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Abstract. We consider the following nonlinear problem















−∆u=u
N+2
N−2 , u>0 in RN\Ω,

u(x)→0 as |x|→+∞,

∂u

∂n
=0 on ∂Ω,

where Ω⊂RN ,N≥4 is a smooth and bounded domain and n denotes inward normal
vector of ∂Ω. We prove that the above problem has infinitely many solutions whose
energy can be made arbitrarily large when Ω is convex seen from inside (with some
symmetries).
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1 Introduction and main result

In this paper we consider the nonlinear Neumann elliptic problem



















−∆u−u
N+2
N−2 =0, u>0 in RN\Ω,

u(x)→0 as |x|→+∞,

∂u

∂n
=0 on ∂Ω,

(1.1)

where n denotes interior unit normal vector and Ω is a smooth bounded domain in
RN ,N≥4.
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Semilinear elliptic equations involving critical Sobolev exponents have been consid-
ered by various authors, e.g., [1–6]. Such kind of equations arise in various branches of
mathematics as well as physics (see, e.g., [2, 7] and the reference therein). The most no-
torious example is Yamabe’s problem: let (M,g) be a Riemannian manifold of dimension
N,N≥3, and R′ be a given function on M. Can one find a new metric g1 on M such that

R′ is the scalar curvature of g1 and g1 is conformal to g (i.e., g1 =u
4

N−2 g for some function
u>0 on M)? This is equivalent to the problem of finding positive solution of the equation

−4
N−1

N−2
∆gu= R′u

N+2
N−2 −R(x)u on M, (1.2)

where ∆g is Laplace-Beltrami operator on M in the g metric and R(x) is the scalar cur-
vature of (M,g). In case M is compact, Eq. (1.2) has been considered by many authors,
see [7] for a survey on its development and a brief history. In the special case where
M=RN and g is the usual metric we have R≡0 and the equation is reduced to

∆u+R′u
N+2
N−2 =0. (1.3)

From now on we are concerned with the case R′≡constant. Without loss of generality we
may assume R′≡1. According to [8] the functions

Uλ,a(x)=
λ

N−2
2

(1+λ2|x−a|2)
N−2

2

, λ>0, a∈RN ,

are the only solutions to the problem

−∆u=αNu
N+2
N−2 , u>0 in RN ,

where αN = N(N−2).

On the other hand, by Divergence Theorem there is no positive solution of the follow-
ing problem

−∆u=u
N+2
N−2 in Ω,

∂u

∂n
=0 on ∂Ω,

where Ω is a smooth bounded domain in RN . Hence it has been a matter of high interest
to study the problem in exterior domain, which is Eq. (1.1). In [9], Pan and Wang proved
that if the mean curvature of ∂Ω seen from inside is negative somewhere, then Eq. (1.1)
has a least energy solution while Ω is a ball Eq. (1.1) has no least energy solution. A
natural question is: how about higher energy solutions?

The purpose of this paper is to prove that Eq. (1.1) has infinitely many higher energy
solutions while Ω is convex seen from inside. More precisely, we assume that Ω is a
smooth and bounded domain satisfying the following properties:
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Let y=(y′,y′′)∈R2×RN−2, r= |y′ |. Then

(H1) y∈Ω if and only if (y1,y2,y3,··· ,−yi,··· ,yN)∈Ω, ∀ i=3,··· ,N;

(H2) (rcosθ,rsinθ,y′′)∈Ω if (r,0,y′′)∈Ω, ∀ θ∈ (0,2π);

(H3) Let T :=∂Ω∩{y3 = ···=yN =0}. There exists a connected component Γ of T, such
that H(x)≡γ>0, ∀x∈Γ, where H(x) is the mean curvature of ∂Ω at x∈∂Ω.

Note that by the assumption (H2), Γ is a circle in the plane y3 = ···=yN =0. Thus, we
may assume that

Γ={y2
1+y2

2 = r2
0, y3 = ···=yN =0},

where r0 >0 is a constant. Note also that for x∈Γ,

H(x)=

N−1

∑
j=1

kj(x)

N−1
,

where kj(x) are the principal curvatures and k1(x)= r−1
0 . Thus

H(x)≡γ= r−1
0 .

Such domain is very common, e.g., ball, ellipsoid.
For normalization reason, we consider throughout the paper the equation



















−∆u−αNu
N+2
N−2 =0, u>0 in RN\Ω,

u(x)→0 as |x|→+∞,

∂u

∂n
=0 on ∂Ω,

(1.4)

where αN = N(N−2). The solutions are identical up to the multiplicative constant
(αN)−(N−2)/4.

Our main result in this paper can be stated as follows:

Theorem 1.1. Suppose that N≥4 and Ω is a smooth and bounded domain satisfying (H1), (H2)
and (H3). Then problem (1.4) has infinitely many non-radial positive solutions, whose energy
can be made arbitrarily large.

It is interesting to compare the results in this paper and [10] with recent work of
Brendle on the non-compactness of Yamabe problem (1.2). When M = RN , i.e., R′ is
constant, Schoen conjectured all solutions to (1.2) are compact. This conjecture is proved
to be true in dimensions less than 24. See [11–15]. In [16], Brendle constructed a metric
g in dimension N ≥ 52, with the following properties: (i) gij = δij for |x| ≥ 1

2 , (ii) g is
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not conformally flat. Then, for this metric, there exists a sequence of positive smooth
solutions un to (1.2) such that

sup
|x|≤1

un(x)→+∞,

and un develops exactly one singularity. This disapproves Schoen’s conjecture in dimen-
sions N≥52. On one hand, both problems (1.2) and (1.4) have no parameters but possess
infinitely many positive solutions. The proofs are similar: a kind of variational reduction
method (we call it localized energy method) is used. On the other hand, the solutions con-
structed by Brendle has a single bubble near the origin, and the energy of the solutions
remains uniformly bounded. Here we obtain solutions with arbitrarily many bubbles, and
the energy of the solutions can be arbitrarily large.

We believe that the symmetric condition in Theorem 1.1 is technical. A more general
result, as follows, should be true.

Conjecture 1.1. Assume that maxx∈∂Ω H(x)>0 and the set {x∈∂Ω|H(x)=maxx∈∂Ω H(x)}
is a smooth l-dimensional sub-manifold on ∂Ω, with 1≤ l≤N−1. Then there are infinitely many
positive solutions to problem (1.4).

In the following we will see that the idea of the proof depends on the critical exponent.
That is using this idea we can’t obtain similar results for sub-super critical case.

2 Outline of proof

In [17] the following is considered







−∆u+µu−αNu
N+2
N−2 =0, u>0 in Ω,

∂u

∂n
=0, on ∂Ω,

(2.1)

where µ is a fixed positive number. When Ω is a smooth and bounded domain satisfying
(H1), (H2) and (H

′

3), then for N ≥ 3, there is an integer k0 > 0, such that for any integer
k ≥ k0, (2.1) has infinitely many solutions whose energy can be made arbitrary large,
where

H
′

3 : Let T := ∂Ω∩{y3 = ···= yN =0}. There exists a connected component Γ of T, such
that H(x)≡γ<0, ∀x∈Γ.

From the above we see that the problem (1.4) is similar to (2.1) expect the domain and
linear term µu. A natural idea is that we may try the same method to prove Theorem
1.1. We will use the techniques in the singularly perturbed elliptic problems to prove the
following Theorem 2.1 which is equivalent to Theorem 1.1. In all the singularly perturbed
problems, some small parameters are present either in the operator or in the nonlinearity
or in the boundary condition. Here there is no parameter. Instead, we use k, the number of
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the bubbles of the solutions, as the parameter in the construction of bubble solutions for
(1.4). This idea is also used in the recent paper [10]. We believe that the results will also
hold in the case of N =3.

It is well-known that the functions

Uλ,a(y)=

(

λ

1+λ2|y−a|2

)
N−2

2

, λ>0, a∈RN

are the only solutions to the problem

−∆u=αNu
N+2
N−2 , u>0, in RN .

Let us fix a positive integer
k≥ k0,

where k0 is large, to be determined later.
Integral estimates (see Appendix A in [17]) suggest to make the additional a priori

assumption that λ behaves as the following

λ=
1

Λ
k

N−2
N−3 , N≥4,

where δ≤Λ≤ 1
δ and δ is a small positive constant which is to be determined later.

Let 2∗= 2N
N−2 . Using the transformation

u(y) 7→ ε−
N−2

2 u
(y

ε

)

,

we find that (1.4) becomes















−∆u=αNu2∗−1, u>0, in RN\Ωε,

u(x)→0, as |x|→+∞,
∂u

∂n
=0, on ∂Ωε,

(2.2)

where
ε= k−

N−2
N−3 , N≥4 (2.3)

and Ωε ={y|εy∈Ω}. Define

Hs =

{

u : u∈H1(RN\Ωε), u is even inyh, h=2,··· ,N,

u(rcosθ,rsinθ,y′′)=u
(

rcos(θ+
2πj

k
),rsin(θ+

2πj

k
),y′′

)

, j=1,··· ,k−1

}

,

and

xj =
( r0

ε
cos

2(j−1)π

k
,

r0

ε
sin

2(j−1)π

k
, 0
)

, j=1,··· ,k,
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where 0 is the zero vector in RN−2. We define WΛ,xj
to be the unique solution of



















−∆u=αNU2∗−1
1
Λ

,xj
in RN\Ωε,

u(x)→0 as |x|→+∞,

∂u

∂n
=0 on ∂Ωε.

(2.4)

Let

W(y)=
k

∑
j=1

WΛ,xj
.

Theorem 1.1 is a direct consequence of the following result:

Theorem 2.1. Suppose that N≥4 and Ω is a smooth and bounded domain satisfying (H1), (H2)
and (H3). Then there is an integer k0 > 0, such that for any integer k≥ k0, problem (2.2) has a
solution uk of the form

uk =W(y)+ωk,

where ωk∈Hs, and as k→+∞, ‖ωk‖L∞ →0.

Let

ϕΛ,xj
(y)=U 1

Λ
,xj

(y)−WΛ,xj
(y), (2.5)

I(u)=
1

2

∫

RN\Ωε

|Du|2−
αN

2∗

∫

RN\Ωε

|u|2
∗
, (2.6)

then by Appendix A in [17] we have the following lemma.

Lemma 2.1. There is a constant C>0, such that

|ϕΛ,xj
|+|∂Λ ϕΛ,xj

|≤
Cε

(1+|y−xj|)N−3
, N≥4, (2.7)

and

|Wλ,xj
|≤C

(

U 1
Λ

,xj
+

ε

(1+|y−xj |)N−3

)

,

|∂ΛWλ,xj
|≤C

(

U 1
Λ

,xj
+

ε

(1+|y−xj |)N−3

)

.

For N≥4, we have

I(W)= k
(

A0+A1Λγε−A2ΛN−2ε+o(ε)
)

, (2.8)

where Ai, i=0,1,2, is some positive constant.
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3 Finite-dimensional reduction

In this section, we perform a finite-dimensional reduction. Let

‖u‖∗ =sup
y

( k

∑
j=1

1

(1+|y−xj |)
N−2

2 +τ

)−1
|u(y)|, (3.1)

‖ f‖∗∗ =sup
y

( k

∑
j=1

1

(1+|y−xj|)
N+2

2 +τ

)−1
| f (y)|, (3.2)

where we choose

τ =











N−3

N−2
, N≥6, N =4;

5

6
, N =5.

(3.3)

For this choice of τ and the definition of ε, we have

k

∑
j=2

1

|xj−x1|τ
≤C, if N≥4. (3.4)

Let

Yi =
∂WΛ,xi

∂Λ
, Zi =−∆Yi =(2∗−1)U2∗−2

1
Λ

,xi

∂U 1
Λ

,xi

∂Λ
.

For any ‖h‖L∞ <∞, we consider the following linear problem































−∆φ−N(N+2)W2∗−2φ=h+c1

k

∑
i=1

Zi, in RN\Ωε,

∂φ

∂n
=0, on ∂Ωε,

φ∈Hs, <

k

∑
i=1

Zi,φ>=0

(3.5)

for some number c1, where

<u,v>=
∫

RN\Ωε

uv.

Let us remark that in general we should also include the translational derivatives of
W in the right hand side of (3.5). However due to the symmetry assumption φ ∈ Hs,
this part of kernel automatically disappears. This is the main reason for imposing the
symmetries.

First we state a lemma whose proof is in Appendix A.
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Lemma 3.1. Let f satisfy ‖ f‖∗∗ <∞ and u be the solution of

−∆u= f in RN\Ωε,

|u(x)|→0 as |x|→+∞,
∂u

∂n
=0 on ∂Ωε.

Then we have

|u(x)|≤C
∫

RN\Ωε

| f (y)|

|x−y|N−2
dy. (3.6)

Next, we need the following lemma to carry out the reduction.

Lemma 3.2. Assume that φk solves (3.5) for h=hk . If ‖hk‖∗∗→0 as k→∞, so does ‖φk‖∗.

Proof. We argue by contradiction. Suppose that there are k→+∞, h=hk , Λk∈[δ,δ−1], and
φk solving (3.5) for h = hk , Λ = Λk, with ‖hk‖∗∗→ 0, and ‖φk‖∗≥ c′ > 0. We may assume
that ‖φk‖∗=1. For simplicity, we drop the subscript k.

According to Lemma 3.1, we have

|φ(y)|≤C
∫

RN\Ωε

1

|z−y|N−2
W2∗−2|φ(z)|dz

+C
∫

RN\Ωε

1

|z−y|N−2

(

|h(z)|+|c1

k

∑
i=1

Zi(z)|
)

dz. (3.7)

Using Lemma A.4, there is a strictly positive small number θ such that

∣

∣

∣

∫

RN\Ωε

1

|z−y|N−2
W2∗−2φ(z)dz

∣

∣

∣

≤C‖φ‖∗

( k

∑
j=1

1

(1+|y−xj |)
N−2

2 +τ+θ
+o(1)

k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ

)

. (3.8)

It follows from Lemma A.3 that

∣

∣

∣

∫

RN\Ωε

1

|z−y|N−2
h(z)dz

∣

∣

∣

≤C‖h‖∗∗

∫

RN

1

|z−y|N−2

k

∑
j=1

1

(1+|z−xj|)
N+2

2 +τ
dz

≤C‖h‖∗∗
k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ
, (3.9)
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and

∣

∣

∣

∫

RN\Ωε

1

|z−y|N−2

k

∑
i=1

Zi(z)dz
∣

∣

∣

≤C
k

∑
i=1

∫

RN

1

|z−y|N−2

1

(1+|z−xi|)N+2
dz

≤C
k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ
. (3.10)

Next, we estimate c1. Multiplying (3.5) by Y1 and integrating, we see that c1 satisfies

〈

k

∑
i=1

Zi,Y1

〉

c1 =
〈

−∆φ−N(N+2)W2∗−2φ,Y1

〉

−
〈

h,Y1

〉

. (3.11)

It follows from Lemma A.2 that

∣

∣

〈

h,Y1

〉
∣

∣≤C‖h‖∗∗

∫

RN

(

1

(1+|z−x1|)N−2

+
ε

(1+|z−x1|)N−3

) k

∑
j=1

1

(1+|z−xj|)
N+2

2 +τ
dz

≤C‖h‖∗∗.

On one hand,

〈

−∆φ−N(N+2)W2∗−2φ,Y1

〉

=
〈

−∆Y1−N(N+2)W2∗−2Y1,φ
〉

=N(N+2)
〈

U2∗−2
1
Λ

,x1
∂ΛU 1

Λ
,x1
−W2∗−2Y1,φ

〉

. (3.12)

Obviously,

|φ(y)|≤C‖φ‖∗
k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ
.

On the other hand, it follows from (2.7) that

|ϕΛ,xi
(y)|≤

Cε

(1+|y−xi|)N−3
,

|Y1|≤
C

(1+|y−x1|)N−2
+

Cε

(1+|y−x1|)N−3
.
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We consider the cases N ≥ 6 first. Note that now 4/(N−2) ≤ 1 for N ≥ 6. Using
Lemmas 2.1, we obtain

∣

∣

∣

∣

〈

U2∗−2
1
Λ

,x1
∂ΛU 1

Λ
,x1
−W2∗−2Y1,φ

〉

∣

∣

∣

∣

≤C‖φ‖∗

∫

RN\Ωε

1

(1+|z−x1|)N−2

k

∑
j=2

( 1

(1+|z−xj|)4
+|φΛ,xj

|
) k

∑
i=1

1

(1+|z−xi |)
N−2

2 +τ
dz

+C‖φ‖∗

∫

RN\Ωε

(

U2∗−2
1
Λ

,x1
|∂Λ ϕΛ,x1

|+|Y1|
k

∑
j=2

|ϕΛ,xj
|2

∗−2

) k

∑
i=1

1

(1+|z−xi|)
N−2

2 +τ

≤C‖φ‖∗
k

∑
j=2

1

|x1−xj|1+σ
+o(1)‖φ‖∗

+C‖φ‖∗

∫

RN\Ωε

ε
N+2
N−2

(1+|y−x1|)N−3

k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
dy. (3.13)

Note that the following calculation is also valid for N =4,5. Let

Ωj =

{

y=(y′ ,y′′)∈RN\Ωε :
〈 y′

|y′|
,

xj

|xj|

〉

≥cos
π

k

}

.

If y∈Ω1, then

k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ

≤
k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

( k

∑
i=2

1

(1+|y−xi|)
N−2

2 +τ
+

1

(1+|y−x1|)
N−2

2 +τ

)

≤
Cεβk2

(1+|y−x1|)
N−2

2 + 4(N−3)
N−2 +τ−β

+
Cε

β
2 k

(1+|y−x1|)
N−2

2 + 4(N−3)
N−2 +τ

,

where β= N−7
N−2 if N≥8 and β=0 if N =6,7 since

k

∑
j=2

1

(1+|y−xj|)
4(N−3)

N−2

≤
Cε

β
2 k

(1+|y−x1|)
4(N−3)

N−2 − β
2

,

k

∑
i=2

1

(1+|y−xi |)
N−2

2 +τ
≤

Cε
β
2 k

(1+|y−x1|)
N−2

2 +τ−
β
2

.

So, we obtain

∫

Ω1

ε
N+2
N−2

(1+|y−x1|)N−3

k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ
dy= o(1).
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If y∈Ωl , l≥2, then

k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

≤
Cε

β
2 k

(1+|y−xl |)
4(N−3)

N−2 − β
2

,

k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
≤

C

(1+|y−xl |)
N−2

2 +τ
+

Cε
β
2 k

(1+|y−xl |)
N−2

2 +τ−
β
2

.

As a result,

∫

Ωl

ε
N+2
N−2

(1+|y−x1|)N−3

k

∑
j=2

1

(1+|y−xj |)
4(N−3)

N−2

k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ
dy

≤C
∫

Ωl

1

(1+|y−x1|)N−3

1

(1+|y−xl |)
4(N−3)

N−2 + N−2
2 +τ−β

dy

≤
C

|xl−x1|
N−1

2

.

Hence

∫

RN\Ωε

ε
N+2
N−2

(1+|y−x1|)N−3

k

∑
j=2

1

(1+|y−xj|)
4(N−3)

N−2

k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ
dy= o(1),

where we have used the fact
k

∑
l=2

1

|x1−xl |
N−1

2

= o(1).

Similarly, for N =4,5 we have

∫

RN\Ωε

Cε

(1+|z−x1|)3

k

∑
j=2

1

(1+|z−xj |)N−2

k

∑
i=1

1

(1+|z−xi|)
N−2

2 +τ
dz= o(1) (3.14)

which will be used later.
For N =4,5, we have 4

N−2 >1. By Lemmas 2.1,

∣

∣

∣

∣

〈

U2∗−2
1
Λ

,x1
∂ΛU 1

Λ
,x1
−W2∗−2Y1,φ

〉

∣

∣

∣

∣

≤C
∫

RN\Ωε

U2∗−3
1
Λ ,x1

k

∑
j=2

(U 1
Λ ,xj

+φΛ,xj
)|Y1φ|+C

∫

RN\Ωε

(

k

∑
j=2

U 1
Λ ,xj

)
4

N−2 |Y1φ|

+
∫

RN\Ωε

(

U2∗−2
1
Λ

,x1
|∂Λ ϕΛ,x1

|+U2∗−3
1
Λ

,x1
|ϕΛ,x1

||Y1|+
k

∑
j=2

|ϕΛ,xj
|2

∗−2|Y1|
)

|φ|
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≤C‖φ‖∗

∫

RN\Ωε

(

1

(1+|z−x1|)4

k

∑
j=2

1

(1+|z−xj|)N−2

+
Cε

(1+|z−x1|)3

k

∑
j=2

1

(1+|z−xj|)N−2

k

∑
i=1

1

(1+|z−xi |)
N−2

2 +τ

)

+C
∫

RN\Ωε

(

k

∑
j=2

U 1
Λ

,xj

)
4

N−2 |Y1φ|+o(1)‖φ‖∗

≤C‖φ‖∗

∫

RN\Ωε

(

1

(1+|y−x1|)N−2

(

k

∑
j=2

U 1
Λ

,xj

)
4

N−2

k

∑
i=1

1

(1+|y−xi |)
N−2

2 +τ

+
ε

(1+|y−x1|)N−3

(

k

∑
j=2

U 1
Λ ,xj

)
4

N−2

k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ

)

dy+o(1)‖φ‖∗ . (3.15)

If y∈Ω1, then

k

∑
j=2

U 1
Λ

,xj
≤

1

(1+|y−x1|)N−2−τ−θ

k

∑
j=2

1

|xj−x1|τ+θ

=o(1)
1

(1+|y−x1|)N−2−τ−θ
,

and

k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
≤

C

(1+|y−x1|)
N−2

2

.

So, we obtain

∫

Ω1

1

(1+|y−x1|)N−2

( k

∑
j=2

U 1
Λ ,xj

)
4

N−2
k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
dy= o(1).

If y∈Ωl , l≥2, then

k

∑
j=2

U 1
Λ

,xj
≤

C

(1+|y−xl |)N−2−τ
,

k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
≤

C

(1+|y−xl |)
N−2

2

.
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As a result,

∫

Ωl

1

(1+|y−x1|)N−2

( k

∑
j=2

U 1
Λ

,xj

)
4

N−2
k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
dy

≤C
∫

Ωl

1

(1+|y−x1|)N−2

1

(1+|y−xl |)
4− 4τ

N−2 + N−2
2

dy

≤
C

|xl−x1|
N+2

2 − 4τ
N−2

.

Note that N+2
2 − 4τ

N−2 >τ. Thus

∫

RN\Ωε

1

(1+|y−x1|)N−2

( k

∑
j=2

U 1
Λ

,xj

)
4

N−2
k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
dy

≤o(1)+C
k

∑
l=2

1

|xl−x1|
N+2

2 − 4τ
N−2

= o(1).

By the same calculations, we have

∫

RN\Ωε

ε

(1+|y−x1|)N−3

( k

∑
j=2

U 1
Λ

,xj

)
4

N−2
k

∑
i=1

1

(1+|y−xi|)
N−2

2 +τ
dy= o(1)

since now N
2 −

4
N−2τ >τ is also valid. So, we have proved

∣

∣

∣

∣

〈

U2∗−2
1
Λ

,x1
∂ΛU 1

Λ
,x1
−W2∗−2Y1,φ

〉

∣

∣

∣

∣

= o(1)‖φ‖∗.

But there is a constant c̄>0,
〈

k

∑
i=1

Zi,Y1

〉

= c̄+o(1).

Thus we obtain that
c1 = o(‖φ‖∗)+O(‖h‖∗∗).

Consequently,

‖φ‖∗≤

(

o(1)+‖hk‖∗∗+

k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ+θ

k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ

)

. (3.16)

Since ‖φ‖∗ =1, we obtain from (3.16) that there is R>0, such that

‖φ(y)‖BR(xi)≥ c0 >0, (3.17)
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for some i. But φ̄(y)=φ(y−xi) converges uniformly in any compact set of RN
+ to a solution

u of

∆u+N(N+2)U2∗−2
1
Λ

,0
u=0 (3.18)

for some Λ∈ [δ,δ−1], and u is perpendicular to the kernel of (3.18). So, u = 0. This is a
contradiction to (3.17).

From Lemma 3.2, using the same argument as in the proof of Proposition 4.1 in [18],
Proposition 3.1 in [19], we can prove the following result:

Proposition 3.1. There exists k0 > 0 and a constant C > 0, independent of k, such that for all
k≥ k0 and all h∈L∞(RN\Ωε), problem (3.5) has a unique solution φ≡ Lk(h). Besides,

‖Lk(h)‖∗≤C‖h‖∗∗, |c1|≤C‖h‖∗∗. (3.19)

Moreover, the map Lk(h) is C1 with respect to Λ.

Now, we consider the existence of solution φ for the problem































−∆
(

W+φ
)

=αN

(

W+φ
)2∗−1

+c1

k

∑
i=1

Zi, in RN\Ωε,

∂φ

∂n
=0, on ∂Ωε,

φ∈Hs, <

k

∑
i=1

Zi,φ>=0.

(3.20)

We have the following result.

Proposition 3.2. There is an integer k0 >0, such that for each k≥ k0, δ≤Λ≤ δ−1, where δ is a
fixed small constant, (3.20) has a unique solution φ, satisfying

‖φ‖∗≤Cε
1
2 +σ,

where σ>0 is a fixed small constant. Moreover, Λ→φ(Λ) is C1.

Rewrite (3.20) as































−∆φ−N(N+2)W2∗−2φ= N(φ)+lk+c1

k

∑
i=1

Zi, in RN\Ωε,

∂φ

∂n
=0, on ∂Ωε,

φ∈Hs, <

k

∑
i=1

Zi,φ>=0,

(3.21)
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where

N(φ)=αN

(

(

W+φ
)2∗−1

−W2∗−1−(2∗−1)W2∗−2φ
)

,

lk =αN

(

W2∗−1−
k

∑
j=1

U2∗−1
1
Λ ,xj

)

.

In order to use the contraction mapping theorem to prove that (3.21) is uniquely solv-
able in the set that ‖φ‖∗ is small, we need to estimate N(φ) and lk.

In the following, we always assume that ‖φ‖∗≤ ε|lnε|.

Lemma 3.3. We have

‖N(φ)‖∗∗≤C‖φ‖
min(2∗−1,2)
∗ .

Proof. We have

|N(φ)|≤

{

C|φ|2
∗−1, N≥6;

C
(

W
6−N
N−2 φ2+|φ|2

∗−1
)

, N =4,5.

Firstly, we consider N≥6. We have

|N(φ)|≤C‖φ‖2∗−1
∗

( k

∑
j=1

1

(1+|y−xj |)
N−2

2 +τ

)2∗−1

≤C‖φ‖2∗−1
∗

k

∑
j=1

1

(1+|y−xj|)
N+2

2 +τ

( k

∑
j=1

1

(1+|y−xj|)τ

)
4

N−2

, (3.22)

where we use the inequality

k

∑
j=1

ajbj ≤

( k

∑
j=1

a
p
j

)
1
p
( k

∑
j=1

b
q
j

)
1
q

,
1

p
+

1

q
=1, aj,bj≥0, j=1,··· ,k. (3.23)

By Lemma A.1 and (3.3), we find,

k

∑
j=1

1

(1+|y−xj |)τ
≤C+

k

∑
j=2

C

|x1−xj|τ
≤C.

Thus,

|N(φ)|≤C‖φ‖2∗−1
∗

k

∑
j=1

1

(1+|y−xj|)
N+2

2 +τ
.
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For N =5, 6−N
N−2 = 1

3 , we have

W
1
3 φ2≤C‖φ‖2

∗

( k

∑
j=1

1

(1+|y−xj |)3
+

k

∑
j=1

ε

(1+|y−xj|)2

)
1
3
( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)2

≤C‖φ‖2
∗

(

( k

∑
j=1

1

(1+|y−xj|)3

)
1
3
+
( k

∑
j=1

ε

(1+|y−xj |)2

)
1
3

)( k

∑
j=1

1

(1+|y−xj |)
3
2 + 5

6

)2

≤C‖φ‖2
∗

{( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)
7
3

+

( k

∑
j=1

ε

(1+|y−xj|)2

)
1
3
( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)2}

≤C‖φ‖2
∗

k

∑
j=1

1

(1+|y−xj |)
7
2 + 5

6

+C‖φ‖2
∗

( k

∑
j=1

ε

(1+|y−xj|)2

)
1
3
( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)2

.

For y∈Ωl , l≥1, using (3.23) we have that

( k

∑
j=1

ε

(1+|y−xj|)2

)
1
3

≤Cε
1
3

(

1

(1+|y−xl |)
2
3

+(εk)
2
3

)

,

( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)2

≤Cε
1
9 k

k

∑
j=1

1

(1+|y−xj |)
3+ 5

3−
1
9

,

and

( k

∑
j=1

1

(1+|y−xj |)
3
2 + 5

6

)2

≤C

(

1

(1+|y−xl |)
3+ 5

3

+
1

(1+|y−xl |)
3+ 5

3−1

(

∑
j 6=l

1

|xl−xj|
1
2

)2
)

≤C

(

1

(1+|y−xl |)
3+ 5

3

+εk2 1

(1+|y−xl |)
3+ 5

3−1

)

.

Consequently,

( k

∑
j=1

ε

(1+|y−xj|)2

)
1
3
( k

∑
j=1

1

(1+|y−xj|)
3
2 + 5

6

)2

≤
Cε

1
3

(1+|y−xl |)
3+ 7

3

+
Cε

4
3 k2

(1+|y−xl |)
3+ 7

3−1
+C

k

∑
j=1

ε
1
3 (εk)

2
3 ε

1
9 k

(1+|y−xj|)
3+ 5

3−
1
9

≤C
k

∑
j=1

1

(1+|y−xj |)
7
2 + 5

6

,
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which leads to

W
1
3 φ2≤C‖φ‖2

∗

k

∑
j=1

1

(1+|y−xj|)
7
2 + 5

6

.

Similarly, as the case of N≥6,

|φ|2
∗−1≤C‖φ‖2∗−1

∗

k

∑
j=1

1

(1+|y−xj |)
7
2 + 5

6

.

Thus

|N(φ)|≤C‖φ‖2
∗

k

∑
j=1

1

(1+|y−xj |)
7
2 + 5

6

.

For N =4, 6−N
N−2 =1, we have

|N(φ)|≤C‖φ‖2
∗

k

∑
j=1

1

(1+|y−xj |)2

( k

∑
j=1

1

(1+|y−xj |)
1+ 1

2

)2

+C‖φ‖2
∗

k

∑
j=1

ε

1+|y−xj |

( k

∑
j=1

1

(1+|y−xj|)
1+ 1

2

)2

+C‖φ‖2∗−1
∗

k

∑
j=1

1

(1+|y−xj |)
3+ 1

2

≤C‖φ‖2
∗

( k

∑
j=1

1

(1+|y−xj|)
1+ 1

2

)2∗−1

+C‖φ‖2∗−1
∗

k

∑
j=1

1

(1+|y−xj |)
3+ 1

2

+C‖φ‖2
∗

k

∑
j=1

ε

1+|y−xj |

( k

∑
j=1

1

(1+|y−xj|)
1+ 1

2

)2

≤C‖φ‖2
∗

{ k

∑
j=1

1

(1+|y−xj |)
3+ 1

2

+
k

∑
j=1

ε

1+|y−xj|

( k

∑
j=1

1

(1+|y−xj |)
1+ 1

2

)2}

. (3.24)

If y∈Ωl , l≥1, then

k

∑
j=1

ε

1+|y−xj|

( k

∑
j=1

1

(1+|y−xj |)
1+ 1

2

)2

≤
Cε

(1+|y−xl |)
3
4
∑
j 6=l

1

|xl−xj|
1
4

(

C

(1+|y−xl |)
3
2−

1
8
∑
j 6=l

1

(|xl−xj|)
1
8

)2

≤Cε1+ 1
4 + 1

4 k3 1

(1+|y−xl |)
3+ 1

2

≤C
1

(1+|y−xl |)
3+ 1

2

,
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which gives us that for any y∈RN\Ωε

k

∑
j=1

ε

1+|y−xj |

( k

∑
j=1

1

(1+|y−xj |)
1+ 1

2

)2

≤C
k

∑
l=1

1

(1+|y−xl |)
3+ 1

2

.

As a result we have
‖N(φ)‖∗∗≤C‖φ‖2

∗, N =4.

Thus
‖N(φ)‖∗∗≤C‖φ‖

min(2∗−1,2)
∗ .

This completes the proof of the lemma.

Next, we estimate lk. By almost the same calculus of Lemma 3.6 in [17], we have

Lemma 3.4. We have
‖lk‖∗∗≤Cε

1
2 +σ,

where σ>0 is a fixed small constant.

Using Lemmas 3.3 and 3.4 the remaining proof of Proposition 3.2 is just the same as
that of Proposition 3.4 in [17]. Here we will not repeat it.

4 Proof of Theorem 2.1

Let
F(Λ)= I

(

W+φ
)

,

where φ is the function obtained in Proposition 3.2, and let

I(u)=
1

2

∫

RN\Ωε

|Du|2−
(N−2)2

2

∫

RN\Ωε

|u|2
∗
.

Using the symmetry, we can check that if Λ is a critical point of F(Λ), then W+φ is a
solution of (1.4). According to Proposition 4.1 in [17], we have that

Proposition 4.1. For N≥4, we have

F(Λ)= k
(

A0+A1γΛε−A2ΛN−2ε+o(ε)
)

,

where the constant Ai >0,i=0,1,2 are positive constants, which are given in Proposition 2.8.

Proof of Theorem 2.1. We just need to prove that F(Λ) has a critical point.
For N≥4, the function

A1γΛ−A2ΛN−2

has a maximum point at

Λ0 =

(

A1γ

A2(N−2)

)
1

N−3

.

Thus, F(Λ) attains its maximum in the interior of [δ,δ−1] if δ > 0 is small. As a result,
F(Λ) has a critical point in [δ,δ−1]. 2
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A Basic estimates

Firstly, we prove Lemma 3.1.

Proof. Through scaling we may assume ε = 1. Let G(x,y) be the Green’s function satis-
fying

−∆G(x,y)=δy in RN\Ω,

|G(x,y)|→0 as |x−y|→+∞,
∂G(x,y)

∂n
=0 on ∂Ω.

Then we have for x∈RN\Ω,

u(x)=
∫

RN\Ω
G(x,y) f (y)dy.

So it is enough to show that there exists a constant C, independent of x and y such that

|G(x,y)|≤
C

|x−y|N−2
.

To this end we decompose G as in two parts

G(x,y)= H(|x−y|)+K(x,y)

where K(|x−y|) is the singular part of G and H(x,y) is the regular part of G. Certainly
we have

|K(|x−y|)|≤
C

|x−y|N−2
.

It remains to show that

|H(x,y)|≤
C

|x−y|N−2
. (A.1)

Note that, if for any x∈∂Ω,d(y,x)>d0>0, then
∂K(|x−y|)

∂n is bounded. Take C0 large enough,
consider the inhomogeneous Neumann problem







∆ψ=0 in RN\Ω, ψ(∞)=0,
∂ψ

∂n
=C0 on ∂Ω.

(A.2)
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By the classical potential theory (see [20]), (A.2) has a unique positive solution and is
given by the single layer potential

ψ(x)=
∫

∂Ω
σ(z)K0(|x−z|)dSz,

where σ is a continuous function on ∂Ω and K0 is the fundamental solution of −∆ in RN .
Therefore for some constant C,

0<ψ(x)<CK0(|x−y|), x∈RN\Ω.

Observe that ψ is an upper solution and −ψ is a lower solution of







∆H =0 in RN\Ω, |H(x,y)|→0 as |x−y|→+∞,

∂H

∂n
=−

∂K(|x−y|)

∂n
on ∂Ω.

Hence the comparison principle implies

|H(x,y)|≤CK0(|x−y|)≤
C

|x−y|N−2
.

Otherwise we first consider d(x,∂Ω) and d(y,∂Ω) small. Let y∈RN\Ω be such that d =
d(y,∂Ω) is small. So there exists a unique point ȳ ∈ ∂Ω such that d = |y− ȳ|. Without
loss of generality we may assume ȳ = 0 and the outer normal at ȳ is pointing toward
−xN-direction. Let y∗ be the reflection point y∗=(0,··· ,0,−d) and consider the following
auxiliary function

H∗(x,y)=K(|x−y∗|).

Then H∗ satisfies ∆H∗=0 in RN\Ω and on ∂Ω

∂

∂n
(H∗(x,y))=−

∂

∂n
(K(|x−y|))+O

( 1

dN−2

)

.

Hence we derive that

H(x,y)= H∗(x,y)+O
( 1

dN−3

)

,

which proves (A.1) for x,y∈RN\Ω. This implies that for x∈RN\Ω

|u(x)|≤C
∫

RN\Ω

| f (y)|

|x−y|N−2
dy. (A.3)

If x∈ ∂Ω, we consider a sequence of points xi ∈RN\Ω,xi → x∈ ∂Ω and take the limit in
(A.3). Lebesgue’s Dominated Convergence Theorem applies and (3.6) is proved. 2

Now we start to prove that W ≤C, where C > 0 is a constant, independent of k. We
have a more general result whose proof can be found in [17].
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Lemma A.1. For any α>0,

k

∑
j=1

1

(1+|y−xj |)α
≤C

(

1+
k

∑
j=2

1

|x1−xj|α

)

,

where C>0 is a constant, independent of k.

For each fixed i and j, i 6= j, consider the following function

gij(y)=
1

(1+|y−xj|)α

1

(1+|y−xi|)β
, (A.4)

where α ≥ 1 and β ≥ 1 are two constants. The following two lemmas can be found in
Appendix B in [10].

Lemma A.2. For any constant 0≤σ≤min(α,β), there is a constant C>0, such that

gij(y)≤
C

|xi−xj|σ

( 1

(1+|y−xi |)α+β−σ
+

1

(1+|y−xj|)α+β−σ

)

.

Lemma A.3. For any constant 0<σ < N−2, there is a constant C>0, such that

∫

RN

1

|y−z|N−2

1

(1+|z|)2+σ
dz≤

C

(1+|y|)σ
.

Let us recall that
ε= k−

N−2
N−3 , N≥4.

Lemma A.4. Recall that τ= N−3
N−2 if N≥6, N=4 and τ= 5

6 if N=5. Then there is a small θ>0,
such that

∫

RN

1

|y−z|N−2
W

4
N−2 (z)

k

∑
j=1

1

(1+|z−xj|)
N−2

2 +τ
dz

≤C
k

∑
j=1

1

(1+|y−xj |)
N−2

2 +τ+θ
+o(1)

k

∑
j=1

1

(1+|y−xj|)
N−2

2 +τ
,

where o(1)→0 as k→+∞.

Proof. Firstly, we consider N≥6. Then

4

N−2
≤1,

4(N−3)

N−2
≥4,

which makes the proof the same as in [17]. Hence we only give out the proof of the case
N =4,5.
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Suppose now that N =5. Recall that ǫ= k−
3
2 and

Ωj =

{

y=(y′,y′′)∈RN\Ωε :
〈 y′

|y′|
,

xj

|xj|

〉

≥cos
π

k

}

.

For z∈Ω1, we have |z−xj|≥ |z−x1|. Using Lemma A.2, we obtain

k

∑
j=2

1

(1+|z−xj|)3
≤

1

(1+|z−x1|)
3
2

k

∑
j=2

1

(1+|z−xj |)
3
2

≤
C

(1+|z−x1|)
7
3

k

∑
j=2

1

|xj−x1|
2
3

≤
C

(1+|z−x1|)
7
3

since
k

∑
j=2

1

|xj−x1|
2
3

≤C(εk)
2
3

k

∑
j=2

1

j
2
3

=O(ε
2
3 k)=O(1).

Similarly,

k

∑
j=2

ε

(1+|z−xj|)2
≤

Cε
1
3

(1+|z−x1|)2
.

Thus,

W
4
3 (z)≤

( C

1+|z−x1|)3
+

C

(1+|z−x1|)
7
3

+
Cε

1
3

(1+|z−x1|)2

)
4
3

≤
C

(1+|z−x1|)
28
9

+
Cε

4
9

(1+|z−x1|)
8
3

.

As a result, for z∈Ω1, using Lemma 2.1 again, we find that for θ >0 small,

W
4
3 (z)

k

∑
j=1

1

(1+|z−xj|)
3
2 +τ

≤
C

(1+|z−x1|)
28
9 + 3

2 +τ
+

C

(1+|z−x1|)
2+ 3

2 +τ+θ

k

∑
j=2

1

|xj−x1|
10
9 −θ

+
Cε

4
9

(1+|z−x1|)
8
3 + 3

2 +τ
+

Cε
4
9

(1+|z−x1|)
2+ 3

2 +τ

k

∑
j=2

1

|xj−x1|
1
3

≤
C

(1+|z−x1|)
2+ 3

2 +τ+θ
+o(1)

1

(1+|z−x1|)
2+ 3

2 +τ
.
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So, we obtain

∫

Ω1

1

|y−z|3
W

4
3 (z)

k

∑
j=1

1

(1+|z−xj |)
3
2 +τ

dz

≤
C

(1+|y−x1|)
3
2 +τ+θ

+o(1)
1

(1+|z−x1 |)
3
2 +τ

,

which gives

∫

Ωε

1

|y−z|3
W

4
3 (z)

k

∑
j=1

1

(1+|z−xj |)
3
2 +τ

dz

=
k

∑
i=1

∫

Ωi

1

|y−z|3
W

4
3 (z)

k

∑
j=1

1

(1+|z−xj |)
3
2 +τ

dz

≤
k

∑
i=1

C

(1+|y−xi |)
3
2 +τ+θ

+o(1)
1

(1+|y−xi |)
3
2 +τ

.

Suppose that N =4. In this case, ǫ= k−2. We have that for z∈Ω1,

k

∑
j=2

1

(1+|z−xj |)2
≤

C

(1+|z−x1|)
3
2

k

∑
j=2

1

|xj−x1|
1
2

≤
Cǫ

1
2 k

(1+|z−x1|)
3
2

≤
C

(1+|z−x1|)
3
2

and
k

∑
j=2

ε

(1+|z−xj |)
≤

Cε
1
2

(1+|z−xj |)
.

Thus

W2(z)
k

∑
j=1

1

(1+|z−xj|)1+τ

≤

(

C

(1+|z−x1|)3
+

Cε

(1+|z−xj|)2

) k

∑
j=1

1

(1+|z−xj |)1+τ

≤
C

(1+|z−x1|)4+τ
+

C

(1+|z−x1|)
2+1+τ+ 1

2

k

∑
j=1

1

|x1−xj|
1
2

+
Cε

1
2

(1+|z−x1|)2+1+τ

≤
C

(1+|z−x1|)
2+1+τ+ 1

2

+o(1)
C

(1+|z−x1|)2+1+τ
,
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which gives

∫

Ωε

1

|y−z|2
W2(z)

k

∑
j=1

1

(1+|z−xj |)1+τ
dz

=
k

∑
i=1

∫

Ωi

1

|y−z|2
W2(z)

k

∑
j=1

1

(1+|z−xj |)1+τ
dz

≤
k

∑
i=1

C

(1+|y−xi|)
1
2 +1+τ

+o(1)
k

∑
i=1

C

(1+|z−x1|)1+τ
.

This completes the proof of the lemma.
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