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1 Introduction

In this paper, we investigate the following stochastic incompressible non-Newtonian
fluid in two-dimensional periodic domain D,

du+
(

u·∇u−∇·τ(e(u))+∇π
)

dt= f (x)dt+ΦdW(t), x∈D, t>0, (1.1)

u(x,0)=u0(x), x∈D, (1.2)

∇·u(x,t)=0, (1.3)

subject to the periodic boundary conditions

u(x,t)=u(x+Lχj,t),
∫

D
u(x,t)dx=0, D=[0,L]2 (L>0), (1.4)

where {χj}
2
j=1 is the natural basis of R2.
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The unknown vector function u denotes the velocity of the fluid, f is the external force
function, and the scalar function π represents the pressure, τij(e(u)) is a symmetric stress
tensor. There are many fluid materials such as liquid foams, polymeric fluids such as oil
in water, blood, etc. whose viscous stress tensors are represented by the form

τij(e(u))=2µ0

(

ǫ+|e(u)|2
)

p−2
2 eij(u)−2µ1∆eij(u), i, j=1,2, ǫ>0, p>2, (1.5)

eij(u)=
1

2

(∂ui

∂xj
+

∂uj

∂xi

)

, |e(u)|2 =
2

∑
i,j=1

|eij(u)|2.

We use
W(t)=∑

i

βi(t)hi (1.6)

to describe the cylindrical Wiener process for white noise on Hilbert space H adapted to
a filtration (Ft)t∈R on a fixed probability space (Ω,F ,P), where {hi} is an orthonormal
complete basis in Hilbert space H and βi(t) is a family of mutually independent real
valued standard Wiener process. Φ is a predictable process in a fixed probability space,
which is also a linear mapping.

Next, we set some notations. Lq(D) denotes the Lebesgue space with norm ‖·‖Lp ,
particularly, ‖·‖L2 = ‖·‖, and ‖u‖L∞ = esssupx∈D |u(x)|. Hσ(D) represents the Sobolev

space {u∈ L2(D), Dku∈ L2(D), k≤σ}, with ‖·‖Hσ = ‖·‖σ . C (I,X) denotes the space of
continuous functions from the interval I to X. Lq(0,T;X) is the space of all measurable
functions u : [0,T] 7→X, with the norm

‖u‖
q

Lq(0,T;X)
=

∫ T

0
‖u(t)‖

q
Xdt,

and when q=∞,
‖u‖L∞(0,T;X)=ess sup

t∈[0,T]

‖u(t)‖X .

Define a space of smooth functions that incorporates the periodicity with respect to x and
divergence-free condition

V =

{

u∈C∞
per(D) :∇·u=0,

∫

D
udx=0

}

.

We use H to denote the closure of V in L2(D) with norm ‖·‖; Ḣσ(D) the closure of
V in Hσ(D) with norm ‖·‖σ (σ ≥ 1). Particularly, when σ = 2, V = Ḣ2(D). Denote by
(L̇0,σ

2 ,‖·‖
L̇0,σ

2
) the Hilbert space of Hilbert-Schmidt operators from H to Ḣσ(D), with the

norm

‖Φ‖L̇0,σ
2

=

(

∑
i

‖Φhi‖
2
Ḣσ

)
1
2

. (1.7)

A final restriction on Φ is given: Φ belongs to L̇0,5
2 .
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Obviously, when p = 2, µ1 = 0, and Φ = 0, Eq. (1.1) is a deterministic equation and
reduces to Navier-Stokes equation. When µ0 = µ1 =0, it is Euler equation. Both of them
are Newtonian fluids. In this paper, we will concentrate our attention on the case p > 2,
ǫ>0, µ0 >0 and µ1 >0. In [1] we have considered the case 1< p<2.

Many papers have devoted to questions of existence and uniqueness of the solution,
and the existence of attractor and manifold for deterministic non-Newtonian equation
(see [2–7]). In fact, the deterministic system model usually neglects the impact of many
small perturbations, and stochastic equation can conform to physic phenomena better.
It is also well known that many authors made efforts to this stochastic field of research,
and displayed interesting structures and phenomena in physics. For important equa-
tions, such as the stochastic KdV equation, Navier-Stokes equation, Burgers equation,
Schrödinger equation etc., there have been more interesting results related to their ex-
istence, uniqueness and attractors (see [8–14] for the progresses in these fields). In this
paper, we consider stochastic non-Newtonian fluid equation as a simple model for per-
turbations.

Attractor is an important concept in the study of asymptotic behavior of deterministic
dynamical systems. Crauel, Debussche and Flandoli (see [12, 13]) present a general the-
ory to study the random attractors by defining an attracting set as a set that attracts any
orbit starting from −∞. The random attractors are compact invariant sets, which depend
on chance and move with time. The authors applied the theory to prove the existence of
random attractors for two-dimensional stochastic Navier-Stokes equation. In this paper,
we will apply the theory to prove the existence of random attractors for two-dimensional
stochastic non-Newtonian flow in the case of p>2. More recently, the authors in [15–18]
considered the existence of random attractors for different stochastic equations. As in the
case of the deterministic attractor, the Hausdorff dimension of the random attractor can
be estimated. Crauel and Flandoli in [19] developed a method for bounding the Haus-
dorff dimension when the noise was bounded. Debussche in [20, 21] provided a general
way to obtain the Hausdorff dimension of random attractor and proved that the ran-
dom attractor of reaction-diffusion equation had finite Hausdorff dimension. Langa and
Robinson in [22] proved that the fractal dimension enjoyed the same bound as the Haus-
dorff dimension, and applied the theorem to the two-dimensional stochastic Navier-
Stokes equation. Along this line, we can consider the finite Hausdorff and fractal di-
mension of random attractors obtained here in a forthcoming paper. Of course, the proof
is more complicated.

The purpose of this paper is to consider the asymptotic behaviors of stochastic non-
Newtonian dynamical system. In the case of 1< p<2 (see [1]), we only need to assume
Φ∈ L̇0,2

2 , the existence of attractors can be obtained in H. But in the case of p>2, we need

to assume Φ∈ L̇0,5
2 , the existence of attractors also can be obtained in H. Obviously, the

restriction of Φ is strengthened for the latter. Because the nonlinear term becomes worse
as the power p increases, the restriction of Φ must be strengthened in order to obtain the
same result. The appearance of the stochastic term has brought great difference for the
non-Newtonian fluid, thus the study of it is very important.



Random Attractors of Stochastic Non-Newtonian Fluid 19

In fact, by some careful computations, we find that 2∇·(∆e(u)) with the divergence-
free condition ∇·u=0 are equivalent to

2∇·(∆e(u))=∆2(u).

Eqs. (1.1)-(1.4) can be modified to the following problems in H:

du+[µ1Au−2µ0 Apu+B(u,u)]dt= f dt+ΦdW(t), t> s, (1.8)

u(s)=us, s∈R, (1.9)

u(x,t)=u(x+Lχj,t),
∫

D
u(x,t)dx=0, (1.10)

where A= P∆2, B(u,u)= P(u·∇u), P is the projection from L2(D) to H,

(Apu)i =
∂

∂xj

[

ǫ+|e(u)|2
]

p−2
2 eij(u).

The paper is organized as follows. In Section 2, we recall some definitions and al-
ready known results concerning random attractors; In Section 3, we give some properties
about Ornstein-Uhlenbeck process Z(·). In Section 4, we prove the existence of random
attractors in Hilbert space H with Φ∈ L̇0,5

2 and f ∈H.
For notational simplicity, C is a generic constant and may assume various values from

line to line. The summation convention related to repeated indices is used throughout the
paper.

2 Preliminaries

We define

a(u,υ)=
∫

D

∂2u

∂x2
k

∂2υ

∂x2
k

dx, (u,υ∈V).

Then a(u,υ) is the positive definite V-elliptic symmetric bilinear form,

(Au,υ)= a(u,υ)=< f ,υ>, u∈V, f ∈V ′,

where V ′ is the dual space of V, A:V→V ′ is a linear operator, and D(A)={u∈V :Au∈H}.
In fact A= P∆2, P is the projection from L2(D) to H.

According to Rellich Theorem, A−1 is compact in H. Then

Aφn =λnφn, φn ∈D(A), (2.1)

where {φn}∞
n=1 are the eigenfunctions and also are basis in V, λn>0,λn→∞, when n→∞.

We define a continuous bilinear operator B(·,·) :Ḣ1(D)×Ḣ1(D)→Ḣ−1(D) as follows:

(B(u,υ),̟)=
∫

D
ui

∂υj

∂xi
̟jdx, u,υ,̟∈ Ḣ1(D),
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which has the properties:

(B(u,υ),̟)=−(B(u,̟),υ), (B(u,υ),υ)=0.

For u∈V, the operator Ap(·) :V→V ′ defined by

(

Ap(u),υ
)

=−
∫

D
γ(u)eij(u)eij(v)dx, u,υ∈V,

where

γ(u)=
(

ǫ+|e(u)|2
)

p−2
2 .

Lemma 2.1 ([4]). There exist positive constants k1 and k2 such that

k1‖u‖2
2 ≤

∫

D

∂eij(u)

∂xk

∂eij(u)

∂xk
dx≤ k2‖u‖2

2.

We next recall some definitions and results concerning the random attractors, which
can be found in [12, 13]. Let (X,d) be a complete separable metric space and (Ω,F ,P)
be a complete probability space. We will consider a family of mappings S(t,s;ω) : X →
X, −∞< s≤ t<∞, parameterized by ω∈Ω in the following contexts.

Definition 2.1 (see [12]). Given t ∈ R and ω ∈ Ω, K(t,ω)⊂ X is an attracting set if for all
bounded sets B⊂X

d(S(t,s;ω)B,K(t,ω))→0, s→−∞,

where d(A,B) is the semidistance defined by

d(A,B)=sup
x∈A

inf
y∈B

d(x,y).

Definition 2.2. A family A(ω), ω∈Ω of the closed subsets of X is measurable if for all x∈X
the mapping ω 7→d(A(ω),x) is measurable.

Definition 2.3. Define the random omega limit set of a bounded set B⊂X at time t as

A(B,t,ω)=
⋂

T<t

⋃

s<T

S(t,s;ω)B.

Definition 2.4. Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system, and A(t,ω) be a stochas-
tic set satisfying the following conditions:

(1) It is the minimal closed set such that for t∈R, B⊂X,

d(S(t,s;ω)B,A(t,ω))→0, s→−∞,

which implies A(t,ω) attracts B (B is a deterministic set).
(2) A(t,ω) is the largest compact measurable set, which is invariant in the sense that

S(t,s;ω)A(θsω)= A(θtω), s≤ t.

Then A(t,ω) is said to be the random attractor.
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Theorem 2.1 (see [12]). Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system satisfying the
following conditions

(1) S(t,r;ω)S(r,s,;ω)x=S(t,s;ω)x, for all s≤ r≤ t and x∈X;
(2) S(t,s;ω) is continuous in X, for all s≤ t;
(3) for all s≤ t and x∈X, the mapping

ω 7→S(t,s;ω)x

is measurable from (Ω,F ) to (X,B(X));
(4) for all t,x∈X and P-a.e. ω, the mapping

s 7→S(t,s;ω)x

is right continuous at any point.
Assume that there exists a group θt,t∈R of measure preserving mappings such that

S(t,s;ω)x=S(t−s,0;θsω)x , P−a.e. (2.2)

holds and for P-a.e. ω, there exists a compact attracting set K(ω) at time 0, for P-a.e. ω∈Ω. We
set

Λ(ω)=
⋃

B⊂X

A(B,ω),

where the union is taken over all the bounded subsets of X and A(B,ω) is given by

A(B,ω)=
⋂

T<0

⋃

s<T

S(0,s;ω)B.

Then Λ(ω) is the random attractor.

Especially, let Ω = {ω∈C(R,l2)|ω(0)=0}, with p being the product measure of two
wiener measures on the negative and the positive time parts of Ω. Then

(β1(t,ω),β2(t,ω),··· ,βk(t,ω),···)=ω(t).

In this case, the time shift θt is defined as

(θtω)(s)=ω(t+s)−ω(t), s,t∈R. (2.3)

As a result, the condition (2.2) is satisfied.

3 Some properties about Z(·)

For any α>0, we introduce the Ornstein-Uhlenbeck process,

Z(t)=
∫ t

−∞
e−(µ1A+α)(t−s)ΦdW(s), (3.1)
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where A = P∆2 is a positive operator, µ1 > 0 is constant, and Z(t) is the solution of the
following linear equation,

dZ=−(µ1A+α)Zdt+ΦdW(t), (3.2)

Z(0)=Z0 =
∫ 0

−∞
es(µ1A+α)ΦdW(s). (3.3)

It is well known and easy to check that Z(t) is a stationary process whose trajectories are
P−a.e. continuous. The details are described in the following lemma.

Lemma 3.1. Assume Φ∈ L̇0,σ
2 (σ=0,1,2,3,4,5), s<T∈R. Then

Z(·)∈C (s,T;Ḣσ(D)), (3.4)

with the estimate

E

[

sup
t∈[s,T]

‖Z(t)‖2
σ

]

≤C(T−s)‖Φ‖2
L̇0,σ

2

.

The proof of the lemma is similar to [23], we omit the details here.

Lemma 3.2 (see [11]). For any t ∈ R, let Φ ∈ L̇0,5
2 . Then for any δ > 0, there exists an α > 0

depending on δ, such that

E(‖Z(t)‖2
1)<δ. (3.5)

Proof. Let Z∈ Ḣ1(D). By its Fourier series, Z can be expanded as

Z= ∑
m∈Z2

cme2πim·x/L,

where

c̄m = c−m and ∑
m∈Z2

|m|2|cm|
2
<∞.

Define the operator J1 as

J1Z := ∑
m∈Z2

m cme2πim·x/L.

Since W(t)=∑
∞
k=1 βk(t)hk , we can obtain

Z(t)=
∞

∑
k=1

∫ t

−∞
e−(t−s)(µ1A+α)Φhkdβk(s),
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and

E(‖Z(t)‖2
1)=E(‖J1Z(t)‖2)

=E‖
∞

∑
k=1

∫ t

−∞
e−(t−s)(µ1A+α)J1Φhkdβk(s)‖2

=
∞

∑
k=1

∫ t

−∞
e−2(t−s)(µ1A+α)‖J1Φhk‖

2ds

=
∞

∑
k=1

∫ t

−∞
e−2(t−s)(µ1A+α)‖Φhk‖

2
1ds

≤‖Φ‖2
L̇0,1

2

∫ t

−∞
e−2(t−s)(µ1λ1+α)ds

≤‖Φ‖2
L̇0,5

2

∫ t

−∞
e−2(t−s)(µ1λ1+α)ds=

‖Φ‖2
L̇0,5

2

2(µ1λ1+α)
,

where λ1 is the first eigenvalue of A. If we let α large enough, then (3.5) holds.

4 Existence of random attractors in H

In the study of (1.8), it is usual to translate the unknown υ=u−Z (Z has the form of (3.1))
to obtain the following equations (see [12, 13]),

dυ

dt
+µ1Aυ−2µ0 Ap(υ+Z)+B(υ+Z,υ+Z)=αZ+ f (x), x∈D, (4.1)

υ(s,ω)=υs =us−Z(s,ω), x∈D, s∈R, (4.2)

υ(x,t)=υ(x+Lχj ,t),
∫

D
υ(x,t)dx=0. (4.3)

Similarly (see [2, 23]), we can prove that the following result holds for P−a.e. ω∈Ω:
for f ∈ H, Φ ∈ L̇0,5

2 , υs ∈ H, s < T ∈ R, there exists a unique weak solution to (4.1)-(4.3)
satisfying υ∈C (s,T;H)

⋂

L2(s,T;V) with υ(s)=υs .

We define the stochastic dynamical system (S(t,s;ω))t≥s ,ω∈Ω by

S(t,s;ω)us =u(t,ω;s,us)

=υ(t,ω;s,us−Z(s,ω))+Z(t,ω).

It can be easily checked that the assumptions (1)-(4) are satisfied in Theorem 2.1. In the
sequel, we will prove the existence of a compact attracting set K(ω) at time 0 in H.

Lemma 4.1. Let Φ∈ L̇0,5
2 , f ∈ H. There exist random radii r0(ω) and r1(ω), such that for any

given ρ>0, there exists s(ω)≤−1, such that for all s≤ s(ω), and for all us ∈H, with ‖us‖≤ρ,
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the following inequalities

‖υ(t,ω;s,us−Z(s,ω))‖2≤ r0(ω), t∈ [−1,0],
∫ 0

−1
‖υ(t,ω;s,us−Z(s,ω))+Z(t)‖2

2dt≤ r1(ω),

∫ 0

−1
‖e

(

υ(t,ω;s,us−Z(s,ω))+Z(t)
)

‖
p
Lpdt≤ r2(ω),

hold P−a.e., where υ(t,ω;s,us−Z(s,ω)) is the solution of (4.1)-(4.3), and

r0(ω)=2e
µ1λ1

4

(

1+ sup
s≤−1

exp(s
µ1λ1

8
)‖Z(s)‖2

)

+2e
µ1λ1

4

∫ 0

−∞
g(σ)exp

(

σ(
µ1λ1

4
+

C

σ

∫ 0

σ
‖Z(τ)‖2

1dτ)
)

dσ,

r1(ω)=
64

µ2
1λ1

r0(ω)
∫ 0

−1
‖Z(σ)‖2

1dσ+
8

µ1

∫ 0

−1
g(σ)dσ

+
4

µ1
r0(ω)+2

∫ 0

−1
‖Z(t)‖2

2dt,

r2(ω)=
16 r0(ω)

µ0µ1λ1

∫ 0

−1
‖Z(σ)‖2

1dσ+
1

µ0

∫ 0

−1
g(σ)dσ+

r0(ω)

2µ0
.

Proof. Taking the inner product of (4.1) with υ in H,

1

2

d

dt
‖υ‖2+µ1‖∆υ‖2 +2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(υ)dx

+b(υ+Z,υ+Z,υ)=α(Z,υ)+( f (x),υ), (4.4)

we can obtain the following inequality,

1

2

d

dt
‖υ‖2 +µ1‖∆υ‖2 +2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(υ+Z)dx

≤|b(υ+Z,υ+Z,υ)|+α|(Z,υ)|+|( f (x),υ)|

+2µ0

∣

∣

∣

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(Z)dx
∣

∣

∣
. (4.5)

We will estimate the right terms one by one. Note

α|(Z,υ)|≤
µ1λ1‖υ‖2

1

8
+

2α2‖Z‖2

µ1λ1
,

|( f (x),υ)|≤
µ1λ1‖υ‖2

1

8
+

2‖ f‖2

µ1λ1
,
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where λ1 is the first eigenvalue of operator A. From the divergence-free condition, we
know

|b(υ+Z,υ+Z,υ)|

= |b(υ+Z,Z,υ+Z)|≤‖υ+Z‖L4 ‖υ+Z‖L4‖Z‖1

≤C‖υ+Z‖ ‖υ+Z‖1‖Z‖1

≤
4C

µ1λ1
‖Z‖2

1‖υ+Z‖2 +
µ1λ1

16
‖υ+Z‖2

1

≤
8C‖Z‖2

1

µ1λ1
‖υ‖2+

µ1λ1

8
‖υ‖2

1 +
8C

µ1λ1
‖Z‖2

1‖Z‖2+
µ1λ1

8
‖Z‖2

1,

where we have used the Gagliardo-Nirenberg inequality,

‖u‖L4 ≤C‖u‖
1
2 ‖∇u‖

1
2 ,

and ǫ-Young inequality. Note that for p>2,

(

ǫ+|e(υ+Z)|2
)

p−2
2
≥|e(υ+Z)|p−2.

Then

2µ0

∣

∣

∣

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(υ+Z)dx
∣

∣

∣

≥2µ0

∫

D
|e(υ+Z)|pdx.

The last term in the right hand side of (4.5) is difficult to estimate due to its strong non-
linearity. To estimate it, we mainly apply the Hölder inequality, Sobolev embedding,
H2(D) →֒ L∞(D) and ǫ-Young inequality:

2µ0

∣

∣

∣

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(Z)dx
∣

∣

∣

≤2µ0‖e(Z)‖L∞

∣

∣

∣

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)dx
∣

∣

∣

≤2µ0C‖e(Z)‖L∞

(

∫

D
ǫ

p−2
2 |eij(υ+Z)|dx+

∫

D
|e(υ+Z)|p−1dx

)

≤2µ0C‖e(Z)‖L∞

[

ǫ
p−2

2

(

∫

D
|e(υ)|dx+

∫

D
|e(Z)|dx

)

+C
(

∫

D
|e(υ+Z)|pdx

)

p−1
p

]

≤2µ0C‖e(Z)‖L∞

(

‖e(υ)‖+‖e(Z)‖+‖e(υ+Z)‖
p−1
Lp

)
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≤
µ1

4
‖υ‖2

2+
4µ2

0C‖e(Z)‖2
2

µ1
+2µ0C‖e(Z)‖2‖e(Z)‖

+µ0‖e(υ+Z)‖
p
Lp +µ0(p−1)p−1

(2C‖e(Z)‖2

p

)p

≤
µ1

4
‖υ‖2

2+µ0‖e(υ+Z)‖
p
Lp +

4µ2
0C‖Z‖2

3

µ1
+2µ0C‖Z‖3‖Z‖1+C‖Z‖

p
3 . (4.6)

Combing the above estimates, we can obtain

1

2

d

dt
‖υ‖2+

µ1

4
‖υ‖2

2+µ0‖e(υ+Z)‖
p
Lp +

(µ1λ1

8
−

8C‖Z‖2
1

µ1λ1

)

‖υ‖2

≤
2α2‖Z‖2

µ1λ1
+

8C

µ1λ1
‖Z‖2

1‖Z‖2+
µ1λ1

8
‖Z‖2

1

+
4µ2

0C‖Z‖2
3

µ1
+2µ0C‖Z‖3‖Z‖1+C‖Z‖

p
3 +

2‖ f‖2

µ1λ1
. (4.7)

Let

g=
2α2‖Z‖2

µ1λ1
+

8C

µ1λ1
‖Z‖2

1‖Z‖2+
µ1λ1

8
‖Z‖2

1+
4µ2

0C‖Z‖2
3

µ1

+2µ0C‖Z‖3‖Z‖1+C‖Z‖
p
3 +

2‖ f‖2

µ1λ1
.

It follows from (4.7) that

d

dt
‖υ‖2 +

µ1

2
‖υ‖2

2+2µ0‖e(υ+Z)‖
p
Lp +

(µ1λ1

4
−

16C‖Z‖2
1

µ1λ1

)

‖υ‖2 ≤2g. (4.8)

By Gronwall inequality, for s≤−1, and t∈ [−1,0], we have

‖υ(t)‖2 ≤‖υ(s)‖2 exp
[

−
∫ t

s

(µ1λ1

4
−

16C‖Z(σ)‖2
1

µ1λ1

)

dσ
]

+2
∫ t

s
g(σ)exp

[

−
∫ t

σ

(µ1λ1

4
−

16C‖Z(τ)‖2
1

µ1λ1

)

dτ
]

dσ

≤e
µ1λ1

4 ‖υ(s)‖2 exp
[

s
(µ1λ1

4
+

C

s

∫ 0

s
‖Z(σ)‖2

1dσ
)]

+2e
µ1λ1

4

∫ 0

s
g(σ)exp

[

−
∫ 0

σ

(µ1λ1

4
−C‖Z(τ)‖2

1

)

dτ
]

dσ.

As the process ‖Z‖2
1 is stationary and ergodic, we know from [12] that

−
1

s

∫ 0

s
‖Z(σ)‖2

1dσ→E(‖Z(0)‖2
1), s→−∞. (4.9)
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There exists an s0(ω) such that for any s< s0(ω),

−
1

s

∫ 0

s
‖Z(σ)‖2

1dσ≤2E(‖Z(0)‖2
1).

Applying Lemma 3.2 gives

E(‖Z(0)‖2
1)≤

‖Φ‖2
L̇0,5

2

2(µ1λ1+α)
.

We can take α large enough so that

E(‖Z(0)‖2
1)≤

µ1λ1

16C
, (4.10a)

exp
[

s
(µ1λ1

4
+

C

s

∫ 0

s
‖Z‖2

1dσ
)]

≤exp
[

s
(µ1λ1

4
−C

µ1λ1

8C

)]

≤exp
( sµ1λ1

8

)

. (4.10b)

Consequently,

‖υ(t)‖2 ≤e
µ1λ1

4 ‖υ(s)‖2 exp
( sµ1λ1

8

)

+2e
µ1λ1

4

∫ 0

−∞
g(σ)exp

[

σ
( µ1λ1

4
+

C1

σ

∫ 0

σ
‖Z‖2

1dτ
)]

dσ, (4.11)

where g(σ) grows at most polynomially, as σ→−∞ P−a.e. (see [13]). Since g(σ) is mul-
tiplied by a function which decays exponentially, the integral in (4.11) is convergent.

It is now clear that

‖υ(t)‖2 ≤2e
µ1λ1

4 exp
( sµ1λ1

8

)(

‖us‖
2+‖Z(s)‖2

)

+2e
µ1λ1

4

∫ 0

−∞
g(σ)exp

[

σ
( µ1λ1

4
+

C1

σ

∫ 0

σ
‖Z‖2

1dτ
)]

dσ. (4.12)

Given ρ>0, we can choose s(ω), depending only on ω, such that exp( sµ1λ1

8 )ρ2≤1, for all
s≤ s(ω). We can then give the final estimate of ‖υ(t)‖ for t∈ [−1,0],

‖υ(t)‖2 ≤ r0(ω)=2e
µ1λ1

4

[

1+ sup
s≤−1

‖Z(s)‖2 exp
( sµ1λ1

8

)]

+2e
µ1λ1

4

∫ 0

−∞
g(σ)exp

[

σ
(µ1λ1

4
+

C1

σ

∫ 0

σ
‖Z‖2

1dτ
)]

dσ.

Similarly, Z(s) grows at most polynomially, as s→−∞. Moreover, since Z(s) is multiplied
by a function which decays exponentially, the term

sup
s≤−1

exp
( sµ1λ1

8

)

‖Z(s)‖2 is bounded.
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Furthermore, we can integrate (4.8) on [−1,0] and deduce

∫ 0

−1
‖υ(t)‖2

2dt

≤
32

µ2
1λ1

r0(ω)
∫ 0

−1
‖Z(σ)‖2

1dσ+
4

µ1

∫ 0

−1
g(σ)dσ+

2

µ1
‖υ(−1)‖2,

∫ 0

−1
‖υ(t)+Z(t)‖2

2dt≤ r1(ω)

=
64

µ2
1λ1

r0(ω)
∫ 0

−1
‖Z(σ)‖2

1dσ+
4

µ1
r0(ω)+

8

µ1

∫ 0

−1
g(σ)dσ+2

∫ 0

−1
‖Z(t)‖2

2dt,

∫ 0

−1
‖e

(

υ(t)+Z(t)
)

‖
p
Lpdt≤ r2(ω)

=
16 r0(ω)

µ0µ1λ1

∫ 0

−1
‖Z(σ)‖2

1dσ+
1

µ0

∫ 0

−1
g(σ)dσ+

r0(ω)

2µ0
.

These estimates will be used in the following lemma.

Lemma 4.2. Let Φ∈ L̇0,5
2 , f ∈ H. There exists a random radius r3(ω), such that for any given

ρ > 0, there exists s(ω)≤−1, such that for all s≤ s(ω), and for all us ∈ H with ‖us‖≤ ρ, the
estimate

‖υ(t,ω;s,us−Z(s,ω))‖2
1≤ r3(ω), t∈ [−1,0],

holds P−a.e.. In particular,

‖υ(0,ω;s,us−Z(s,ω))‖2
1 ≤ r3(ω).

Proof. Taking the inner product of (4.1) with −∆υ in H,

1

2

d

dt
‖∇υ‖2 +µ1‖υ‖2

3−2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(∆υ)dx

=α(Z,−∆υ)+( f (x),−∆υ)+b(υ+Z,υ+Z,∆υ), (4.13)

and

1

2

d

dt
‖∇υ‖2+µ1‖υ‖2

3−2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(∆υ+∆Z)dx

=α(Z,−∆υ)+( f (x),−∆υ)+b(υ+Z,υ+Z,∆υ)

−2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(∆Z)dx. (4.14)

Let

A =−2µ0

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(∆υ+∆Z)dx.
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Using the condition υ+Z=u gives

A =−2µ0

∫

D

(

ǫ+|e(u)|2
)

p−2
2

eij(u)eij(∆u)dx

=2µ0

∫

D

(

ǫ+|e(u)|2
)

p−2
2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx

+(p−2)
∫

D

(

ǫ+|e(u)|2
)

p−4
2

eij(u)
∂eij(u)

∂xk
eij(u)

∂eij(u)

∂xk
. (4.15)

According to p>2, then A >0. Consequently, we can drop the term A in the following
computations. We estimate the right terms in (4.14) respectively.

The following estimates can be obtained easily:

|α(Z,∆υ)|≤
µ1λ1‖υ‖2

2

8
+

2α2‖Z‖2

µ1λ1
,

|( f (x),∆υ)|≤
µ1λ1‖υ‖2

2

8
+

2‖ f‖2

µ1λ1
.

For the third term in the right hand side of (4.14), we use Gagliardo-Nirenberg inequality
and ǫ-Young inequality to obtain

|b(υ+Z,υ+Z,∆υ)|

≤‖υ+Z‖L∞‖∇(υ+Z)‖ ‖∆υ‖

≤C‖υ+Z‖
1
2 ‖∆(υ+Z)‖

1
2 ‖∇(υ+Z)‖ ‖∆υ‖

≤C‖υ+Z‖
1
2

(

‖∆υ‖
1
2 +‖∆Z‖

1
2

)

‖∇(υ+Z)‖ ‖∆υ‖

=C‖υ+Z‖
1
2 ‖∇(υ+Z)‖ ‖∆υ‖

3
2 +C‖υ+Z‖

1
2 ‖∇(υ+Z)‖ ‖∆Z‖

1
2 ‖∆υ‖

≤
µ1λ1

8
‖∆υ‖2 +

54C4

µ3
1λ3

1

‖υ+Z‖2‖∇(υ+Z)‖4+
µ1λ1

8
‖∆υ‖2

+
2C2

µ1λ1
‖υ+Z‖ ‖∇(υ+Z)‖2‖∆Z‖,

where the second inequality is due to Gagliardo-Nirenberg inequality

‖u‖L∞ ≤‖u‖
1
2 ‖∆u‖

1
2 ,

and the last inequality is due to ǫ-Young inequality.

Similarly to (4.6), we mainly apply the Hölder inequality, Sobolev embedding, and
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ǫ-Young inequality to estimate the following term,

2µ0

∣

∣

∣

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2

eij(υ+Z)eij(∆Z)dx
∣

∣

∣

≤2µ0‖e(∆Z)‖L∞

∫

D

(

ǫ+|e(υ+Z)|2
)

p−2
2
|eij(υ+Z)|dx

≤2µ0‖e(∆Z)‖2

(

∫

D
ǫ

p−2
2 |eij(υ+Z)|dx+

∫

D
|e(υ+Z)|p−1dx

)

≤2µ0C‖e(∆Z)‖2

(

‖e(υ)‖+‖e(Z)‖+‖e(υ+Z)‖
p−1
Lp

)

≤
µ1

4
‖υ‖2

3+µ0‖e(υ+Z)‖
p
Lp +

4µ2
0C‖Z‖2

5

µ1
+2µ0C‖Z‖5‖Z‖1+C‖Z‖

p
5 . (4.16)

From the above estimates, we can obtain the following inequality,

1

2

d

dt
‖∇υ‖2 +

µ1

4
‖υ‖2

3

≤
2α2‖Z‖2

µ1λ1
+µ0‖e(υ+Z)‖

p
Lp +

4µ2
0C‖Z‖2

5

µ1
+2µ0C‖Z‖5‖Z‖1

+C‖Z‖
p
5 +

2‖ f‖2

µ1λ1
+

54C4

µ3
1λ3

1

‖υ+Z‖2‖∇(υ+Z)‖4

+
2C2

µ1λ1
‖υ+Z‖‖∇(υ+Z)‖2‖∆Z‖. (4.17)

Let

X(t)=
2α2‖Z‖2

µ1λ1
+µ0‖e(υ+Z)‖

p
Lp +

4µ2
0C‖Z‖2

5

µ1
+2µ0C‖Z‖5‖Z‖1+C‖Z‖

p
5

+
2‖ f‖2

µ1λ1
+

C

µ3
1λ3

1

‖υ+Z‖2‖∇Z‖4+
2C

µ1λ1
‖υ+Z‖ ‖∇(υ+Z)‖2‖∆Z‖,

and

Y(t)=
C

µ3
1λ3

1

‖υ+Z‖2‖∇υ‖2.

Then the inequality (4.17) can be simplified as the following inequality,

d

dt
‖∇υ‖2 ≤2X(t)+2Y(t)‖∇υ‖2 . (4.18)

We deduce that for any −1≤ θ≤ t≤0,

‖υ(t)‖2
1 ≤‖υ(θ)‖2

1e
∫ t

θ 2Y(σ)dσ+
∫ t

θ
2X(σ)e

∫ t
σ 2Y(τ)dτdσ

≤
(

‖υ(θ)‖2
1+

∫ 0

−1
2X(σ)dσ

)

e
∫ 0
−12Y(σ)dσ. (4.19)
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Integrating with respect to θ on [−1,0] gives

‖υ(t)‖2
1 ≤

(

∫ 0

−1
‖υ(θ)‖2

1dθ+
∫ 0

−1
2X(σ)dσ

)

e
∫ 0
−12Y(σ)dσ. (4.20)

Applying Lemma 4.1, obviously, the first term
∫ 0
−1‖υ(θ)‖2

1dθ is bounded.

Combining Lemmas 3.1 and 4.1, we know
∫ 0
−1 X(σ)dσ is also bounded. Then

‖υ(t)‖2
1 ≤ r3(ω), when s≤ s(ω).

If we let t=0, then we have

‖υ(0)‖2
1 ≤ r3(ω), when s≤ s(ω).

This completes the proof of the lemma.

Theorem 4.1. For all us ∈ H,Φ ∈ L̇0,5
2 , f ∈ H, there exist random attractors for the stochastic

non-Newtonian equations (1.8)-(1.10) in H.

Proof. Let K(ω) be the ball in Ḣ1(D) of radius r
1
2
3 (ω)+‖Z(0,ω)‖1. We have proved that

for any B bounded in H, there exists s(ω) such that for s≤ s(ω) ,

S(0,s;ω)B⊂K(ω) P−a.e..

This clearly implies that K(ω) is an attracting set at time 0, since it is compact in H, and
Theorem 2.1 applies.

Remark 4.1. A random bounded set {B(ω)}ω∈Ω of X is called tempered with respect to
(θt)t∈R , if for P−a.e.ω∈Ω,

lim
t→∞

e−βtd(B(θ−tω))=0 for all β>0,

where θt is defined in (2.3), d(B)=supx∈B‖x‖X .

In fact, the result can be improved, we can show that the random attractors attract
the tempered random subsets of phase space H. Further details refer to [15, 16] and the
references therein.
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