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1 Introduction

In petroleum exploitation one often uses various methods of well-logging, among which
the spontaneous potential (SP) well-logging is one of the most common and important
techniques. Since positive ions and negative ions have different diffusion speeds in a
solution, and the grains of mud-stone often absorb positive ions, there is a steady po-
tential difference called the spontaneous potential difference on any interface of different
formations. These potential differences cause a spontaneous potential field in the earth.
After a well has been drilled, one puts a log-tool with a measuring electrode into the well
and then measures the SP on the electrode. Raising the tool along the well-bore one gets
the corresponding SP curve, as shown in Fig. 1. The SP on the electrode varies with the
change of the rock formation, and it shows the osmotic formation clearly (cf. [1–4]).

As usual, we suppose that the formation is symmetric about the well axis and the
central plane (see Fig. 2), then the SP field has the same symmetry. Therefore, we con-
sider only the corresponding two-dimensional problem instead of the three-dimensional
one. In addition, since the influence of the electric field is very little far apart from the
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Figure 1: Illustration of measurement for the well-logging.

electrode, we may suppose that the field exists only on a finite but quite large region
(cf. [5, 6]).

Taking the center of the electrode as the origin and the well axis as the z axis (see
Fig. 2), we consider the problem on the domain

Ω,{(r,z)|0≤ r,

√
x2+y2 ≤R, 0≤ z≤Z},

where R and Z are suitably large positive numbers. Suppose furthermore that the resis-
tivity of the earth is piecewise constant:

Re=





Rm ,R1 in Ωm ,Ω1,

Rs ,R2 in Ωs ,Ω2,

Rx0 ,R3 in Ωx0 ,Ω3,

Rt ,R4 in Ωt ,Ω4.

In Fig. 2, the shaded part is the area occupied by the log-tool, whose top surface is
insulated; Ωm is the well-bore filled by mud; Ωs is the enclosing rock; Ωx0 and Ωt are
two parts of the objective formation, which is the main object to be measured. Since the
objective formation is usually composed of porous sand-stone, the mud filtrate penetrates
into the porous region and changes the resistivity in the domain Ωx0 , which is then called
the invaded zone.

If the geometrical structure of the formation, the resistivity in each subdomain and
the SP difference on each interface are all known, as a direct problem, the spontaneous
potential u(r,z) satisfies the following quasi-harmonic equation in each subdomain Ωi

(1≤ i≤4):

Lu=0,
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Figure 2: Illustration of a symmetric SP field.

where

L=−

(
∂

∂r

( r

Re

∂

∂r

)
+

∂

∂z

( r

Re

∂

∂z

))

is the quasi-harmonic operator.
Owing to SP difference Ej (1≤ j ≤ 5) on each segment γj (1≤ j ≤ 5) of the interface

between formations with different resistivity, the electric current is continuous but the
potential has a jump. Thus we have the interface conditions





u+−u−=Ej,( r

Re

∂u

∂n

)+
=

( r

Re

∂u

∂n

)−
,

where the superscripts ’+’ and ’−’ stand for the values on both sides of γj, respectively,
as prescribed in Fig. 2. The unite normal vector n takes the same direction on both sides
of γj.

Furthermore, since the electrode does not discharge any electric current, on the sur-
face Γ0 of the measuring electrode, we have the following boundary condition with
equivalued surface





u=C (unknown constant),
∫

Γ0

r

Re

∂u

∂n
ds=0,

where n is the unit outward normal vector to Γ0.
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On the well axis, the plane of symmetry, the insulated surface of the log-tool and the
distant boundary r=R, the normal derivative of the SP vanishes. Denoting these parts of
the boundary by Γ2 ,

⋃7
j=1 Γ2j, we have

r

Re

∂u

∂n
=0 on Γ2.

Moreover, on the surface of the earth Γ1 , Γ11
⋃

Γ12, in order to be compatible with the
jump condition on γ5, we have

u=E5(C) on Γ11; u=0 on Γ12.

Without loss of generality, we may suppose E5(C)=0. Otherwise, by making a translation
ũ=u−v, where

v=

{
E5(C) in Ω1,
0 in Ωi, i=2, 3, 4,

this condition can be always satisfied. Consequently, the boundary conditions on Γ1 can
be unified to u = 0. Thus, on the domain Ω, the SP potential u = u(r,z) satisfies the
following problem (cf. [1–4]):

(I)





Lu=0 in Ωi, 1≤ i≤4,

u=0, on Γ1,
r

Re

∂u

∂n
=0, on Γ2,

u=C (unknown constant) on Γ0,
∫

Γ0

r

Re

∂u

∂n
ds=0,

u+−u−=Ej,
( r

Re

∂u

∂n

)+
=

( r

Re

∂u

∂n

)−
, on γj, 1≤ j≤5.

It is known that the problem (I) is always well-posed (cf. [1–4]). More precisely, when the
compatibility condition

{
∆A ,E1(A)+E5(A)−E3(A)=0,

∆B ,E2(B)+E3(B)−E4(B)=0
(1.1)

is satisfied, there exists a unique piecewise H1
∗ weak solution. On the other hand, when

the compatibility condition (1.1) fails, the problem has a unique piecewise W
1,p
∗ (1< p0 <

p<2) weak solution (cf. [3, 4]).
With the purpose of making a perfect contact between the electrode and the well-wall,

engineers have designed a so-called patched electrode system by separating the electrode
into many small cells, embedding them into a rubber and then connecting them with wire
behind the rubber. This electrode system is much more flexible than the original one and
fits the shape of the well wall more easily.
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Figure 3: A partition of Γ0.

In the patched electrode system we partition Γ0 into two parts Γε
0 and Γ̃ε

0 (see Fig. 3),

where Γε
0 denotes the rubber surface inside Γ0, while Γ̃ε

0 denotes the union of the con-

nected surfaces of all the metal cells Γ̃ε
0,i (i=1,··· ,m(ε)), namely,

Γ̃ε
0 =

m(ε)⋃

i=1

Γ̃ε
0,i.

We denote the potential corresponding to the patched electrode system by uε. Since there
is a short-circuit between the connected pieces of the electrode, the potential uε must be
still a constant (unknown) on Γ̃ε

0. Therefore, the boundary condition on Γ0 should be
changed to





r

Re

∂uε

∂n
=0 on Γε

0,

uε =Cε (unknown constant) on Γ̃ε
0,

∫

Γ̃ε
0

r

Re

∂uε

∂n
ds=0.

Then uε satisfies the following problem:

(Iε)





Luε =0 in Ωi, 1≤ i≤4,

uε =0, on Γ1,
r

Re

∂uε

∂n
=0, on Γ2,

r

Re

∂uε

∂n
=0, on Γε

0, uε =Cε, on Γ̃ε
0,

∫

Γ̃ε
0

r

Re

∂uε

∂n
ds=0,

u+
ε −u−

ε =Ej,
( r

Re

∂uε

∂n

)+
=

( r

Re

∂uε

∂n

)−
on γj, 1≤ j≤5,

where Cε is a constant to be determined.
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The problem (Iε) is still well-posed, however, it is quite difficult to solve this problem
by a numerical method, for example, by the finite element method. In fact, if the elec-
trode is composed of plenty of metal cells, the boundary condition on Γ0 rapidly changes
its type, and then we need a great many nodes in a neighbourhood of each Γ̃ε

0,i. This
increases the amount of computation greatly, and does not guarantee the precision in cal-
culation. Furthermore, the situation will become more difficult along with the increment
of mental cells; the problem may even not be solved numerically.

In order to reduce this complexity of computation it is natural to ask if this compli-
cated boundary condition on Γ0 =Γε

0∪Γ̃ε
0 can be replaced approximately by a much sim-

pler and unified boundary condition. Moreover, if it exists, it will be interesting to know
the reduced boundary condition. This kind of problem was first discussed by Damlamian
and Li for the resistivity well-logging (cf. [6–9]), characterized by emitting an electric cur-
rent from the electrode, but not possessing spontaneous potential difference. In their
work, the concept of homogenization of boundary condition and the corresponding the-
ories were presented.

In this paper we shall consider the boundary homogenization to the problem with the
jump interface condition for the SP well-logging. We prove that, when the compatibility
condition (1.1) is satisfied, the solution uε of the problem (Iε) converges strongly in piece-
wise H1

∗ to the solution u of the problem (I) as ε goes to zero. When the compatibility

condition (1.1) fails, the convergence is in piecewise W
1,p
∗ .

2 Preliminaries

To study the problem of homogenization of boundary condition, we give a restriction on
the geometrical structure of Γ̃ε

0 as ε→0. We make the following hypothesis:

(H) For any weak * convergent subsequence {χε′} of {χε} in L∞(Γ0), its limit func-
tion is always different from zero a.e. on Γ0; namely, if χε′ →χ weak * in L∞(Γ0),
then χ 6=0, a.e. on Γ0, where

χε =

{
1 on Γ̃ε

0,
0 on Γε

0

is the characteristic function of Γ̃ε
0 on Γ0.

Lemma 2.1. Under the hypothesis (H), let A be the set of L∞(Γ0) weak * cluster-points of char-
acteristic functions {χε}. We have

inf
χ∈A

∫

Γ0

χdS>0.

Proof. If the conclusion is not true, then

inf
χ∈A

∫

Γ0

χdS=0.
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Note ‖χε‖L∞ = 1, A 6=∅. If A is a finite set, it is easy to obtain a contradiction. Now we
consider the case that A is an infinite set. Then for any given m > 0, there exists χm ∈ A
such that

∫

Γ0

χmdS<
1

m
.

Owing to χm∈A, we can find χεm ∈{χε} such that

∣∣∣∣
∫

Γ0

(χεm−χm)dS

∣∣∣∣<
1

m
.

Consequently,

∫

Γ0

χεmdS<
2

m
,

which implies

mes(Γ̃
εm
0 )<

2

m
→0, m→∞.

Thus, for any given region D contained in Γ0, we have

∫

D
χεmdS=

∫

D∩Γ̃
εm
0

dS=mes(D∩Γ̃
εm
0 )→0, m→∞.

Hence, noting ‖χεm‖L∞(Γ0) =1 and using the generalized Riemann-Lebesgue theorem (cf.
[10]), we get

χεm →0 weak * in L∞(Γ0)

as m→∞. This is a contradiction to the hypothesis (H).

Lemma 2.2. Under the hypothesis (H), for any given ε > 0, there exists a positive constant α
independent of ε, such that

mes(Γ̃ε
0)≥α. (2.1)

Proof. If (2.1) is not true, then, for any given m>0, there exists an εm such that

mes(Γ̃
εm
0 )<

1

m
→0, m→∞.

Therefore, similar to the proof of Lemma 2.1, we can obtain a contradiction to the hy-
pothesis (H).
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Figure 4: The sets and notations stated in Lemma 2.3.

Lemma 2.3. Consider a one-dimensional periodic structure on interval Γ0=[0,1]=Γ̃ε
0∪Γε

0, where

Γ̃ε
0 =

+∞⋃

i=−∞

(ai,bi]
⋂

[0,1], Γε
0 =

+∞⋃

i=−∞

(bi,ai+1]
⋂

[0,1],

with ai = iε, bi =(i+θ)ε, (0< θ <1) (see Fig. 4). Then the characteristic function χε of Γ̃ε
0 on Γ0

satisfies

χε → θ weak∗ in L∞([0,1]). (2.2)

Proof. For any given [ã,b̃]⊆ [0,1], let i0 = [ã/ε]+1, j0 = [b̃/ε]−1, where [·] stands for the
integer part. Then, for i0≤ i≤ j0, we have (ai,ai+1]⊂ [ã,b̃], and therefore

∫

[ã,b̃]
χεdt=

∫

∪+∞
i=−∞

(ai,ai+1]∩[ã,b̃]
χεdt

=
∫

∪
j0
i=i0

(ai,ai+1]
χεdt+

∫

(ã,ai0
]∪(aj0+1,b̃]

χεdt

=
∫

∪
j0
i=i0

(ai,bi]
χεdt+

∫

(ã,ai0
]∪(aj0+1,b̃]

χεdt

=(j0−i0+1)θε+
∫

(ã,ai0
]∪(aj0+1,b̃]

χεdt → θ(b̃− ã), as ε→0.

Consequently, we have

lim
ε→0

∫

[ã,b̃]
(χε−θ)dt=0.

Thus, for any given ε, noting ‖χε‖L∞(Γ0) = 1, (2.2) follows directly from the generalized
Riemann-Lebesgue theorem.

Remark 2.1. χε in Lemma 2.3 can be constructed as follows: Extend the function

χ(t)=

{
1 t∈ [0,θ],
0 t∈ (θ,1]

to a periodic function with period 1 on R. Then take χε(t)=χ(t/ε).
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Remark 2.2. According to Lemma 2.3, in the SP well-logging, the partition of the elec-
trode should follow the following principle: The total area of the surfaces of all the metal
cells keeps to be a constant or of the same order of magnitude, when the electrode is
divided into finer and finer, at the same time, more and more cells. According to this
principle, the hypothesis (H) is automatically satisfied.

We outline a brief proof for the above principle. If it is not true, then there exists a
subsequence {χεm} of {χε}, such that

χεm →0 weak * in L∞(Γ0)

as m→∞. Then ∫

Γ0

χεmdS→0, m→∞.

Consequently, mes(Γ̃
εm
0 )→0, m→∞. This gives a contradiction to the suggested principle.

3 The case with the compatibility condition satisfied

We first discuss the homogenization of boundary condition for the SP well-logging in the
case that the jump condition satisfies the compatibility condition (1.1). In this case, the
corresponding variational problem of the problem (I) is to seek u∈V2 such that

a(u,φ)=0, ∀φ∈V0
2 , (3.1)

where

a(u,v)=
4

∑
i=1

1

Ri

∫

Ωi

(∂u

∂r

∂v

∂r
+

∂u

∂z

∂v

∂z

)
rdrdz,

V2 ={v|v∈H1
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=Ej, 1≤ j≤5; v|Γ1
=0; v|Γ0

=C},

V0
2 ={v|v∈H1

∗(Ωi), 1≤ i≤4; v+−v−|γj
=0, 1≤ j≤5; v|Γ1

=0; v|Γ0
=C}

={v|v∈H1
∗ (Ω), v|Γ1

=0; v|Γ0
=C}.

Similarly, the corresponding variational problem of the problem (Iε) is to seek uε ∈Vε,2

such that

a(uε,φε)=0, ∀φε ∈V0
ε,2, (3.2)

where

Vε,2 ={v|v∈H1
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=Ej, 1≤ j≤5; v|Γ1
=0; v|

Γ̃ε
0
=Cε},

V0
ε,2 ={v|v∈H1

∗ (Ωi), 1≤ i≤4; v+−v−|γj
=0, 1≤ j≤5; v|Γ1

=0; v|
Γ̃ε

0
=Cε}

={v|v∈H1
∗ (Ω), v|Γ1

=0; v|
Γ̃ε

0
=Cε}.
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Here

H1
∗ =

{
v|r1/2v∈L2, r1/2∇v∈L2

}
, (3.3)

equipped with the norm

‖v‖H1
∗
=

(
‖r1/2v‖2

L2 +‖r1/2∇v‖2
L2

)1/2
.

Moreover, C and Cε are the constants to be determined.
When the jump condition satisfies the compatibility condition (1.1), for the problem

(I) (resp. the problem (Iε)) we have the following conclusions (cf. [1, 3, 4]).

Lemma 3.1. Suppose that the compatibility condition (1.1) is satisfied, then V2 6=∅.

Lemma 3.2. The problem (I) (resp. the problem (Iε)) admits a unique piecewise H1
∗ weak solution

if and only if Ej (1≤ j≤5) satisfies the compatibility condition (1.1).

Theorem 3.1. Under the hypothesis (H), suppose that Ej (1≤ j≤ 5) satisfies the compatibility

condition (1.1). Then for the unique piecewise H1
∗ weak solution uε to the problem (Iε), we have

uε →u strongly in H1
∗(Ωi), 1≤ i≤4, (3.4)

as ε→0, where u∈V2 is the unique piecewise H1
∗ weak solution to the problem (I).

Proof. By Lemma 3.2, there exists a unique uε ∈Vε,2 satisfying (3.2). Furthermore, owing
to Lemma 3.1, for any given v∈V2, we have wε =uε−v∈V0

ε,2, and

a(wε,φε)=−a(v,φε), ∀φε∈V0
ε,2.

Then, specifically choosing φε =wε, we obtain

a(wε,wε)=−a(v,wε). (3.5)

Thus, by Poincaré’s inequality, we get

‖wε‖H1
∗(Ω)≤M, (3.6)

where M is a positive constant independent of ε. Therefore, there exists a subsequence
{wε′} of {wε} and w∈H1

∗(Ω), such that

wε′ →w weakly in H1
∗(Ω) (3.7)

as ε′→0. Noting that

wε′ |Γ1
=uε′ |Γ1

−v|Γ1
=0,
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by the trace theorem and (3.7), we have

w|Γ1
=0. (3.8)

Furthermore, (2.1) and (3.6) yield

|Cε′ |= |wε′ |Γ̃ε′
0
|=

( 1

mes(Γ̃ε′
0 )

∫

Γ̃ε′
0

w2
ε′dS

)1/2

≤
1

α1/2
‖wε′‖H1/2(Γ̃ε′

0 )
≤M‖wε′‖H1

∗(Ω)≤ M̃,

where M̃ is a positive constant independent of ε. Consequently, there exists a subse-
quence of {Cε′}, still denoted by {Cε′}, and a constant C, such that Cε′ → C as ε′ → 0.
Moreover, by the trace theorem and the imbedding theorem, we have

wε′ →w strongly in L2(Γ0), as ε′→0.

In addition, from the hypotheses (H), we can suppose (if necessarily, we take a subse-
quence)

χε′ →χ weak * in L∞(Γ0), ε′→0,

and χ 6=0,a.e.on Γ0. Thus, for any given f ∈L2(Γ0), we get

∫

Γ0

(χε′wε′−χw) f dS=
∫

Γ0

[χε′(wε′−w)+(χε′−χ)w] f dS

=
∫

Γ0

χε′(wε′−w) f dS+
∫

Γ0

(χε′−χ)(w f )dS→0, as ε′→0.

Consequently,

χε′wε′ →χw weak * in L2(Γ0), ε′→0.

On the other hand, from the above discussion, it is easy to see that

χε′wε′ =χε′Cε′→χC weak * in L∞(Γ0), ε′→0,

which yields

χw=χC a.e. on Γ0.

Since χ 6=0,a.e. on Γ0, we then obtain

w|Γ0
=C. (3.9)

Thus, (3.8) and (3.9) yield w∈V0
2 . Let u=w+v. Since w∈V0

2 and v∈V2, we conclude that
u satisfies the Dirichlet boundary condition, the equivalued surface boundary condition
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and the jump interface condition in the problem (I). Then, u∈V2. In addition, by (3.7), we
have

uε′ →u weakly in H1
∗(Ωi), 1≤ i≤4, as ε′→0. (3.10)

For any given ε>0, V0
2 ⊂V0

ε,2. Therefore, for any given ϕ∈V0
2 , especially setting ϕε= ϕ

and replacing ε by ε′ in (3.2), we get (3.1). Namely, u is the unique piecewise H1
∗ weak

solution to the problem (I).
Thus, taking ϕ=w in (3.1) yields

a(v,w)=−a(w,w).

Furthermore, the combination of (3.5) with (3.7) gives

a(wε′ ,wε′)=−a(v,wε′)→−a(v,w)= a(w,w).

Then, as ε′→0, we get

‖wε′‖H1
∗(Ω)→‖w‖H1

∗(Ω).

Thus, it follows from (3.7) that

wε′ →w strongly in H1
∗(Ω), ε′→0.

Accordingly,

uε′ →u strongly in H1
∗(Ωi) 1≤ i≤4, ε′→0.

Moreover, by Lemma 3.2, the uniqueness of the problem (I) guarantees that the whole
sequence uε→u strongly in H1

∗(Ωi) (1≤ i≤4). Hence, (3.4) holds.

4 The case with the compatibility condition failed

In general, Ej (1≤ j≤5) do not satisfy the compatibility condition (1.1). Owing to Lemma

3.2, in this case, for the problem (I) or problem (Iε), it is impossible to get a piecewise H1
∗

weak solution. So we have to seek a solution in a larger class of functions. For any given
p (1< p<2), introduce

Vp ={v|v∈W
1,p
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=Ej, 1≤ j≤5; v|Γ1
=0; v|Γ0

=C},

V0
p ={v|v∈W

1,p
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=0, 1≤ j≤5; v|Γ1
=0; v|Γ0

=C}

={v|v∈W
1,p
∗ (Ω), v|Γ1

=0; v|Γ0
=C},

Vε,p ={v|v∈W
1,p
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=Ej, 1≤ j≤5; v|Γ1
=0; v|

Γ̃ε
0
=Cε},
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V0
ε,p ={v|v∈W

1,p
∗ (Ωi), 1≤ i≤4; v+−v−|γj

=0, 1≤ j≤5; v|Γ1
=0; v|

Γ̃ε
0
=Cε}

={v|v∈W
1,p
∗ (Ω), v|Γ1

=0; v|
Γ̃ε

0
=Cε},

where

W
1,p
∗ ={v|r1/pv∈Lp, r1/p∇v∈Lp}, (4.1)

equipped with the norm

‖v‖
W

1,p
∗

=(‖r1/pv‖
p
Lp +‖r1/p∇v‖

p
Lp)1/p.

Moreover, C and Cε are the constants to be determined. Obviously, if p=2, then W1,2
∗ =H1

∗ .

Now, the corresponding variational problem of the problem (I) becomes to seek u∈Vp,
such that

a(u,φ)=0, ∀φ∈V0
p′ , (4.2)

and the corresponding variational problem of the problem (Iε) becomes to seek uε ∈Vε,p,
such that

a(uε,φε)=0, ∀φε∈V0
ε,p′ , (4.3)

where p′ is the dual number of p: 1/p′+1/p=1, and the definition of a(u,v) is the same
as in Section 3.

When the compatibility condition (1.1) fails, for the problem (I) (resp. problem (Iε)),
we have the following conclusions (cf. [3, 4]).

Lemma 4.1. There exists β >0 such that for any given p (2−β < p<2), the problem (I) (resp.

problem (Iε)) admits a unique piecewise W
1,p
∗ weak solution u∈Vp (resp. uε ∈Vε,p), satisfying

(4.2) (resp. (4.3)).

Lemma 4.2. There exists vA,vB ∈W
1,p
∗ (Ωi) (p is the same as that in Lemma 4.1; 1≤ i≤4) such

that

(1) The support of vA and vB is in a neighbourhood of A and B respectively;

(2) The functionals of

lA(φ),
4

∑
i=1

∫

Ωi

(LvA)φdrdz, lB(φ),
4

∑
i=1

∫

Ωi

(LvB)φdrdz

are continuous and linear on V0
2 and on V0

ε,2, respectively.

In addition, for the unique piecewise W
1,p
∗ weak solution u (resp. uε) to the problem (I) (resp.

the problem (Iε)), let w=u−vA−vB (resp. wε =uε−vA−vB). We have
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(3) w ∈ H1
∗ (Ωi)(1 ≤ i ≤ 4), w|Γ1

= 0, w|Γ0
is a constant to be determined (resp. wε ∈

H1
∗(Ωi) (1≤i≤4), wε|Γ1

=0,wε|Γ̃ε
0

is a constant to be determined), and satisfies the corresponding

compatibility condition at A and B;
(4) w satisfies that

a(w,φ)=−lA(φ)−lB(φ), ∀φ∈V0
2 (4.4)

and wε satisfies

a(wε,φε)=−lA(φε)−lB(φε), ∀φε ∈V0
ε,2. (4.5)

Theorem 4.1. Under the hypothesis (H), for the unique piecewise W
1,p
∗ weak solution uε to the

problem (Iε), we have

uε →u strongly in W
1,p
∗ (Ωi), 1≤ i≤4, (4.6)

as ε→0, where u∈Vp is the unique piecewise W
1,p
∗ weak solution to the problem (I).

Proof. Similar to Lemma 4.2, we construct vA,vB∈W
1,p
∗ (Ωi)(1≤i≤4) and lA(φ) and lB(φ).

Then, vA,vB have a compact support in a neighbourhood of A and B respectively, and are
independent of ε. Furthermore, lA(φ) and lB(φ) are continuous linear functionals on V0

ε,2.
Let

wε =uε−vA−vB.

The jump Ẽj (1≤ j≤5) of wε on the interfaces are then

Ẽj =Ej−[(vA +vB)+−(vA+vB)−]|γj, 1≤ j≤5.

By Lemma 4.2, wε ∈ Ṽε,2 and (4.5) holds, where

Ṽε,2 =
{

v|v∈H1
∗(Ωi), 1≤ i≤4; v+−v−|γj

= Ẽj, 1≤ j≤5;

v|Γ1
=0; v|

Γ̃ε
0
=Cε (a constant to be determined)

}
.

Furthermore, by Lemma 4.2, Ẽj (1≤ j≤5) satisfies the corresponding compatibility con-
dition. Then, from the proof of Theorem 3.1, we have

wε →w strongly in H1
∗(Ωi), 1≤ i≤4, (4.7)

as ε→0. Moreover, w∈ Ṽ2 and (4.4) holds, where

Ṽ2 =
{

v|v∈H1
∗(Ωi), 1≤ i≤4; v+−v−|γj

= Ẽj, 1≤ j≤5;

v|Γ1
=0; v|Γ0

=C (a constant to be determined)
}

.

Let u=w+vA+vB. It is easy to see that u∈Vp, and (4.6) follows from (4.7).
Noting V0

p′ ⊂V0
ε,p′ and choosing ϕε = ϕ in (4.3), for any given ϕ∈V0

p′, we obtain (4.2).

Therefore, u∈Vp is the unique piecewise W
1,p
∗ weak solution to the problem (I).
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5 Some remarks

Consider

(II)





Lu=0, in Ωi, 1≤ i≤4,

u=0, on Γ1,
r

Re

∂u

∂n
=0, on Γ2,

u=C, on Γ0,
∫

Γ0

r

Re

∂u

∂n
ds= I0,

u+ =u−,
( r

Re

∂u

∂n

)+
=

( r

Re

∂u

∂n

)−
, on γj, 1≤ j≤5,

where C is a constant to be determined, and

(IIε)





Luε =0, in Ωi, 1≤ i≤4,

uε =0, on Γ1,
r

Re

∂uε

∂n
=0, on Γ2,

r

Re

∂uε

∂n
=0, on Γε

0, uε =Cε, on Γ̃ε
0,

∫

Γ̃ε
0

r

Re

∂uε

∂n
ds= I0,

u+
ε =u−

ε ,
( r

Re

∂uε

∂n

)+
=

( r

Re

∂uε

∂n

)−
, on γj, 1≤ j≤5,

where Cε is a constant to be determined, the total electric current I0 is a positive con-
stant. For the homogenization of boundary condition for the resistivity well-logging, the
following results are proved in [7, 8].

Lemma 5.1. Under the hypothesis (H), the problem (IIε) admits a unique H1
∗ weak solution

uε ∈V0
ε,2 such that

a(uε,φε)= I0φε

∣∣
Γ̃ε

0
, ∀φε∈V0

ε,2,

and

uε →u strongly in H1
∗(Ω), as ε→0,

where u∈V0
2 is the unique H1

∗ weak solution to the problem (II) satisfying

a(u,φ)= I0φ
∣∣
Γ0

, ∀φ∈V0
2 .

We now discuss the homogenization of boundary condition in the case that there are
both an electric current emitted from the electrode and the jump interface conditions,
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namely, we consider the following boundary problems respectively:

(III)





Lu=0, in Ωi, 1≤ i≤4,

u=0, on Γ1,
r

Re

∂u

∂n
=0, on Γ2,

u=C, on Γ0,
∫

Γ0

r

Re

∂u

∂n
ds= I0,

u+−u−=Ej,
( r

Re

∂u

∂n

)+
=

( r

Re

∂u

∂n

)−
, on γj, 1≤ j≤5,

where C is a constant to be determined, and

(IIIε)





Luε =0, in Ωi, 1≤ i≤4,

uε =0, on Γ1,
r

Re

∂uε

∂n
=0, on Γ2,

r

Re

∂uε

∂n
=0, on Γε

0, uε =Cε, on Γ̃ε
0,

∫

Γ̃ε
0

r

Re

∂uε

∂n
ds= I0,

u+
ε −u−

ε =Ej,
( r

Re

∂uε

∂n

)+
=

( r

Re

∂uε

∂n

)−
, on γj, 1≤ j≤5,

where Cε is a constant to be determined, the total electric current I0 is a positive constant.
According to Theorem 3.1, Theorem 4.1 and Lemma 5.1, by superposition it is easy to get
the following two theorems.

Theorem 5.1. Under the hypothesis (H), suppose that Ej (1≤ j≤ 5) satisfies the compatibility

condition (1.1), then the problem (IIIε) admits a unique piecewise H1
∗ weak solution uε∈Vε,2 such

that

a(uε,φε)= I0φε

∣∣
Γ̃ε

0
, ∀φε∈V0

ε,2,

and

uε →u strongly in H1
∗(Ωi), 1≤ i≤4, as ε→0,

where u∈V2 is the unique piecewise H1
∗ weak solution to the problem (III) satisfying

a(u,φ)= I0φ
∣∣
Γ0

, ∀φ∈V0
2 .

Theorem 5.2. Under the hypothesis (H), there exists β > 0 such that, for any given p (2−β <

p<2), the problem (IIIε) admits a unique piecewise W
1,p
∗ weak solution uε∈Vε,p such that

a(uε,φε)= I0φε

∣∣
Γ̃ε

0
, ∀φε ∈V0

ε,p′,
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and

uε →u strongly in W
1,p
∗ (Ωi), 1≤ i≤4,

as ε→0, where u∈Vp is the unique piecewise W
1,p
∗ weak solution to the problem (III) satisfying

a(u,φ)= I0φ
∣∣
Γ0

, ∀φ∈V0
p′ .
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