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Abstract. In this paper, we establish the existence of traveling wave solutions to the
nonlinear three-dimensional viscoelastic system exhibiting long range memory. Under
certain hypotheses, if the speed of propagation is between the speeds determined by
the equilibrium and instantaneous elastic tensors, then the system has nontrivial trav-
eling wave solutions. Moreover, the system has only trivial traveling wave solution in
some cases.
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1 Introduction

In this paper, we discuss the existence of nontrivial traveling wave solutions to the three-
dimensional nonlinear viscoelastic system exhibiting long range memory:

uy(x,t) =divyo, (1.1a)

where u(x,t) = (u1(x,t),u2(x,t),us(x,t)) is the displacement of a material particle x =
(x1,x2,x3) at time t, and o= ((Ti]') is the stress tensor. For viscoelastic materials, the stress
at time t depends on all the history of the deformation gradient up to time t. Here we
discuss only the case when the stress is given by a single integral law (see, [1,2])

o (x,t) = g(Vu(x,1)) — / h(t,Vu(x,t—1))dr, (1.1b)
0
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where g(¢) = (8ij(¢)),h(t.n) = (hij(T,1)),6 = (&ij) = (nij), i,j=1,2,3.

Our interest is to find traveling wave solutions to the nonlinear Volterra integro-
differential system (1.1). That is, we are looking for a solution u(x,t) depending only
on {=At+w-x, where A is the speed of propagation, w = (w1,w»,w3) with |w|=1. More-
over, we require that the solution satisfies the upstream condition:

Jim S = 02

for a given constant vector v~ = (v; ,v, ,v5 ).
Qin and Ni studied the special case in [3] when

h(t,Vu(x,t—7))=a(t)h(Vu(x,t—1)). (1.3)
As pointed out in [3], for the pure elastic case
oc=g(Vu(xt)), (1.4)

the problem has no nontrivial traveling wave solution except when A is the speed of
propagation for the wave v~ determined by the elastic tensor. For viscoelastic materi-
als, the instantaneous elastic tensor (1.4) is different from the equilibrium elastic tensor
determined by the stress tensor

p(u(x,t)) = g(Vae(x, b)) — /0 “h(t, Va(x,t)dr, (1.5)

which governs the long time behavior of waves. Thanks to the dissipative effect, in gen-
eral, the speed of propagation for the wave determined by the equilibrium elastic tensor
is less than that determined by the instantaneous elastic tensor. Therefore, we should
find nontrivial traveling wave solutions to the problem with the propagation speed A
between the two speeds.

For the one-dimensional case, the system (1.1) is reduced to

up(x,t)= %g(ux(x,t)) —/Ooo%h(r,ux(x,t—r))dr, (1.6)

and the corresponding instantaneous and equilibrium elastic modulus are g'(u,) and
p'(uy), respectively. The authors of [4] and [5] proved that if

pv7)<A?<¢ (v7), (1.7)

then there exist nontrivial traveling wave solutions to (1.6).

All the methods used in the one-dimensional case depend strongly on the monotonic-
ity of both traveling wave solutions and iterative sequences. Therefore, they cannot be
applied to the three-dimensional case. In order to overcome this difficulty, we apply the
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higher-order iterative process, introduced by Qin and Ni in [3], to show the local exis-
tence of traveling wave solutions near § = —oco, and then prove the corresponding global
existence.

In the next section, we state the hypotheses and the main results of this paper. In Sec-
tion 3, we give the proof of the existence of nontrivial traveling wave solutions. Finally,
the uniqueness of trivial traveling wave solution is established.

2 Hypotheses and main results

Set v(&) =du(¢)/d& and

agii(F oh;i(n,F apii(F)
aijit (F) = gg}il )’ bij (1, F) = %5’21 )’ ci (F) = g}kz
with F=(f;;). For traveling wave solutions, the system (1.1) is reduced to
d > d
)\2 Z) + Z w]wlal]kl )®w) vdk<§)
jkI=1 g
o 3 do(—A .
:/ Z w]-wlbijkl(n,v(é—)uy)®w)Mdn, i=1,2,3 (21)
0 jkI=1 d¢

with v({) ®w = (v;(§)wj). The upstream condition (1.2) is written as
lim v(g)=v". (2.2)

CH*OO

Itis clear that v(&)=v" is a solution to (2.1)-(2.2), which we refer to as the trivial solution.
Integrating (2.1) with respect to ¢ from —oo to ¢ and using (2.2), we have

3
—A20;(&) -l-ijgij(v(C) Rw)
=

/ Zw] i(v(E—An)@w)dy—A;, i=1,2,3, (2.3)
where
3 o 3
:}\%:—Zw]gu(v—@)w)—l—/o Zw]hl]<77,7)—®(U)d17 (2.4)
j=1 j=1

For convenience, we refer to A satisfying

3
det (—/\21—1— ) ijlai]-kl(v@)w)) =0, (2.5)
ji=1
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where (a;j;) stands for elastic tensor, as the speed of propagation for the wave v associ-
ated with the direction w.
Without loss of generality, we assume that

- =0. (2.6)

v
In this paper, for a tensor a;j;, the symmetry means that
A =aij, Vi, j, k 1=1,2,3. (2.7)
Definition 2.1. If there exists a constant a >0 such that
Y ajuéilinm>alEPlyl?, VE neR, (2.8)
ijkl=1
then the tensor A= (a;j) is said to satisfy the strongly elliptic condition.

Now we state the hypotheses for the system (2.3).

(H) (aiju(F)), (biju(n,F)) and (cjj(F)) are sufficiently smooth and symmetric.
Moreover, (a;jx(0)) and (c;jx;(0)) satisfy the strongly elliptic condition.

Let

3 3
A(F)= ( ) wiwa (F))/ B(n,F)= ( Y. ijlbijkl(ﬂrp)),

jl=1 jl=1

C(F)= ( 23: ijlcijkl(P)>'

ji=1

From the hypothesis (H), it is easy to see that A(0) and C(0) are positive definite ma-
trices. Let p(A) and r(A) be the spectral radius and the least eigenvalue of a symmetric
matrix A, respectively. For definiteness, we consider only the case A >0; the discussion
for the case A <0 is similar.

Now the problem is reduced to find a traveling wave solution to the nonlinear Volterra
integral system (2.3) such that the upstream condition (2.2) holds. In the proof of either
existence or uniqueness of traveling wave solutions, the key step is to solve the problem
near { = —oo.

Theorem 2.1. Suppose that the hypothesis (H) holds and there exists a(n) € L'(0,00) such that
bijia (17,0) | <aly), V>0, i,k 1=1,2,3. (2.9)

If p(C(0)) < A2 <r(A(0)), then the system (2.3) admits a nontrivial continuous solution satis-
fying the upstream condition (2.2) near § = —oo.
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If we get the solution on (—c0,{p| for a certain value of &y, then the system (2.3) can
be rewritten as

3
—A%0;(&) +X;wjgij(v(§) Qw)
j=

(¢ 3 '
:/0 Z:lwfhz‘j(’?fv(s’—?w)®w)df7+fi(§), i=1,2,3, (2.10)
]:
where

00 3
@)=, oy P E A SNy,

are given functions. Eq. (2.10) is a nonlinear Volterra integral system. Under some as-
sumptions on (g;;) and (h;;), it is not difficult to get the global existence through the
Schauder’s fixed point theorem.

Theorem 2.2. Assume the hypotheses of Theorem 2.1 hold. Furthermore, we assume that
A2 <7<r(A(F)), ¥V FER®S, (2.11)
and there exists b(n) € L' (0,00) such that
bt (17,F)|, [0yhij(7,F)| <b(y), V>0, FER*?,i,j=1,2,3, (2.12)

where 7 is a constant. Then the system (2.3) has a nontrivial continuous solution satisfying the
upstream condition (2.2) on R.

Theorems 2.1 and 2.2 will be proved in Section 3.

Roughly speaking, for a given direction w, if A is less than all the speeds of propaga-
tion determined by the equilibrium elastic tensor or larger than all ones determined by
the instantaneous elastic tensor, the problem has only the trivial solution.

Now we introduce the definition on the positive type of matrix-valued function (see,
e.g., p- 492, [6]).

Definition 2.2. A matrix-valued function M(t) € L*(R™;IR*>*3) is said to be of positive type if
and only if

/OT<v(t),(M*v)(t)>dt:/OT<v(t),/OtM(t—T)v(T)dT>dt20, VT>0 (2.13)

for every v e C(RT;RR?).
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Theorem 2.3. Suppose that the hypothesis (H) holds and there exists a constant éy > 0 and
c(n7) >0 such that

by (17,0)| <c(), ¥ >0, i, j, k 1=1,2,3. (2.14)

Moreover, e®'c(17) € L1(0,00), and e B(1,0) is of positive type. If

A2>p(A(0)) or A2 <r(A(0))—p</0 B(7,0)dy),
then the problem (2.1)-(2.2) admits only the trivial solution.

Theorem 2.3 will be proved in Section 4.

3 Proof of the existence of nontrivial solution

Following the idea in [3], we first construct a nontrivial continuous traveling wave so-
lution near ¢ = —oco. Then, by the Schauder’s fixed point theorem, we get the global
behavior of the traveling wave solution.

3.1 Local existence near { = —c0

We are looking for a solution to the system (2.3) in the following form
v(g)=a'et+-+aNeNl 1 p(g), (3.1)

where uf:(a]i,a]z',aé)T(jzl,---,N),p: (p1,p2,03)7, |p|=0(eN+1%), and N is a sufficiently

large integer to be determined later.
Similarly to the proof of Lemma 3.1 in [3], we can show the following lemma.

Lemma 3.1. If p(C(0)) <A2 <r(A(0)), then there exists a constant o >0 such that
det(—A2T+A(0)— /0 OOB(;y,o)e*M’?d@ —0. (3.2)
Let
5:max{c7€IRl,det<—)\ZI+A(0) —/OwB(;y,o)e*M’?d@ :o}.
There exists a nontrivial solution a! = (a%,a%,a%)T such that

(—221+4(0)- /0 wB(;y,O)e’M”diy)ulzo. (3.3)
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Inserting (3.1) into the system (2.3), we have, fori=1,2,3,
3
A2 (ale o aNeNE i ()) + gy (a4 aNeNE g p @) pw)
=1

= Y wihii(n,(a'e?EAD 4.4 gNeNOE=AN 4 (& —App)) @w)dy — A (3.4)

Comparing the coefficients of e2¢ ... eN% in both sides of the system (3.4), we can deter-

mine a?,---,aV, successively. In fact, once a',---,a/~! have been determined, comparing
the coefficients of ¢/°¢ in both sides of (3.4), it is not difficult to see that a/ satisfies

(—Azl—i—A(O) —/ B(;y,O)e’jA‘s’ldiy) al=b/(al,-,a™), (3.5)
0

where b/ = (bjl,b]z,bé) is a given polynomial of al,---,a’~1. Note that the choice of § and a/
is determined uniquely by the system (3.5).

We next employ the contraction mapping principle to determine p(¢) in (3.1), such
that v(¢) is a solution to the system (2.3). Let

sk={pec((~ooaliR%), |pl <K},
where K is a fixed positive constant and

lpll="sup e M%|p(g)].
ge(—o0,80]
We consider amap T: g=Tp, V p € Sk, determined by

3
—Aqu‘-i— Z ijluijkl(O)Qk:/\z(ﬂge(sé—i—”-+H1N€N5€)
jk1=1

3 3
+ ) wjwin(0)p— ) wigi ((ule‘s’:-i— o FaNeNC 4 p(8)) ®w)
jkl—l

j=1
/ Zw; 1] SE=A1) 4 ... 4 gNoNSE—An)
0 i3
+p(§—)uy))®w)d;7—Ai, ¥ peSk, i=1,2,3. (3.6)

It is easy to see that this map T can be rewritten as

(—A21+A(0))q=/OwB(mO)p(C—M)dnJrO (M%) +M(p), VpeSk, ()
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where O(e(N+1)%) is independent of p, and M(p) satisfies the following estimate with a
positive constant C(K) depending on K:

IM(p)|| <C(K)e’®, v peSk. (3.8)

In view of the assumptions in Theorem 2.1, we can take N so large that

o /0 mB(q,O)e*N"‘S’ldn) <r(A(0))—A2. (3.9)

Then, we can take ¢ sufficiently negative so that

|OENFVE) |, IM(p)|| <%(1—0)(r(A(0))—?\2)K, Vie(—oo,60l, pESK,  (3.10)
where

U:p</OOOB(17,O)e_NM’7d17)/(r(A(O))—AZ). (3.11)

Lemma 3.2. Suppose that the assumptions of Theorem 2.1 hold. Let N and ¢y satisfy (3.9) and
(3.10), respectively. Then the map q=Tp,V p € Sk, defined by (3.6), is injective.

Proof. From (3.7) we have
(r(A(0)) —A%)]|q]|
<o( [ B0 NIy ) [p|+[OCN T [+ M), Vpesk. (12

In view of (3.9) and (3.10), we get from (3.12) that ||q|| <K, that is, g € Sk. O

Lemma 3.3. Suppose the assumptions of Lemma 3.2 hold. If ¢y is sufficiently negative, then the
map T : Sx — Sk is contractive.

Proof. Suppose that p,p €Sk and g=Tp,§=Tp. Then, it follows from the definition (3.6)
of the map T and the expression (2.4) of A; that

3
=N (Gi—aqi)+ Y wjwaiz(0)(di—qx)

jkI=1
3 1
=) ijl/o (aijkl(o)—aijkl((“1€5€+"'+“N€N5€+P(§)
jkI=1
+0(p(8)~p(2)) @w) ) d0(Pi—py)
o 3 1
+ ) ww / bija (17, (a1 . aNNOEA) (g A7)
0 0
jkl=1

+0(p(E—A)—p(E—An)))©w ) dO(PL(E—An) —pe(E—An))dy, i=1,2,3. (3.13)
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For o given by (3.11), noting (2.9), we can take & > 0 sufficiently small such that

3
P( IZ wjwi (a1 (vOw) —ﬂijkl(o))) < i(l—U)U(A(O))—/\Z)/ (3.14)
s

o 3
P(/O ,;lewlbijkz(ﬂ,v@w)e—msﬂdn)
], =

<p( [ B0 M rdy) + 1 (1-0) ((A(0) ~22), (3.15)
provided that
lv@w|<e.
Taking ¢o so negative that
[(a'e®+ - +aNeN% 4 p(8))Rw|<e, VpeSk, E€(—00,8], (3.16)
by the above hypotheses, we obtain from (3.13) that
(r(A(0)) =A%) [l7—q]
<= (A ©) ) |p—pl+ (p( [ B0 N1dy)
+3(1-0)(r(A(0))~22)) [Pl (3.17)

Consequently,

. 1 . .
lg—4l §§(1+0)Hp—pll <[p-rl,
provided that (1+0)/2<1. O

Proof of Theorem 2.1. From Lemmas 3.2 and 3.3, we can reach the conclusion of Theorem
2.1 immediately. O

3.2 Global existence
First, for any fixed Ty > ¢o, we give a prior estimate for the solution on [, Tp]. Suppose

that there is a solution v(¢) to the system (2.10) on [, To|. Then we have

3
M)+ Y ijz/olaijkl(9v(§)®w)d9 o (S)
1

=

He-¢g) 3 1
:/0 ) ijl/o bijr (1,00 (¢ — A1) @w)dOvr (& — Ay )dy+.7(Q),
jI=1
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with

F@=[, Y whilne@-rnewe)d- | o Lm0y, i=1,2,3
=

(=60 = Lz
That is,
(—r21+ OlA(Gv)d9>~v(g)
:/OA(é—éo)/01B(ﬂ,@v(é—}\q))dg.v@_;\n)dn_i_y(é)’ (3.18)

where .7 (&) = (%1 (&), %2(&),#3(Z))T. Now, by (2.11) and (2.12), we get

1(E-%)
(=2 2+n)p@I< [T bnleE—Aldy+ sup |#

Z€[Go, To]
< (S -
SCl/ lo(7)|dT+Ca.
%o
Then, by Gronwall’s inequality, we obtain the estimate
0(8)| < Co+CaeC1 T8 2 M, V¥ &€ (&, To). (3.19)

Proof of the Theorem 2.2. According to Theorem 2.1, there exists a nontrivial solution on
(—00,8p]. To obtain the existence on [¢),0), we need to show only that the system (2.10)
admits a solution v(¢) on [&o, To| for any Ty > §o. For this purpose, we define an operator
T by

3
—A3(T0)i(8)+ Y wigi((Tv)(8) ®w)

=1
1(E—Go) 3 ‘
= /0 Y wihij(n,0(E—Ay)®@w)dn+£i(§), i=1,2,3. (3.20)
j=1

It is not difficult to show that (3.20) defines uniquely a continuous function (Tv)(g). The
function v satisfying

(To)(¢)=0(¢) forall &e[Go,To]

is, of course, a solution to the system (2.1).
We take the domain of T to be

K={o(@) (20, TlR?) | 0(20) =", [o(&)| <M}, (321)

where M is defined by (3.19), v* is the value at &, of the local solution which has been
constructed on (—o0,(p].
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It is clear that the function ¢+ (Tv)(¢) is continuous. Now we prove that T maps K
into itself. To this end, taking § = ¢y in the system (3.20), we get

3

—A%(T0)i(Z0) + ) wigii((To) (&0) ®w) = fi(Go)-

j=1
On the other hand, from the definition of v°, we have
3
A0+ ) w;gij (0" @w) = fi(Go)-
j=1

Recalling now (2.11), we obtain (Tv)(&) =v° immediately. Similarly to getting a prior
estimate (3.19), we can obtain that

((To)(§)|<M  forany ¢ &g, Tol.

Therefore, T maps K into itself.

The set K is a bounded, closed and convex set. Now we show that T is a compact
map of K into itself. By Arzela-Ascoli Theorem and what we have already proved, this
suffices to show that the set {Tv|v € K} is equicontinuous. Let §p < ¢&; < ¢, < Tj. Noting
(2.11), we have

(—=A2+7)[(Tv)(82) — (To) (1))

L(&-&)
<@ -F@)I+ [ rio@-Anew)|dy

7 (81—Co)

1 (&1-8o)
[ h @A ew) —he@-Meo)dr],  G2)

where
3 3 3 T
FO= (@ LELEO) = (L Lo, Yais)
= = =

Then in view of (2.12), from (3.22) we conclude immediately that the set {Tv | v € K} is
equicontinuous on [o, Tp|.

An application of the Schauder’s fixed point theorem shows that there exists a fixed
point v of T. The proof of Theorem 2.2 is complete. O

4 Proof of the uniqueness of trivial solution

Lemma 4.1. Let M(t) € L'(R*;R>*?) be of positive type. For any bounded function v €
C((—00,&0);R3), we have

/_i/oww’?)”(?—m?)dn'v(é)dézo, VA0, (4.1)
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Proof. The result can be obtained by using a way similar to that of Lemma 3.4in [3]. O

In the same way we can prove the following result.

Lemma 4.2. Let M(t) € L1(R;R3*3) be of positive type. For any function v € C([¢*,&*+
h];R?), we have

/(‘3 +h/ 0(E—An)dp-o(B)dE>0, YASO0, &>&, h>0.  (42)

Proof. 1t is easy to verify that

(e 5*
/ / v(¢—An)dy-o(5)dg
A/ / o(n+¢")dy-o(E+¢7)dE.
Then from the definition of positive type, we get (4.2) immediately. O

Proof of Theorem 2.3. Set A2 > p(A(0)). Noting (2.4), the system (2.3) can be written as

3 1 o 3
Moi(8)=Y wwl/o aij1 (00 (¢) @w)do vg (&) — / Y wjwbij(1,0)0r(E—Ay)dy

jil=1 0 jkl=1

o]

3
— 0 Z w]wl/o Az‘jkldg Uk(g—/\ﬂ)dﬂ, (43)
jkl=1

where
Ajjr = bijua (17,00(§ — A1) @w) —biju (17,0). (4.4)

Multiplying both sides of (4.3) by ¢2¢v;(&) (§>0) and adding the resulting equations for
i=1, 2,3, we get

Mw

}o e (E) =

1
ijl/ aiji (00(8) ®w)do ¢ v(§)vi(§)
i=1 ijkl1=1 0

»

/Ooo wijewbij (17,0) v (E—An)dny %0 ()

1]11
[e0]
bk

where Ajjy; is defined by (4.4). Integrating (4.5) with respect to ¢ from —oco to ¢ gives

1
ijl/o Ajjrd8 v (§—An)dy e20,(¢), 4.5)
i,j,k1=1

A2 /_ ie”é 0(&)2dé=1— L~ I (4.6)
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G 3 1
Il:/ D> ijl/o a1 (00 (&) @w)do v (&) ()dE,

—00; ikl=1
& oo 3 25z

12:/ /O Y. wjwbij(1,0)vc (& —Ay) dip e%0;(Z)dE,
—e0JO ;4T
Go oo 3 1 25z

132/ /o ) ijl/o Ajjid0 e* v (¢ —An)dn v;(&)dg.
—00J0 it

Set e=A%—p(A(0)). Taking & sufficiently negative, we have

(]lzlw]w, / a0 (60(8) ©w)d6 ) < p(A(0))+ = 47)
Then
< (p(a©)+5) [ ¥ jo(@)Pac 4

Let 5=6p/A, w(&) =€ v(¢). By Lemma 4.1, we have

z 3
IZ_/ O / E w]wlbl]k] )\51765(57/\77)%((5_)”7) d17 eﬁévi(g)dg

ijkl=1
¢
= [ [T B0 )y w(@)de o @9)
Taking ¢y sufficiently negative, we have
B 5 &
sup Z/ |willw; || A [e7dy - / eVe()dn < 5o (4.10)
0€(0,1] ]]l 1
Ge(—08p

Then, by Cauchy inequality, we get

LI< ) / // |wjcwr] | Ajja| €7 [or(E—Ap)| €M) diy d6 e [v;(€)|dE
i,j,k,1=

3. o o0 .
< 121/_00/0 (/O ’(U]a]]’ |Aijkl‘ eﬁoﬁdﬂ) 2

i,k 1=

g

o]

1
wicor] [Aijua| € [0 (G —An)[? 625(57)‘”)&7) T do e |oi(&)] dE

S—
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3

B \/_ljkl 1

55

o 1
([ ol [ gl €97 oe(e -2 26 40dg) e foy(2) a0 dg

<B Y [7 ([T emetmlose-aP &6 ) e o @) ag
ik=1

Nl

: ® 6 o 2 26(¢-My) 0 o 2
<B. Y ([ evetn [ pe-an) e agay [ fo(@) Pag)
ik=1 - -

e %o
S G

(4.11)
where Ajjy; is defined by (4.4), and

B.= % (/()ooe‘so’lc(iy)dﬂ _%.

Finally, combining (4.8), (4.9) with (4.11) yields

2 7 )Pz < (pa)+5) [

Then, we obtain v(¢) =0 on (—oo,&] immediately. Let

& =sup{¢ | v({)=0,—0<I<C}. (4.13)
If ¢* =400, it means that v() =0 on R. Now we suppose ¢* < 0. Then the system (2.3)
can be written as

¥ |v(&)|2d¢E. (4.12)

A20;(&) = i ww/lﬂ” (6v(8) ®@w)do vi(S)
iR ]lo PO OIEE
YA

$ (G-
—/0A ijl/o Ajjrd v (¢ —An)dy (4.14)
jhI=1

By Lemma 4.2, using the same proof as above, we can get v({) =0 on [¢*,¢*+h] for
sufficiently small /. This is a contradiction. The proof of Theorem 2.3 is complete
The proof for the case of

>»I- ’—‘

Jkl=

3
Z w]wlbukz 1,0)ok (& —An)dy

Mw

O

22 <r(a@)=p( [ Bl0)dn)

is similar and is omitted here
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