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1 Introduction

In recent years, there has been extensive study on a priori estimates for partial differ-
ential operators by using singular integral theory (see [1–3]). For example, authors in
[4–7] proved Morrey estimates for nondivergence elliptic operators with discontinuous
coefficients on Euclidean spaces. Bramanti and Brandolini proved Schauder estimates
for parabolic operators of Hörmander type in [8] and Lp-estimates for hypoelliptic oper-
ators of Hörmander type in [9], respectively. The Lp-estimates and Morrey estimates for
ultraparabolic operator of Kolmogorov-Fokker-Planck type

L=
q

∑
i,j=1

aij(x,t)∂xi
∂xj

+
N

∑
i,j=1

xibij∂xj
−∂t, (x,t)∈R

N+1 (1.1)

were considered in [10] and [11], respectively, where the coefficients aij ∈VMO∩L∞(Ω),
{bij} is a constant real matrix with a suitable upper triangular structure. The class of
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operators (1.1) contains prototypes of the Fokker-Planck operators describing Brownian
motions of a particle in fluid, as well as Kolmogorov operators depicting systems with
2n degrees of freedom (see [12]).

Let aij = δij, Xi = ∂xi
, and X0 = ∑

N
i,j=1 xibij∂xj

−∂t. Then (1.1) becomes a hypoelliptic
operator

L=
q

∑
i,j=1

X2
i +X0,

where X0,X1,··· ,Xq satisfy the Hörmander condition, i.e., the Lie algebra generated at
every point by the fields X0,X1,··· ,Xq is RN+1. In [12], the Lp-estimate for the following
operator on homogeneous groups

L=
q

∑
i,j=1

aijXiXj+a0X0,

was proved, where a0, aij ∈ VMO∩L∞(Ω) and vector fields X0, X1, ··· ,Xq satisfy the
Hörmander condition.

The aim of this paper is to establish Morrey estimates for nondivergence parabolic
operators with discontinuous coefficients and lower order terms on homogeneous groups

H=
q

∑
i,j=1

aij(z)XiXj+
q

∑
i=1

bi(z)Xi+c(z)−∂t , z=(x,t)∈R
N+1, (1.2)

where X1,··· ,Xq are the first layer of the basis of vector fields of homogeneous groups,
the coefficients aij,bi,c satisfy the following several assumptions:

• (H1) uniform ellipticity condition: aij(z)∈L∞(Ω), Ω⊂RN+1 and there exists µ>0

such that
1

µ

q

∑
j

ζ2
j ≤

q

∑
i,j

aij(z)ζiζ j ≤µ
q

∑
j

ζ2
j , ∀(ζ1,··· ,ζq)∈R

q.

• (H2) very weak regularity condition: aij(z) ∈ VMO(Ω) (the function space of
“Vanishing Mean Oscillation” (see Definition 2.3 below)).

• (H3) the coefficients bi(z) and c(z) are measurable functions in Ω,

bi(z)∈

{

LQ+2, p+λ≤Q+2,

Lp,λ, p+λ>Q+2,
c(z)∈

{

L
Q+2

2 , 2p+λ≤Q+2,

Lp,λ, 2p+λ>Q+2.

Let

H=
q

∑
i,j=1

aij(z)XiXj−∂t. (1.3)
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It is known that under condition (H1), for any fixed z0∈RN+1, the “frozen” operator

H0 =
q

∑
i,j=1

aij(z0)XiXj−∂t, (1.4)

is hypoelliptic and homogeneous of degree 2 about the dilation in (2.4) below.

For an open set Ω in RN+1 and p∈(1,∞), the Sobolev-Morrey space and the Sobolev-
Morrey norm are defined by

Sp,λ(Ω,H)=
{

f ∈Lp,λ(Ω) : c f ,biXi f ,XiXj f ,∂t f ∈Lp,λ(Ω),i, j=1,··· ,q
}

,

and

|| f ||Sp,λ(Ω,H) =
q

∑
i,j=1

||XiXj f ||p,λ;Ω+||∂t f ||p,λ;Ω, (1.5)

respectively, where we denote Lp,λ(Ω) and ||·||p,λ;Ω by Morrey space and Morrey norm,
respectively, see Section 2.

We will prove a priori estimates in Sp,λ(Ω,H) for solutions to the equation H f = F
when conditions (H1)-(H3) are fulfilled. The main result is the following.

Theorem 1.1. Assume (H1)-(H3) hold. If Ω′ ⊂⊂ Ω ⊂RN+1 (Ω,Ω′ are bounded open sets),
F ∈ Lp,λ(Ω),p∈ (1,+∞),λ∈ (0,Q+2) (Q is the homogeneous dimension of the homogeneous
group), then

|| f ||Sp,λ(Ω′,H)≤C
(

||H f ||p,λ;Ω+|| f ||p,λ;Ω

)

, ∀ f ∈Sp,λ(Ω), (1.6)

where the constant C depends only on p,λ,µ,Ω,Ω′ and the “VMO moduli” ηa of the coefficients
aij (see Definition 2.3).

Remark 1.1. If f is independent of t, then from Theorem 1.1 we immediately obtain a
local estimate in Sp,λ(Ω,H) for degenerate elliptic operators with lower order terms. If
let Lp(Ω) = Lp,0(Ω), then we easily get the Lp-estimate for operator H in (1.2) from the
proof of Theorem 1.1.

The paper is organized as follows: In Section 2 we introduce the definitions of BMO,
VMO and Morrey space on homogeneous groups. In Section 3, by the properties of the
fundamental solutions on homogeneous groups, the solution of (1.1) can be reformulated
as the singular integrals and their commutators with BMO functions. In Section 4 we
prove the Morrey boundedness of the singular integrals and their commutators above
using the content of Section 3. In Section 5 we establish the Morrey estimate of XiXj f and
∂t f , and then complete the proof of Theorem 1.1.
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2 Notations and several lemmas

We start by introducing some notations on homogeneous groups, refer to [12] and [13]
for more properties.

Let “·” be an assigned Lie group law on RN , for which the identity is the origin.
Suppose RN is endowed with a homogeneous structure by the following dilations

δ(λ)(x)=δ(λ)(x1,··· ,xN)=(λα1 x1,··· ,λαN xN), (2.1)

where α1 ≤···≤αN are strictly positive integers, λ >0. We call G≡ (RN,·,δ(λ)) a homo-
geneous group. We denote by Q=α1+···+αN the homogeneous dimension of G.

Definition 2.1. For any x∈G\{0}, define the homogeneous norm ||x||1 of x as follows: ||x||1 =
ρ1 if and only if |δ( 1

ρ1
)(x)|=1, where |·| denotes the Euclidean norm, and ||0||1 =0.

Since (1.2) involves t, we introduce two geometric structures on RN+1, i.e., group law
“◦” and dilation transform (D(λ))λ>0. For every z=(x,t), η=(y,s)∈RN+1 with x,y∈RN

and t,s∈R, let
z◦η =(x,t)◦(y,s)=(x·y,t+s). (2.2)

Then (RN+1,◦) is a (noncommutative) group with neutral element (0,0); the inverse of
an element z=(x,t)∈RN+1 is

z−1 =(x,t)−1 =(x−1,t−1). (2.3)

The other geometric structure is a group of dilations on RN+1, denoted by (D(λ))λ>0:

D(λ)(x,t)=(δ(λ)x,λ
2
t)=(λα1 x1,··· ,λαN xN ,λ

2
t). (2.4)

Then (RN+1,◦,D(λ)) also constitute a homogeneous group G×R. We denote by Q+2
the homogeneous dimension of RN+1 ≡G×R, where Q is the homogeneous dimension
of G.

Definition 2.2. (see [14]) For any z∈RN+1\{0}, define the homogeneous norm of z as ||z||:
||z||=ρ if and only if |D( 1

ρ )(x)|=1 and ||0||=0.

Proposition 2.1. The norm ||·|| has the following properties:
(i) ||D(λ)z||=λ||z|| for every z∈RN+1, λ>0;
(ii) The set {z∈RN+1 : ||z||=1} is the Euclidean unit sphere ΣN+1;
(iii) Let us define

|||(x,t)|||= ||x||2 +|t|1/2,

where

||x||2 =
N

∑
j=1

|xj|
1/αi , (x,t)∈R

n+1.
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Then |||·||| satisfies (i) above, and

1

N+1
||z||≤ |||z|||≤ (N+1)||z||.

Proof. (i) and (ii) follow immediately from (2.4) and Definition 2.2; (iii) can be proved by
using Definition 2.1 and an argument similar to that in [10, Proposition 1.3].

In view of Proposition 2.1, it is natural to define the “quasidistance” d on RN+1:

d(z,η)= ||η−1◦z||.

For every z∈RN+1 and r>0, we define the balls with respect to d as

B(z,r) := Br(z)=
{

η∈R
N+1 : d(z,η)< r

}

.

Note that |B(z,r)|= |B(0,r)|= |B(0,1)|rQ+2 . It means that the Lebesgue measure dz is a
doubling measure with respect to d, that is,

|B(z,2r)|≤C|B(z,r)|, for every z∈R
N+1 and r>0.

Then the space (RN+1,dz,d) is a space of homogeneous type.
Next, we will give the definitions of BMO, VMO and Morrey space on homogeneous

spaces.

Definition 2.3. (see [10]) For a measurable function f ∈L1
loc(RN+1), define

η f (R)=sup
r≤R

1

|Br|

∫

Br

| f (z)− fBr |dz,

where

fBr =
1

|Br|

∫

Br

f (z)dz.

Then f ∈BMO(RN+1) (bounded mean oscillation) if

|| f ||∗ :=sup
R

η f (R)<+∞,

while f ∈VMO(RN+1) (vanishing mean oscillation) if

lim
R→0

η f (R)=0.

For a given domain Ω ⊂ RN+1, the spaces BMO(Ω) and VMO(Ω) are defined as
Definition 2.3, just taking Br∩Ω instead of Br.



6 S. Tang and N. Wei / J. Partial Diff. Eq., 23 (2010), pp. 1-15

Definition 2.4. We say that a measurable function f ∈ L1
loc(RN+1) belongs to the Morrey space

Lp,λ(RN+1), p∈ (1,+∞),λ∈ (0,Q+2), if the following norm:

|| f ||p,λ :=

(

sup
r>0

1

rλ

∫

Br

| f (z)|pdz

)
1
p

(2.5)

is finite. Similarly, the space Lp,λ(Ω) and the norm || f ||p,λ;Ω are defined by taking Br∩Ω instead

of Br in (2.5). When λ=0, Lp,λ coincides with the Lebesgue space Lp and (2.5) gives rise to the
norm || f ||p,0 := || f ||p.

3 Fundamental solutions for the frozen operator and

representation formulas

For any given z0∈RN+1, the frozen operator in (1.4) has a fundamental solution (see [13]).
Let us denote it by Γ(z0;·) which depends on the frozen coefficients aij(z0). For any
i, j=1,··· ,q, let

Γij(z0;z)=XiXj[Γ(z0;·)](z). (3.1)

Lemma 3.1. ([13, 15]) For every fixed z0∈RN+1, we have
(i) Γ(z0;·)∈C∞(RN+1\{0}) and Γ(z0;·) is D(λ)-homogeneous of degree −Q;
(ii) Γij(z0;·)∈C∞(RN+1\{0}) and Γij(z0;·) is D(λ)-homogeneous of degree −(Q+2);

(iii) For i, j=1,··· ,q and every test function f ∈C∞
0 (RN+1), there exist constants αij(z0) such

that

XiXj f (z)=−P.V.
∫

RN+1
Γij(z0;η−1◦z)H0 f (η)dη+αij(z0)H0 f (z). (3.2)

Lemma 3.2. (Cutoff functions) For every 0<γ<r, z=(x,t)∈RN+1, there exists ϕ∈C∞
0 (RN+1)

with the following properties:
(i) 0≤ ϕ≤1, ϕ≡1 on Bγ(z), and suppϕ⊂Br(z);
(ii) There exists a constant C such that

|D2ϕ|= ∑
1≤i,j≤q

|XiXj ϕ|≤
C

(r−γ)2
, |∂t ϕ|≤

C

(r−γ)2
.

We will write Bγ(z)≺ ϕ≺Br(z) as ϕ satisfies the above two properties.

Proof. Bγ≺ ϕ≺Br implies Bγ′ ≺ ϕ≺Br for every 0<γ′
<γ. Without loss of generality, we

can assume γ≥ r/2. Choose a function f : [0,∞)→ [0,1] satisfying:

f ≡1 in [0,γ]; f ≡1 in [r,∞]; f ∈C∞(0,∞),

| f (k)|≤
ck

(r−γ)k
for k≥1.
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Let ϕ(y,s)= f (d((x,t),(y,s))). Then

Xi ϕ(y,s)= f ′(d((x,t),(y,s)))Xi(d((x,t),(·,s)))(y);

XiXj ϕ(y,s)= f ′′(d((x,t),(y,s)))Xi(d((x,t),(·,s)))(y)Xj(d((x,t),(·,s)))(y)

+ f ′(d((x,t),(y,s)))XiXj(d((x,t),(·,s)))(y).

From Definitions 2.1 and 2.2, we get the relation between the quasidistance d on RN+1

and the quasidistance d1 on RN:

d((x,t),(y,s))=

√

d1(x,y)2+
√

d1(x,y)4+4|t−s|2

2
.

Therefore,

Xi(d((x,t),(·,s)))(y)=

d1(x,y)Xi(d1(x,·))(y)+
d1(x,y)3Xi(d1(x,y))
√

d1(x,y)4+4|t−s|2

2d((x,t),(y,s))

=

d1(x,y)Xi(ρ1(·))(y−1 ·x)+
d1(x,y)3Xi(ρ1(·))(y−1 ·x)

√

d1(x,y)4+4|t−s|2

2d((x,t),(y,s))
.

By homogeneity of the norm ρ1, Xi(ρ1(·))(y−1 ·x) is bounded. Consequently,

|Xi(d((x,t),(·,s)))(y)|≤C.

Analogously,

|XiXj(d((x,t),(·,s)))(y)|≤
C

d((x,t),(y,s))
,

for d((x,t),(y,s)) small enough. Then,

|Xi ϕ(y,s)|≤
C

r−γ
.

Since f ′(d((x,t),(y,s))) 6=0 for d((x,t),(y,s))>γ, we have

|XiXj ϕ(y,s)|≤
C

(r−γ)2
+

C

γ(r−γ)

≤
Cr

γ(r−γ)2
≤

C

(r−γ)2
.

Also, note

∂s ϕ(y,s)= f ′(d((x,t),(y,s)))
|t−s|

d((x,t),(y,s))
√

d1(x,y)4+4|t−s|2
,
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which yields

|∂s ϕ(y,s)|≤
C

γ(r−γ)
≤

Cr

γ(r−γ)2
≤

C

(r−γ)2
.

This completes the proof of Lemma 3.2.

Theorem 3.1. For any fixed z0∈RN+1, let

Γ0
ij(z,η)=XiXjΓ(z0;·)(η−1◦z).

Then we have

(i) the growth condition:

|Γ0
ij(z,η)|≤

C

|B(z,d(z,η)|
,

for every z,η∈RN+1 and some constant C;
(ii) the Hörmander inequality: there exists a constant C such that for every z1 ∈RN+1,r >

0,z∈Br(z1),η∈∂B2r(z1) (spherical surface of B2r(z1)),

∣

∣Γ0
ij(z,η)−Γ0

ij(z1,η)
∣

∣+
∣

∣Γ0
ij(η,z)−Γ0

ij(η,z1)
∣

∣≤C
d(z1,z)

d(z1,η)Q+3
.

Proof. (i) By the uniform Gaussian estimates proved in [15] for the fundamental solution
of H0, we know that

∣

∣

∣
∂k

t Xi1 ···XirΓ((x0,t0);(x,t))
∣

∣

∣
≤C1

e−C2(||x||1)
2/t

tQ/2+k+r/2
, z=(x,t)∈R

N+1, (3.3)

with C1,C2 independent of z0 =(x0,t0) and ||·||1 defined in Definition 2.1. Then by (iii) of
Proposition 2.1 and (3.3),

|Γ0
ij(x,t)|≤C1

( ||x||1 +|t|1/2

t1/2

)Q+2 e−C2(||x||1)
2/t

(||x||1 +|t|1/2)Q+2

≤
C3

(||x||1 +|t|1/2)Q+2
≤

C

||z||Q+2
, (3.4)

where z=(x,t) and the constant C3 is independent of z0 =(x0,t0). This implies that

|Γ0
ij(z,η)|≤

C

||η−1◦z||Q+2
=

C

d(z,η)Q+2
≤

C

|B(z,d(z,η))|
.

(ii) Fix z1,η∈RN+1 and let ϕ(z) be a cutoff function satisfying Br(z1)≺ϕ(z)≺B3r/2(z1)
and

|∂k
t Dh ϕ|= ∑

1≤i,j≤q

|∂k
t Xi1 ···Xih ϕ|≤

Ch,k

rh+2k
. (3.5)
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Set f (z)=Γ0
ij(z,η)ϕ(z). Then f ∈C1

0(B3r/2(z1)), and for d(z1,z)< r, we have

∣

∣

∣
Γ0

ij(z,η)−Γ0
ij(z1,η)

∣

∣

∣
= | f (z)− f (z1)|

≤d(z1,z)

{

sup
ζ∈B3/2r(z1)

|X f (ζ)|+
3

2
r sup

ζ∈B3/2r(z1)

| ft(ζ)|

}

. (3.6)

It follows from (3.3)-(3.5) that

|X f (ζ)|= |XΓ0
ij(ζ,η)ϕ(ζ)|+|Γ0

ij(ζ,η)Xϕ(ζ)|

≤
C

d(ζ,η)Q+3
≤

C

rQ+3
≤

C

d(z1,η)Q+3
.

Similarly,

ft(ζ)=∂tΓ
0
ij(ζ,η)ϕ(ζ)+Γ0

ij(ζ,η)ϕt(ζ)≤
C

rQ+4
.

Therefore, by (3.6), we get

|Γ0
ij(z,η)−Γ0

ij(z1,η)|≤C
d(z1,z)

d(z1,η)Q+3
, for d(z1,η)≥2d(z1,z).

Similarly we can obtain

|Γ0
ij(η,z)−Γ0

ij(η,z1)|≤C
d(z1,z)

d(z1,η)Q+3
, for d(z1,η)≥2d(z1,z).

This completes the proof of this theorem.

Theorem 3.2. For every multi-index β, there exists a constant C=C(β,N,µ) such that

sup
z0∈RN+1, |η||=1

∣

∣

∣

∣

( ∂

∂η

)β
Γij(z0;η)

∣

∣

∣

∣

≤C.

Proof. This result can be obtained from Theorem 3.1 and [12, Theorem 12].

Now consider (3.2). Writing H0 as H0 =H+(H0−H), and then substituting z for z0,
we have a representation formula for the second order derivatives XiXj f .

Theorem 3.3. Let f ∈C∞
0 (RN+1), f =0 for t≤0 and z=(x,t)∈ supp f . Then for i, j=1,··· ,q,

XiXj f (z)= P.V.
∫

RN+1
Γij(z;η−1◦z)

{ q

∑
h,k=1

[ahk(η)−ahk(z)]XhXk f (η)

−H f (η)

}

dη+αij(z)H f (z), (3.7)
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where

αij(z)=
∫

ΣN+1

Γj(z;η)νidσ(η),

νi is the i-th component of the unit outward normal to the surface ΣN+1.

For convenience, we will introduce some notations. Set

Kij f (z)= P.V.
∫

RN+1
Γij(z;η−1◦z) f (η)dη.

For a singular integral operator K and a function a∈BMO∩L∞(RN+1), define the com-
mutator

C [K,a] f =K(a f )−aK( f ).

Then (3.7) becomes

XiXj f =−Kij(H f )+
q

∑
h,k=1

C
[

Kij,ahk

]

XhXk f +αijH f , ∀i, j=1,··· ,q. (3.8)

4 Estimates of singular integrals

The Lp-estimates and Lp,λ-estimates for singular integrals with constant kernel and their
commutators with BMO functions have been given in [3] and [16], respectively, in the
context of general homogeneous spaces. Note that singular integrals here are with vari-
able kernel. The main result in this section is the boundedness of Kij and C

[

Kij,a
]

in

Morrey space Lp,λ(RN+1).

Theorem 4.1. Let p∈ (1,+∞),λ∈ (0,Q+2) and a∈BMO(RN+1). For any f ∈ Lp,λ(RN+1),
the singular integrals Kij f and their commutators C

[

Kij,a
]

f are bounded from Lp,λ(RN+1) into
itself, that is,

||Kij( f )||p,λ ≤C|| f ||p,λ (4.1)

and

||C
[

Kij,a
]

( f )||p,λ ≤C||a||∗ || f ||p,λ, (4.2)

with C=C(p,λ,Q,N).

To prove Theorem 4.1, we need to apply Calderón-Zygmund’s technique of expan-
sion in spherical harmonics (see [1, 2]). Let {Ykm} (m ≥ 0, 1≤ k ≤ gm) be a complete or-
thogonal system of spherical harmonics in L2(ΣN+1). Denote by m the degree of the
polynomial and by gm the dimension of the space of spherical harmonics of degree m in
RN+1. It is known that

gm ≤C(N)mN−1, ∀m=1,2,··· . (4.3)
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For any fixed z∈RN+1, η∈ΣN+1, there is an expansion:

Γij(z;η)=
∞

∑
m=0

gm

∑
k=1

Ckm
ij (z)Ykm(η), for i, j=1,··· ,q. (4.4)

For any given η ∈RN+1, let η′ = D(||η||−1)η. Then η′ ∈ΣN+1 by Proposition 2.3 (ii). By
(4.4) and homogeneity of Γij, we have

Γij(z;η)=
∞

∑
m=0

gm

∑
k=1

Ckm
ij (z)

Ykm(η′)

||η||Q+2
. (4.5)

The coefficients Ckm
ij in the above expansion have the following bound: for every positive

integer l, there exists a constant C=C(l,µ,N) such that

sup
z∈RN+1

|Ckm
ij (z)|≤Cm−2l , ∀m=1,2,··· , k=1,··· ,gm. (4.6)

Now, for z∈RN+1, z′ ∈ΣN+1, let Hkm(z) = Ykm(z′)/||z||Q+2. For the following singular
integral operators

Kkm f (z)=:
∫

RN+1
Hkm(η−1◦z) f (η)dη,

and their commutators

C [Kkm,a] f (z) :=
∫

RN+1
Hkm(η−1◦z)[a(η)−a(z)] f (η)dη,

the results in [3] and [16] show that they are bounded from Lp,λ(RN+1) into itself, namely,

||Kkm( f )||p,λ ≤Cm(N+1)/2|| f ||p,λ, (4.7)

||C [Kkm,a]( f )||p,λ ≤Cm(N+1)/2||a||∗ || f ||p,λ, (4.8)

with C=C(p,λ,Q,N).
To prove Theorem 4.1 in our situation (RN+1,dz,d), it suffices to repeat the argument

of [7, Theorem 2.1] making use of spherical harmonic expansion, (4.7) and (4.8).

5 Estimates of solutions in Sobolev-Morrey space

To complete the proof of Theorem 1.1, we verify the Lp,λ-estimate of two order derivation
XiXj f of the solution to the equation H f = F, and then deduce the estimate for lower
order term of H by using interpolation inequalities. We first consider the localization of
estimate (4.2): If a∈VMO(RN+1), then for any ε>0, there exists r0>0 depending on ε and
the VMO modulus ηa of a, such that for every r∈(0,r0),supp f ⊆Br, (4.2) can be localized
as:

||C
[

Kij,a
]

( f )||p,λ;Br
≤C(p,λ,Q,N)·ε|| f ||p,λ;Br

, for f ∈Lp,λ(Br). (5.1)

From (3.8), (4.1) and (5.1), we derive immediately the Morrey estimate of XiXj f on
sufficiently small balls.
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Lemma 5.1. For every p ∈ (1,+∞) and λ ∈ (0,Q+2), there exist C = C(p,λ,µ) and r0 =
r0(p,λ,µ,ηa) such that for f ∈ S

p
0 ∩Sp,λ(Br,H), f = 0 for t ≤ 0, H f ∈ Lp,λ(Br),0 < r < r0,

i, j=1,··· ,q, the following estimate holds:

||XiXj f ||p,λ;Br
≤C||H f ||p,λ;Br

. (5.2)

With techniques of cutoff function and interpolation inequalities, from Lemma 5.1,
we obtain the following local a priori estimate.

Lemma 5.2. (Lp,λ-estimate without lower order terms) For every p∈ (1,+∞),λ∈ (0,Q+2)
and every open set Ω′⊂⊂Ω, there exists C =C(p,λ,µ,ηa,|Ω|,dist(Ω′ ,∂Ω)) such that for every
f ∈Sp,λ(Ω,H), f =0 for t≤0, H f ∈Lp,λ(Ω), i, j=1,··· ,q,

||XiXj f ||p,λ;Ω′ ≤C
{

||H f ||p,λ;Ω+|| f ||p,λ;Ω

}

. (5.3)

Proof. For every r0 =r0(p,λ,µ,ηa)>0, let r<r0. For σ∈(0,1), let σ′=(1+σ)/2 and choose
a cutoff function ϕ∈C∞

0 (Br) and Bσr ≺ ϕ≺Bσ′r satisfying

|Xi ϕ|
2+|XiXj ϕ|≤

C

(1−σ)2r2
, ∀i, j=1,··· ,q. (5.4)

Set g := f ϕ. Then g∈S
p
0 ∩Sp,λ(Br). It follows from (5.2) and (5.4) that

||XiXj f ||p,λ;Bσr
= ||XiXjg||p,λ;Bσr

≤C||H f ||p,λ;Bσ′r

≤C

(

||ϕH f ||p,λ;Bσ′r
+

q

∑
i,j=1

||Xi f Xj ϕ||p,λ;Bσ′r
+

q

∑
i,j=1

|| f XiXj ϕ||p,λ;Bσ′r

)

≤C

(

||H f ||p,λ;Br
+

1

(1−σ)r
||X f ||p,λ;Bσ′r

+
1

(1−σ)2r2
|| f ||p,λ;Bσ′r

)

. (5.5)

Define the weighted Morrey seminorms:

Φk = sup
σ∈(0,1)

(1−σ)krk||Xk f ||p,λ;Bσ r
, k=0,1,2, (5.6)

where ||Xk f ||p,λ;Bσr
=∑||Xj1 ···Xjk f ||p,λ;Bσr

, with Xj1 ···Xjk being the homogeneous of de-
gree k. Consequently, (5.5) becomes

Φ2≤C
(

r2||H f ||p,λ;Br
+Φ1+Φ0

)

. (5.7)

For Φk, we claim the following version of the interpolation inequality

Φ1≤ εΦ2+
C

ε
Φ0, ∀ε>0. (5.8)
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In fact, from (5.6), for every θ >0, there exists σ(θ)∈ (0,1) such that

Φ1≤
(

1−σ(θ)
)

r||X f ||p,λ;Bσ(θ)r
+θ.

Using [12, Proposition 2] (or [9, Theorem 3.6]) gives

||X f ||p,λ;Bσ(θ)r
≤δ||X2 f ||p,λ;Bσ(θ)r

+
C

δ
|| f ||p,λ;Bσ(θ)r

, ∀δ>0. (5.9)

Hence, taking δ= ε(1−σ(θ))r in (5.9) yields

Φ1 ≤ ε(1−σ(θ))2r2||X2 f ||p,λ;Bσ(θ)r
+

C

ε
|| f ||p,λ;Bσ(θ)r

+θ

≤ εΦ2+
C

ε
Φ0+θ.

We obtain (5.8) by letting θ→0 in the above inequality. Using (5.8) in (5.7), we then get

||XiXj f ||p,λ;Bσr
≤

C

(1−σ)2r2

(

r2||H f ||p,λ;Br
+|| f ||p,λ;Br

)

.

Finally, (5.3) follows by taking σ = 1
2 and covering Ω′ with a finite number of balls of

radius r/2 for r≤min{dist(Ω′,∂Ω),r0}.

5.1 Proof of Theorem 1.1

For every f ∈S
p
0 ∩Sp,λ(Br,H) and r small enough, we claim

||biXi f ||p,λ;Br
≤

{

C||bi||Q+2;Br ||X
2 f ||p,λ;Br

, p+λ≤Q+2,

C||bi||p,λ;Br
||X2 f ||p,λ;Br

, p+λ>Q+2.
(5.10)

In fact, for p+λ≤Q+2, by using the Hölder inequality and the Sobolev inequality [13],
it derives

(

ρ−λ
∫

Bρ∩Br

|biXi f |p
)1/p

≤ Cρ−λ/p||bi||Q+2;Br ||Xi f || (Q+2)p
Q+2−p ;Br

≤ C||bi||Q+2;Br
ρ−λ/p||Xi f ||W1,p(Br)

≤ C||bi||Q+2;Br
||X2 f ||p,λ;Br

. (5.11)

For p+λ>Q+2, since W1,p(Br) →֒C0(Br) (see [13]) and Lp,λ(Br) →֒ Lp(Br), we obtain

(

ρ−λ
∫

Bρ∩Br

|biXi f |p
)1/p

≤

(

ρ−λ
∫

Bρ∩Br

|bi|
p

)1/p

sup
Br

|Xi f |

≤ C||bi||p,λ;Br
||Xi f ||W1,p(Br)

≤ C||bi||p,λ;Br
||X2 f ||p,λ;Br

. (5.12)
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The estimate (5.10) can be verified from (5.11) and (5.12). Similarly, we can obtain

||c f ||p,λ;Br
≤

{

C||c|| Q+2
2 ;Br

||X2 f ||p,λ;Br
, 2p+λ≤Q+2,

C||c||p,λ;Br
||X2 f ||p,λ;Br

, 2p+λ>Q+2.
(5.13)

Hence, it follows from (5.2), (5.10), (5.13) and (1.2) that

q

∑
i=1

|| XiXj f ||p,λ;Br
≤ C

(

||H f −
q

∑
i=1

biXi f −c f ||p,λ;Br

)

≤ C
(

||H f ||p,λ;Br
+

q

∑
i,j=1

||XiXj f ||p,λ;Br
+|| f ||p,λ;Br

)

,

which yields

||XiXj f ||p,λ;Br
≤C

(

||H f ||p,λ;Br
+|| f ||p,λ;Br

)

.

Now, we consider f ∈Sp,λ(Ω,H). For Br⊂Ω with r small enough, and σ′=(1+σ)/2 with
σ∈ (0,1), let ϕ∈C∞

0 (Br) be a cutoff function such that Bσr ≺ ϕ≺Bσ′r. Then

||XiXj f ||p,λ;Bσr
≤C

(

||H( f ϕ)||p,λ;Bσ′r
+|| f ϕ ||p,λ;Bσ′r

)

.

A similar argument as in Lemma 5.2 gives

||XiXj f ||p,λ;Bσr
≤

C

(1−σ)2r2

(

r2||H f ||p,λ;Br
+|| f ||p,λ;Br

)

. (5.14)

From (1.2), (5.9) and (5.14), we have

||∂t f ||p,λ;Bσr
≤ C

(

||H f ||p,λ;Br
+||X2 f ||p,λ;Br

+||X f ||p,λ;Br
+|| f ||p,λ;Br

)

≤
C

(1−σ)2r2

(

r2||H f ||p,λ;Br
+|| f ||p,λ;Br

)

. (5.15)

Combining (5.14) and (5.15) and using Lemma 5.2 conclude Theorem 1.1. 2
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