |∇2u| dx.

Thus plugging the above inequalities into (3.3) to derive (3.2) and then (3.1)implies

d

dt
‖∇u(t)‖2

L2 +2‖∆u(t)‖2
L2 ≤ c

∫

R3
|ũ| |∇u| |∇2u| dx. (3.4)

Making use of the Littlewood-Paley decomposition (2.1) for ũ reads firstly,

ũ= ∑
j<−N

∆jũ+
N

∑
j=−N

∆jũ+ ∑
j>N

∆jũ,

and then applying that to the right hand side of (3.4) gives

d

dt
‖∇u(t)‖2

L2 +‖∆u(t)‖2
L2

≤
∫

R3

∣

∣

∣

∣

∑
j<−N

∆jũ

∣

∣

∣

∣

|∇u| |∇2u| dx+ c
∫

R3

∣

∣

∣

∣

∣

N

∑
j=−N

∆jũ

∣

∣

∣

∣

∣

|∇u| |∇2u| dx

+ c
∫

R3

∣

∣

∣

∣

∑
j>N

∆jũ

∣

∣

∣

∣

|∇u| |∇2u| dx

=J1+ J2+ J3, (3.5)
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where the positive integer N will be chosen later.

We now estimate Jl (l=1,2,3) one by one. For J1, applying Hölder inequality, Minkowski
inequality and Bernstein inequality (2.2), one shows that

J1=c
∫

R3

∣

∣

∣

∣

∑
j<−N

∆jũ

∣

∣

∣

∣

|∇u| |∇2u| dx

≤c ∑
j<−N

‖∆jũ‖L3‖∇u‖L6‖∆u‖L2 ≤ c ∑
j<−N

2
j
2 ‖∆jũ‖L2‖∆u‖2

L2

≤c

(

∑
j<−N

2j

)
1
2
(

∑
j<−N

‖∆jũ‖
2
L2

)
1
2

‖∆u‖2
L2

≤c2−
N
2 ‖u‖Ḃ0

2,2
‖∆u‖2

L2
∼= c2−

N
2 ‖u‖L2‖∆u‖2

L2 ≤ c2−
N
2 ‖∆u‖2

L2 , (3.6)

where we have used the inequality ‖u(t)‖L2 ≤‖u0‖L2 which is derived from the energy
inequality (1.4).

For J2, with the aid of the definition of Triebel-Lizorkin space Ḟ0
∞,2(R

3) and Lemma 2.2,
we have

J2 =c
∫

R3
|

N

∑
j=−N

∆jũ| |∇u| |∇2u| dx

≤c

∥

∥

∥

∥

∥

N

∑
j=−N

∆jũ

∥

∥

∥

∥

∥

L∞

‖∇u‖L2‖∆u‖L2

≤c

∥

∥

∥

∥

∥

∥

(

N

∑
j=−N

1

)
1
2
(

N

∑
j=−N

|∆jũ|
2

)
1
2

∥

∥

∥

∥

∥

∥

L∞

‖∇u‖L2‖∆u‖L2

≤cN1/2‖ũ‖Ḟ0
∞,2

‖∇u‖L2 ‖∆u‖L2

≤cN1/2‖ũ‖BMO ‖∇u‖L2 ‖∆u‖L2

≤cN‖ũ‖2
BMO ‖∇u‖2

L2 +
1

4
‖∆u‖2

L2 . (3.7)

Similarly, by Hölder inequality and Bernstein inequality (2.2), J3 yields

J3=c
∫

R3
| ∑

j>N

∆jũ| |∇u| |∇2u| dx

≤c ∑
j>N

‖∆jũ‖L∞‖∇u‖L2‖∆u‖L2

≤c ∑
j>N

2
3j
2 ‖∆jũ‖L2‖∇u‖L2‖∆u‖L2
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≤c

(

∑
j>N

2−j

)
1
2
(

∑
j>N

24j‖∆jũ‖
2
L2

)
1
2

‖∇u‖L2‖∆u‖L2

≤c2−
N
2 ‖u‖Ḃ2

2,2
‖∇u‖L2‖∆u‖2

L2 ≤ c2−
N
2 ‖∇u‖L2‖∆u‖2

L2 . (3.8)

Inserting (3.6-3.8) into the inequality (3.5) to derive

d

dt
‖∇u(t)‖2

L2 +‖∆u(t)‖2
L2 ≤ cN‖ũ‖2

BMO ‖∇u‖2
L2 , (3.9)

here we have used the inequality

c 2−
N
2 ‖∇u‖L2 ≤

1

8
and c 2−

N
2 ≤

1

8
,

for suitable integer N. In fact, N may be chosen by

N≥max

{

ln(‖∇u‖2
L2 +e)+lnc

ln2
+3,

lnc

ln2
+3

}

,

hence (3.9) gives

d

dt
‖∇u(t)‖2

L2 +‖∆u(t)‖2
L2 ≤ c‖∇u‖2

L2 ‖ũ‖2
BMO

(

ln(‖∇u‖2
L2 +e)

)

. (3.10)

Integrating in time from 0 to t to produce

‖∇u(t)‖2
L2 ≤‖∇u0‖

2
L2 exp

{

c
∫ t

0
‖ũ(s)‖2

BMO

(

ln(‖∇u(s)‖2
L2 +e)

)

ds

}

,

and so

ln(‖∇u(t)‖2
L2 +e)≤ ln(‖∇u0‖

2
L2+e)+c

∫ t

0
‖ũ(s)‖2

BMO

(

ln(‖∇u(s)‖2
L2 +e)

)

ds.

Taking the Gronwall inequality into consideration, one shows that

sup
0≤t<T

‖∇u(t)‖L2 ≤ c(‖∇u0‖L2+e)
exp

{

c
∫ T

0 ‖ũ(s)‖2
BMOds

}

.

This completes the proof of Theorem 3.1. �

3.2 Proof of Theorem 3.2

By developing the idea of Chen, Miao and Zhang [25, Lemma 3.1], we first give a decom-
position on the critical space (1.7).
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Lemma 3.1. Suppose a measurable function f ∈L2/(1+r)(0,T;Ḃr
∞,∞(R

3)) for 0<r<1, then there
exists a decomposition such that

f = f l+ f h, ∇ f l ∈L1(0,T;L∞(R3)) and f h ∈L2(0,T;L∞(R3)). (3.11)

Proof. According to the Littlewood-Paley decomposition

f =
∞

∑
j=−∞

∆j f =
K

∑
j=−∞

∆j f +
∞

∑
j=K+1

∆j f = f l+ f h,

where K is an integer which will be chosen later. Employing Bernstein inequality (2.2),
we have for f l

‖∇ f l‖L∞ ≤ c
K

∑
j=−∞

‖∇∆j f‖L∞ ≤ c
K

∑
j=−∞

2j‖∆j f‖L∞ ≤ c2(1−r)K‖ f‖Ḃr
∞,∞

,

and for f h

‖ f h‖L∞ ≤ c ∑
j>K

‖∆j f‖L∞ ≤ c2−rK‖ f‖Ḃr
∞,∞

.

By choosing K= 1
1+r log(e+‖ f‖Ḃr

∞,∞
) such that

∫ T

0
‖∇ f l(t)‖L∞ dt≤ c

∫ T

0
(e+‖ f (t)‖Ḃr

∞,∞
)

2
1+r dt, (3.12)

∫ T

0
‖ f h(t)‖2

L∞dt≤ c
∫ T

0
(e+‖ f (t)‖Ḃr

∞,∞
)

2
1+r dt. (3.13)

This completes the proof of Lemma 3.2.

Employing Lemma 3.1, we now carry out the estimation of (3.1) based on the assump-
tion described by (1.7).

With the slight modification in the proof of (3.2), the right hand side of (3.1) yields

−
3

∑
i,j,k=1

∫

R3
ui∂iuj∂kkuj dx=

3

∑
i,j,k=1

∫

R3
∂kui∂iuj∂kuj dx

=
2

∑
i=1

3

∑
j,k=1

∫

R3
∂k(u

h
i +ul

i)∂iuj∂kujdx+
2

∑
j=1

3

∑
k=1

∫

R3
∂ku3∂3uj∂k(u

h
j +ul

j)dx

−
3

∑
k=1

∫

R3
∂ku3

(

∂1(u
h
1+ul

1)+∂2(u
h
2+ul

2)
)

∂ku3dx

≤ c
∫

R3
|∇ũl ||∇u|2 dx+c

∫

R3
|ũh||∇u| |∇2u| dx=: J̃1+ J̃L2 . (3.14)
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For J̃1, applying Hölder inequality, Young inequality and (3.12) to produce

J̃1=
∫

R3
|∇ũl | |∇u|2 dx≤ c‖∇ũl‖L∞ ‖∇u‖2

L2 , (3.15)

and for J̃L2 , similarly

J̃L2 =
∫

R3
|ũh| |∇u| |∇2u| dx≤ c‖ũh‖L∞‖∇u‖L2‖∆u‖L2

≤c‖ũh‖2
L∞‖∇u‖2

L2 +
1

2
‖∆u‖2

L2 , (3.16)

Plugging (3.15-3.16) into (3.14) and then (3.1), one shows that

d

dt
‖∇u(t)‖2

L2 +‖∆u(t)‖2
L2 ≤ c

(

‖∇ũl‖L∞+‖ũh‖2
L∞

)

‖∇u‖2
L2 . (3.17)

Hence, taking Gronwall inequality into account, it follows that

sup
0<t<T

‖∇u(t)‖2
L2 ≤‖∇u0‖

2
L2 exp

{

∫ T

0
c
(

‖∇ũl‖L∞+‖ũh‖2
L∞

)

ds

}

, (3.18)

and applying (3.12) and (3.13) to the right hand side of (3.18) to give

sup
0<t<T

‖∇u(t)‖L2 ≤‖∇u0‖L2 exp

{

c
∫ T

0
(e+‖ũ(t)‖Ḃr

∞,∞
)

2
1+r dt

}

. (3.19)

Hence the proof of Theorem 3.2 is complete.

4 Proof of Theorems 1.1 and 1.2

According to a priori estimates of smooth solutions described in Theorems 3.1 and 3.2, the
proofs of Theorems 1.1 and 1.2 are standard.

Since u0 ∈ H1(R3) with ∇·u0 = 0, by the local existence theorem of strong solutions
to the Navier-Stokes equations (see, for example, Fujita and Kato [26]), there exist a
T∗

> 0 and a smooth solution ū of (1.1) satisfying ū ∈ C([0,T∗);H1)∩C1((0,T∗);H1)∩
C([0,T∗);H3), ū(x,0)=u0. Note that the Leray weak solution satisfies the energy inequal-
ity (1.4). It follows from Serrin’s weak-strong uniqueness criterion [27] that ū≡u on [0,T∗).
Thus it is sufficient to show that T∗=T. Suppose that T∗

<T. Without loss of generality,
we may assume that T∗ is the maximal existence time for ū. Since ū≡ u on [0,T∗) and
by the assumptions (1.6) or (1.7), it follows from Theorems 3.1 and 3.2 that the existence
time of ū can be extended after t= T∗ which contradicts with the maximality of t= T∗.
This completes the proofs of Theorems 1.1 and 1.2.
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