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Abstract. In this paper we consider the Cauchy problem for a semi-linear system of
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1 Introduction and main results

This paper is concerned with the Cauchy problem for the non-linear system of wave

equations with Hamilton structure in R3™!
up—Au=—F (|ul?|o*)u,
vy —Av=—F(|ul?,v|*)v,

1.1
w(O)=g1(x), w(0)=(x), D
0(0)=ga(x), 0:(0) =¢2(x),
where there exists a function F(A, i) such that
JoF (A, JoF (A,
ETV):H(A,H), %ZB(A,V). (1.2)
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The linear case F; =m;, where m; € R for j=1,2, corresponds to the classical Klein-
Gordon system in relativistic particle physics. The constants m; may be interpreted as
masses and hence are generally assumed to be nonnegative. In order to model also
non-linear phenomenon like quantization, in the 1950s systems of type (1.1) with non-
linearities like F; =m;+ f; were proposed as models in relativistic quantum mechanics
with local interaction, see, e.g., [1, 2].

Various other models involving non-linearities Fj depending also on uy,v;, Vi and Vo
have been studied [3]. To limit our paper to a reasonable length, we restrict our study to
non-linearities depending only on u,7, i.e., the semi-linear case.

Without loss of generality, and since all important features of our problem already
seem to exist in this case, we confine ourselves to real-valued solutions of (1.1). Moreover,
we need to impose the following assumptions on the semi-linearities to ensure that (1.1)
always has a global solution.

(H1)
[P+ AFu [ +A 203 Fig |+ [Ba| + A2 i B |+ [ SC(14+A'T +p'2 ), (13)
where Fil :aF,‘/aA, F,‘ZIaFi/a]/l, i:1,2.
(H2)
kL ke 1
F(A,u)>0, F(0,00=0, Az +pu2 SCo[l—l—EF(/\,y)]. (1.4)
(H3)
AF (A u)+uFa(A,p) >2F(Au), k=5. (1.5)
(H4) k+1 k+1
FAu)<CA+AZ +u 7). (1.6)
It is easy to verify that

1.. 1
AW =N+, B = +A, FAu) =A%+ +Ap

satisfy (H1)-(H4) with k=5.
It is known that the energy associated with (1.1) is defined by
1
E(woit) =5 [ (sl t) P+ [or (o) P+ V() P
+|Vo(xt) 2+ F(|u(x ) Jo(x, )] dx

%/R [/ (e t) P40 (e, t) P4 F(fu(x,8) [ [o(x,£) )] dx. (1.7)

Notice that the above energy involves two kinds of terms: the kinetic term and the po-
tential term involving semi-linearity F(|u|?,|v|?). To make sure that the potential energy
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is controlled by the kinetic energy, we need to assume that k<5 in view of (H2), (H4) and

(1.7). This is because F(|u|?,|v|?) behaves like [u[F!+ || and H'(R?)— L] (IR®) only

when g <6. The case where k=5 is called the critical case since =6 is the critical exponent

for the above Sobolev embedding; while the range 1 <k <5 is called the subcritical case.
Our main result is the following theorem.

Theorem 1.1. Let 1 <k <5 and let F;,F, and F satisfy (H1) and (H2). Assume also that (H3)
is satisfied when |u| and |v| are larger than a constant if k=5. Then (1.1) always has a global
smooth C? solution.

We first point out that, in proving Theorem 1.1, we need only consider compactly
supported data. More precisely, fix x € C(R?) satisfying x =1 for |x| <1, set

x X .
oir () =x(R)9i(x),  Pr(x)=x(R)gi(x), j=12,
and let (ug,vR) be the solution of (1.1) with data (@;r,jr). If to € R4, denote
Aoy ={(x,1):0<t<t,|x| <ty—t}

as the backward light cone through (0,tp). Then (ug,,vr,) = (UR,,Vr,) in Aoy, if R1,R2>t,

since (ug,,Ug,) and (ug,,vg,) both have Cauchy data (@j,1;) in Aoz, N{(x,0) : x € R}

R = Ut,>0/0,1, implies that (ug,vg) must converge point by point to a solution of (1.1).
The next step is to recall an important Strichartz’s estimate [4-6],

19" (o) |2 grey + 101l 24
L/ Li(ST)

T
<Cyllo' (02 +Cy | IFCDllizgroydt, 6<q<eo,
where S7=[0,T] xIR?, and v is a solution of the problem

{vtt—Av:F(x,t),
0(0)=f(x), ©v:(0)=g(x).

Setting 4 =12 and g =6 in the above inequality respectively, we obtain

lolisrgsr) < C (110l 2wy + IFllgizcsy ) (18)

as well as
sup [[o(-,£)l|zo(rs) < CI[0"(-0) 2 qre) + 1F Il 12 (5)) - (1.9)
0<t<T
It is well known that, by the local existence theorem, if (u,v) is a C? solution of (1.1) in
a half-open strip [0, T ) x R® with compactly supported data, then either (1,v) extends to a
C? solution in a larger strip or else (1,v) blows up point-wise, that s, u,v¢L* ([0, T, ) x R3).
Our next task is to prove that we can replace L* by the mixed-norm in the left-hand side
of (1.8).
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Proposition 1.1. Let 1<k<5 and Fy,F, satisfy (H1). Then, if ;€ C°, ;€ C?,(j=1,2) are fixed
compactly supported functions, then there exists a T >0 such that (1.1) has a C? solution (u,v).
Moreover, if T is the supremum of all such times, then either T, = oo, or

w,o¢ L{LZ ([0,T.) xR3).

Proof. The former part of the theorem is trivial. We only need to prove the latter part.
Suppose that 0 < T, < o0 and that (1,0) is a C? solution of (1.1) in [0, T.) x R satisfying

u,0€ L{LY ([0,T,) x R?). (1.10)
We then show that (1.10) implies
u,0€ L ([0,T.) xR?). (1.11)

Let 0< R < oo be large enough so that the data vanishes for |x|>R. Then u(x,t)=v(x,t)=0
for |x| > R+t. Therefore (H1) implies that, if 0 <ty <s < T, then for |a| =0,1

19% (Fa) |2y + 195 (WF) [ 112 r)

<C+C (H ’“|k_la§”HL}L§(1)+ | |”’k_1a$vHL}L§(I)
+ H ’U‘kilaiuHL}Li(I) + H ’v‘klaivHL}Li(U>’ (1.12)

where I=t,s] x IR3, the constant C may depend on R, T, and the constant in (H1) but not
on tg or s.
In fact, if we set a=u,v for j=1,2 respectively, then on one hand

aj| = al[ | <C (1+|u[""+[o["") |a
=C (Jal+[ul"a| +[o[*"|al),

which implies by Hoélder inequality that
1
d 3)° k-1
laFillpz ) <2CT { 5= (RH+T)” ) +2C( ([l ul[ 5,

+|| ‘u’kilvHL}Li(I)—i_ I ‘v’kiluHL}Li(I)—i_ I ‘v’klvHL}L§(1)>'

On the other hand

oF; 9A dF; o
] o J O a \
Ay o axu—l—u—ay 3% 030+ Fioa

< \Zaqulaﬁﬁﬂ + \Zavl-"]-zaﬁ‘(v\ + |F]8§a|

|03 [aFj]| =
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<3C (1+|uyk—1+yv|k-l) (|a§uy+ya§;vy)
=3C (|u'|+[0']) +3C (w3 + u " |95
ol atgul + o osol),

for |&| =1, which implies that

15 aF) <3cH1+—Hu'HLz -

L} [fo,S}

+3C<H]u|k18§uHL}L§m+H|u!k18§UHL}L§(U
+|| !v\k‘laiuHL;Lm +|| ’v‘k_laﬁvHL}Lg(IJ

<3CT, [1—|—E(u,v;0)]+3C<H Jul*05ul| oy 050 Ly
4 H]v|k_18§uHL}L%(I)+H]v|k_18§vHL}L%(I)>.

If we choose

4 2
C’ =max (4CT [ 3”(R+T) ] , 6CT.[1+E(u,0;0)], 6C>,

then C’ depends on R, T, and the constant in (H1) but not on ¢#; or s, still denoted by C in
(1.12) for simplicity.
If we use (1.9), with t replaced by t—t(, then

sup ) [|ou( ) lls(rey + sup Y- [[o%o( ) I (3

to<t<s|u|<1 fost<sa|<1

<C (1 X 1080 o)l 1350ty 1080 g

la]<1

(171050 gy + (11T 050 o )+l |v’k_la§Z’HL%L%u>}>

C(to)+C ) <H ‘u’k_laﬁuHL}Li(I) +|| ’u‘k_laivHL}Lg(I)
<1
+]| |Z”k—1a§”HL}L§(z)+ | |U’k_1a§UHL}L§(I)>' (1.13)

where C(ty) is independent of s and is finite since (u,v) is a C? solution and vanishes for
large |x|.
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Apply Holder’s inequality to the last four terms in (1.13) and consider them in two

cases. For simplicity, we take a general term ||[a[*~192D|| pip2(p) a8 an example, where a,b
t=x
may be u or v.

Case 1. k=5. In this case,

C Y [Mal* 0%l 2y =C 32 Nal*aib]l 1,

|a <1 la|<1
<C Y 180 It g <C sup X 135000 s lally -
la]<1 to<t<s|y|<1

It follows from (1.10) that the last factor must go to zero as to " T. By similar arguments
to others three terms, we conclude that the last four terms in (1.13) are smaller than half
of its left-hand side and so

sup ) [|05u(- ) [swe)+ sup Y [1050(-t)[[1s(re) <2C (ko).

t0<t<5‘a‘<1 t0<t<5‘a‘<1
Letting s /" T, we conclude that

sup ) [[05u (8l rsrey+ sup Y [1050(8)]| s (re) < oo (1.11)

0<t<T:|a|<1 0<t<Ti|n|<1

This clearly implies (1.11) by using Sobolev’s embedding W' (R3) — L®(IR?).
Case 2. 1 <k< 5. In this case,
C Y [lal*=05b || 1oy <C sup Y- 1855C, 1) isqrs) lally
la|<1 to<t<s|y|<1

<Cl1lyy

Lk 1L (k— ”(I)

“p
LX[L‘OSL3X(\X\<T +R tOSiES'%IHa HL6 R3) HaHL4L12(1)

SCRT) sup Y- 08500 sy llall e

t0§t§5|“|gl

where 1/(k—1)=1/4+1/x. Since k> 1, the last part also goes to zero as ty /" T.. Us-
ing similar argument used in Case 1, we conclude that (1.11) holds in this case. This
completes the proof of this proposition. O

To prove Theorem 1.1, we only need to consider the following two results for subcrit-
ical case and critical case respectively.

Proposition 1.2. Let 1<k <5 and suppose that (u,v) is a C? solution to (1.1) with a compact
Cauchy data supported on {x € R3:|x| <R}. If

E(u,v;t)=E(u,0,0), 0<t<T,, (1.14)

then
uoe LE([0,T,) x RY).
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Proposition 1.3. Let k=5 and suppose that (u,v) is a C? solution to (1.1) with a compact Cauchy
data supported on {x € R3:|x| < R}. Fix xo € R® and assume that

1
/|x N <]u’(x,to)]2-1-]v’(x,to)|2+F(|u(x,to)lz,lv(x,to)lz))dx<s. (1.15)
—A0I=>1x—1to

Then there exists an g > 0 depending only on T,,R and E(u,v;0), such that if 0 < e <¢gg and
0<ty< Ty
u,v€ LEL (A (5;t0,T,)), (1.16)

provided that § >0 and T, —tg are sufficiently small.

To prove Propositions 1.2 and 1.3, we will need to use the following basic lemma.

Lemma 1.1. Suppose that 0<y(s) € C([a,b)) satisfies y(a) =0 and

y(s) <Co+e(y(s))”,
for some C >0 and o >0. Then, if e < Z*UC(l)"’, then
y(s)<2Cy, s€]a,b).

Proof. Consider
h(x)=Co+ex’ —x.

Ife< Z_UC(l,_‘T and x; =2Cy, then
Co+ex{—x1=h(x1)=h(2Cy) < C0+2*‘7Cé*‘7(2C0)‘7—2C0 =0.

It follows that if h(x) =Co+ex” —x >0,Vx €[0,xp), then xo < x; =2Cp. Since y(s) must be
smaller than the supremum of such xy, the lemma follows. O

The paper is organized as follows. In Section 2 the conservation of energy is given
to prove the subcritical case of the problem. Section 3 is devoted to the critical case.
Morawetz established in her seminal paper [7] Morawetz’s identity for Klein-Gordon
equations, and for Schrédinger equations similar identity was obtained by Lin and Strauss
in [8]. As we know, Morawetz’s identity, like other invariants and conservation laws,
plays an important role in the scattering theory of nonlinear Klein-Gordon equations
(see, e.g., [9-14]) and nonlinear Schrodinger equations (see, e.g., [8, 12, 15]). This work
will be concerned with the Morawetz’s identity for the wave equation. In Section 3, we
use the non-concentration of potential energy to prove the global existence for the critical
case of the system. Here a relevant Morawetz’s identity will play an important role.
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2 Proof of Proposition 1.2
To prove the subcritical case, we firstly prove the following conservation of energy.

Proposition 2.1. Suppose that Fy,F>,F are as in Theorem 1.1. Suppose also that 0 < T, < oo and
that (u,v) is a C? solution of (1.1) and that the Cauchy data vanish for |x| > R. Then

E(u,v;t)=E(u,v;0), 0<t<T.. (2.1)
Moreover, for fixed data as above, there is a constant Cg r, such that
/}RS [/ (e, t) P +10 (6, 8) P+ [u(x, ) [+ o (x,t) [T dx < Crr,, 0<t<T.. (2.1)
Proof. It follows from (u,v) =0 for |x| > t+R and (H2) that

/IRS(‘u/’2_|_’v/‘z_i_‘u’kJrl_i_‘v’kJrl)dx

1
/ (]u’]z—l—]v’\z—i—Co—i——CoF>dx
|x|<T.+R 2

§C<4§(R+T*)3+E(u,v;0)> 2Crr..

IN

Therefore, (2.1) implies (2.1'). Note that

1
Ew,9,0)= [ 2 [I991P+ Vg2l + 1P+ 1g2P +E(Ig1 P, lp2)|d < oo,

in view of our assumptions on the data. Multiply uy —Au+F,u=0 and vy —Av+Fv=0
by u; and v; respectively. Summing the resulting equations gives

0=us(up — Au+Fiu)+0i (v — Av+Fo0)

1d, ,,, 1d 5 1dF
—Ea]ul —I—Ea\v\ V- (uVu)—V (vtVU)—i—Ea
2div, re(u,v), (2.2)
where, in the present context,
1 /2 1 /12 1
e(u,0)= —utVu—vth,Elu] —I—E\v] +§F . (2.3)

If we fix 0 <t < T,, then (u,v) is C? and has compact support in [0,¢] x R3. Therefore,
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integrating (2.2) leads to

t
O:// divy re(u,v)dxdt

—/R3/ ( yv 2+ = F)drdx

25/3 [t (2, t) P+ 10" (x, )P+ F (|u(x,£) ]2 [o(x, 1) ?) ] dx

1
=5 | [ 0P+ [0 (2,0) P+ F (Ju(x,0)* [o(x,0) *) ] dx,
which gives (2.1). This completes the proof of this proposition. O

Proof of Proposition 1.2. 1t is clear we only need to show that
u,0€ L{L2([0,T.) xR?), 0< T, <oo. (2.4)
By (1.8) and (1.12), we have for I = [ty,s) x R

ull ooy + 10l e
<C (118 oty + 1) o+ gz + oy
1 2 1 k k
SC(2+§H1’[,('/t0)HLZ(IR3)+§HU< fO)HLz R3) + [ fu] HL}L§(1)+|HZ)’ HL}L%(I))

<C[2+E(u,0;,0)] +C <H ’”‘kHL}L,%(I) +|| ’v‘kHL}L§(1)>’ (2.5)

where we have used the conservation of energy in the last step. Note that

1_5—k_|_k—1 1 7—k+k—1
4 47 2 120 127
Applying Holder’s inequality to (2.5), we obtain
k k-1
el 30y <l i,(fz()mur H %L),;Tam
UL Ut 29)
t

Note that 12/(7—k) <k+1 for 1 <k <5. Therefore, since u(x,t) =0 when |x| > t+R, we

can use Holder’s inequality again to obtain that

5—k

< * kR y 12
||MI|LF%,{L31?(U_(T to) ¥ t:gtgsHu( O, 2 o
<C(Tu~to) T (TARPE 51 sup [|u(-)||en xo)

toSfSS
5—k

<Chr.(T.~t)7, 2.7)
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where
7—k

Cp 1, =C(T.+R)*® ~F1)Cg 1,

Similarly, we have

k k-1 ,
H‘U’ HL}L’%(I)SHUHLE’%"LZIT"(I)HU‘ L‘}L}(Z(I)’ (26)
—k
ol o 2 <CRr(T.—t) . 2.7

L FLI (D)

Let

5—k

E(to) = CC%’T* (T* — to) 4,
where Cis as in (2.5). Then using (2.5)-(2.7) gives
ull gy + 1ol e

k—1
SC[Z-FE(M,U,‘O)] +8(t0)(HMHL?L}Z(I)—i-HUHLfL}Z(I)> . (28)

Note that €(ty) — 0 as ty /' T, since we are assuming k < 5. Therefore, Lemma 1.1 implies
that, if ¢y is sufficiently close to T, then

il sz + 0l apsay <2C[24 E(u,00)]. (24

This clearly gives (2.4), since, in [0,to] xIR3, u,v is bounded and compactly supported. O

3 Proof of Proposition 1.3

To prove the critical case, one can not turn to conservation of energy anymore, but this
time, we have a local version of the energy identity. Denote

A(Sto,s) ={(xt):tg<t<s, |x—xo| <I+T.—t}, (3.1)

which is a portion of the backward light cone through (xo, T +6). Then the energy in the
bottom ball
Dy, ={(x,t) e A(S;t0,8) :t=t0},

equals to the energy in the top ball
Dy={(x,t) e A(S;to,s) :t=5s},
plus the energy flux across the rest of the boundary

n={(xt)eA(5;to,s):tg<t<s, |x—xo| =0+T.—t}.



84 H. Wu / ]. Part. Diff. Eq., 22 (2009), pp. 74-96

In other words, let

1
A E(|u’|2+|v’yZ+P)olx, 0<t<T,, (3.2)
t

Flux(u,v; M})) :/ (e(u,0),V), 0<ty<s<T,, (3.3)
where e(u,v) is as in (2.3), ¥ is the outward normal through a given point on M; . Then

E(u,v;Dy,) = E(u,v; Ds) +Flux(u,v; M, ). (3.4)

Firstly, we need to prove that (H2) implies that the energy flux is nonnegative. To verify
this, we note that M;  consists of points of the form (x,0+ T, —|x—xo|) with 6+ T, —|x—
xo| € [to,s]. Moreover, since the outward normal is (—y/|y|,1)/v/2, where y=xo —x, we
have

ooy 4 Ly Ly ]
V2(e(u,v),7) =(—u;Vu—0v;V0) m +2]u] —1—2\0\ —|—2F
—l'lu +Vu z—l-l'lv +Vo 2—|-1F>0 (3.5)
2|lyl™ 2[Jyl™ 2" =7 '

Since Flux >0, we conclude from (3.4) that t — E(u,v;D;) is a non-increasing function on
[0,T,). It is also bounded, as E(u,v,D;) < E(u,v;t) = E(u,v;0) < co. Hence, the first two
terms in (3.4) must approach a common limit. This in turn gives the important fact that

Flux(u,o;Mj ) —0 as t—T.,.

Proof of Proposition 1.3. Let Cg be the constant in (H2). Then (1.15) implies that

sup / (12,0 +[o(x,1) ] dx < 2Coe, (1.15)
|[x—x0| <64 Ti—t

to<t<T.

provided that >0 and T —t; are sufficiently small. In fact, for § >0 small enough, (1.15)
implies that

1 3
/ 19 G to) P10/ (e o) P+ F (o) P o 10) )| < S,
‘X*XO‘S(H*T**R)Z 2
which yields

11 2 1 2 2 2 3
—u (x, )"+ |0 (x, )"+ F(|u(x,t)|°,|v(x,t < =g,
sup /xx0<5+T*f2|:| ( )’ ’ ( )| (’ ( )| | ( )’ )} )

to<t<T.
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where we have used the fact that E(u,v;D;) is a non-increasing function of t. It is easy to
see by (H2) that

/ o (It 4o )] dx
X—=Xp|= *

4 1
< Co(6+Tu—to)? +C0/ “Fdx
3 |x—2x0| <0+ T— t2

4
<§CO(5+T —to)? —|—§C0£.

If we choose 6 and t small enough such that 2 (6+ T, — ) < 1¢, then (1.15') must hold.
To prove (1.16), we need to use (1.8) where the norm on the left-hand side is only

taken over A(J;tp,s) and the norm on the right-hand side need only be taken over the
same set by Huygen’s principle. Thus for ] =A(6;to,s),

H“HL?L}&(]) + HUHL?L}YZ(])

<0ty +19 o) e ) + ClEgz +CllEo iy
1 1

<c(5 zww mwymg+2+§mw J10) Baqro )+ CllEl 120+ CHE0lL 312,

On the other hand, (1.12) and Holder’s inequality imply that

HFWHL}Lg(])"‘ HFZUHL}Lg(])

4 4 4 4
§C1+C1<”‘“’ Ul g el ol g+l sl + 1o ””L}Lﬂn)
§C1+C1(H”HL§°L6 H”HL4L12 +H”HL;X’L@(])HUHEL;;(D

1ol gz +Hiollusasin ol )

By (1.15), the L°LS(J) norm is < (2Coe) . Therefore, if we let C, =C;C, then
H”HL;*L;Z(]) + HUHL‘}L;Z(])
S (C[l +E(u,v;0)] +C2) +2C2(2C08)% <||1/l ||L?L}(2(]) + ||v||L?L}(2(])> .
Since the constants are independent of s, an application of Lemma 1.1 gives that

HuHth;L}Cz(])-i- HUHL‘}L}}(]) S2(C[1+E(u,0}0)] +C2>/
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provided that
2C,(2Coe) <24 (C1+E(u,0;0)]+C5) .

Since € depends only on T,,R and E(u,v;0), the proof is complete. O

Now we still need to show that the condition of Proposition 1.3 is reasonable, i.e., the

energy cannot concentrate at any fixed point (xo,T%). To this end, it suffices to show that
1

lim ~ u' P+ [v'|*+F)dx=0. 37

A3 fager T OHE) (3.7)

Since the energy consists of two kinds of energy—the kinetic energy and the potential en-
ergy from F, to prove (3.7), we may consider them respectively. For the potential energy,
we shall need a so-called Morawetz-PohoZaev identity.

A Morawetz-PohoZzaev identity. Consider Lagrangian associated with (1.1):
1
L(u,0) = 5 (|u?+ [oa* = [ Vu[* = [ Vo[> = F).

Therefore, we have

d
ds/[ . L(u+ep,v+ep)dtdx

e=0

1 d
:E/[T*’O)X]RS&(’(“-FH/J) 24+ (v+ep) > — ]Z\ ut-ep);l Z‘ v-tey);

—F(]u—l—a/;]z,\v—l—a/)\z))dtdx

e=0
3 3
:/ ((u+€¢)t¢t+ (o+ew)ipr— ) (utey)jppi— ) (v+ep)
[~T.,0)xR3 i=1 j=1
1oF  0A  d(utep) 10F  du  d(vtey) dtd
" 20A0(utep) e 20ud(v+ey) o ) *

e=0
:/ (ut¢t+vt¢f—2u]-tp]-—Zvjzpj—Pluz/J—szz/J) dtdx
[~T.,0)xR3 = =
= —/[ T0) RO [(utt —Au+Fu)p+ (vy —AZ)+F27))1/J] dtdx=0,
whenever ¢ € CP([—T,,0) x R®). Thus, (1,0) must satisfy the Euler-Langrange equations

associated with (1.1)
23: <8L u,v > 0,
du;

j=0

%L:},v)_iaj <8L(u,v)> _o.

j=0 Jvj
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If u,,v, are one-parameter C 1 deformations of u,v respectively, then

oL(u,,v,)

duy 90,
3 9L (uy,v,) oL (uy,vr
Z a a y+ZTr])a]'ayvr.

0,L(u,,0,) = OL(uy,r)

o,u,+ 0,0,

If we assume that u,, =u and v,, = v, then

3 oL(u,v) dL(u,v)

o, L(uy,v,) |7’:7’0 :]g)aj < o, o, U+ %, 8ﬂ)> ) (3.8)
For the Morawetz identity we need arise from the deformations
u,(x,t)=ru(rx,rt), ov,(x,t)=ro(rx,rt)

with 7o =1. In this case,

3 3
Ortty| _ =u(rx,rt)+ X;)ruj (rx,rt)x;| _ =u(x,t)+ Z%uj(x,t)x]-,
j= j=

3
1 =v(x,t)+ Zvj(x,t)x
j=0

0,0, ‘

Note also that

djuy=0j[ru(rx,rt)]
00, =0;[rv(rx,rt)]

=roju(rx,rt)r= rza]-u(rx,rt),
:rajv(rx,rt)r:rzajv(rx,rt).
Consequently,

L(uy,v,) =7 [L(u,0)] (rx,rt) + %r‘LF(\u(rx,rt) 2, [o(rx,rt)|*) — %F( u,|?, |00 %),
and hence

OrL(ur,0r)| _,

— {#ar ([L(w,0)] (rx,rt)) +4r° [L(w,0)] (rx,rt) + 27 F (Ju(rx,rt) |2, [o(rx,rt)|?)

42749, [F(u(r ) o(rx )| )]—%ar[P(W,V,yva)]}

EI4+II+IIT+IV+V.

r=1
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It can be verified that

IV =

A oF oA u(rx,rt) +8_F ou  du(rx,rt)
oA du(rx,rt)  or oudv(rx,rt)  or
ou v

:Flug +F2'U§

and

= 2\araw, or Tauan o

=— {Flur [Mm,ﬁ)—l—r%} +F27)r |:U<rx’rt)+rw:| }

1 <8P oA du, OF ou 8%)‘
r=1

r=1
ou

)
o FQ‘U’Z—FQU—U.

=—Ful>~F
1] 1 or

Consequently,

3
[+ I+ 11+1V+V=Y_x0,L(u,0)+4L(1,0) +2F — F; [u|*— F|v|*.
j=0

Combing this with (3.8) leads to

dL(u,v)
u

3
{
AT

=2F—F|u|*—FElv|>.

3 oL 3
[+ ) ] + B(Z,v) EEIE —ij(u,v)}
k=0 j k=0

Using the definition of our Lagrangian, we can rewrite the above equation as

divy(—tP,tQ+uu+vw) =2F—F ]u\z—FQ\vlz,

where

x-Vu x-Vov
; (4 P

1 1 1 1 1 _\x u x-Vu
P:(Elutlz—l—i\vt\z—EIVuIZ—EIVUIZ—EF) i (?—I-ut—i— >Vu

t
+ <§+vt+x'w)w.

1 1 1
Q:§|u'|2+§|v'lz+§F+ut

t

(3.9)
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In fact, note that

* auf [ -I-Zx u } Ztv) [U"‘ngkvk} —tL(u,0)

:ut(u-l-tut-l—x-Vu)-I-Ut(v-l—tvt-l-x-Vv)
— 5 (1P -+ 02— |V~ | Vo~ F)
=usu+Hu |2+ upx-Vu+o04+to > +o,x- Vo
— 5 (1P -+ o2~ |V~ | Vo - F)

t t t
:utu-i—vtv-l-i]u/lz-l-i|v’]2+§P+utx-Vu+vtx-Vv

2]
which implies that
(I—upu—vw) 1,5, 1 ,, 1 x-Vu x-Vo
t =gl PP ru— e =0
On the other hand,
BL

[ —I—ZX u ] BZ ) [v—l— Zxkvk] x;iL(u,0)

Uj j
:—u]-(u-l—tut—l-x-Vu)—v]-(v-l-tvf-i-x-Vv)

x‘
— o (luslP+ o2~ | Vu P~ | Vo2~ F)
A
211,
which yields that

u v x-Vov
'———M] ?-Hxlt-i-— +7; ?-l-vt-i- ;

1 Xj
3 (14l P T V- F ) .

Consequently,
P—(2|Mt| +2’0t’ ]Vu] 2|VZ)| 21: t+ t+ut+ ; Vu
x-Vo
—I-( + 0+ )VU-

Now we shall use the so-called Morawetz-Pohozaev identity we just obtained above to
prove the non-concentration of the energy from F. We shift (xo, T, ) to the origin again for
simplicity.
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Proposition 3.1. Let k=5 and let (u,v) be as in Proposition 1.3. Then

lim1 Fdx=0.
t/T.2 ) |x|<t

Proof. If T, <T < S <0, we set

Dr={(x,T):|x|<-T},
A(T,S)={(x,t):T<t<S, |x|<—t},
MS={(xt):T<t<S, |x|=—t}.

If we integrate (3.9) and apply the divergence theorem, we obtain
/D (SQ+uu+vv)dx+J+]J]
S

:// (2F—Fi|u? — Bo[o[?)dxdt,
A(T,S)
where

]:—/ (TQ+usu+ovv)dx,
Dr
1
=— tQ+uu+vv+x-P)do.
=5 . (1QHuuaw+xP)
Using Proposition 2.1 and Hoder’s inequality one finds that the first term goes to zero as
S 0. Thus
]+]]:// (2F — Fy[u2 = FaJo])dxdt.
A(T,0)
Using the assumption (H3), i.e., F; |u|?>+F|v|? > 2F when |ul,|v| are larger than a fixed

constant, we conclude that
J+]]<CT*. (3.10)

In fact, E(u,v;t) = E(u,v;0) < oo, implies that

Fdx < 0.
R3

On the other hand, the fact F >0 and F is continuous implies that F is bounded by some
constant M, while (H1) leads to

|F1]u|2+F2]v|2\
SC+|ul o) (Jul+ o) S CA+ |u T+ o),

where we have used the facts that

_ _ k+1
o2, ol ul? < (max(ful, [o])) " < 4 ol
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and |-|><C(1+]-|¥1) for k> 1. Therefore,

]+]]=// (2F—Plyu|2_p2|vyz)dxdt

</ o (

//A (2F+C+CC0 1+§]>dxdt
ol
L

2F4C| 1+yu|k“+|vy"“]>dxdt
2+— F+( C—I-CCO)]dxdt

2+% M+( C+CC0)} dxdt

//A

cc T 4
<[e+=)M+(C+CCy)] /O SHliPdr=cr,

To exploit (3.10), we need to obtain a lower bound for ] and J]. Note that =—|x| on M.
We rewrite J] as

1
]]:ﬁ/M(%(tQ—l—utu—i—vtv—i—xoP)dU

:% . <—m\u’\z—m\v’lz—mF—l—utx-Vu—l—vtx-Vv—I—utu—l—vtv
MY

2
T ’x Vu+ux-Viu— P |(x Vu)?— |x|x-Vv—|—vtx~Vv—%(x~Vv)2
x
’ "v ‘2 ‘ “v ‘2 u‘ t,Z ’2” ’2 ’ ’ >

:7/ . <—]xHut\z—\vat\2+2utx~Vu+20tx~Vv+utu+vtv

’ ’(x Vu)*— ‘ | (x-Vv)*— P ‘x Vu— ‘x‘x~Vv)dU
x-Vu 2 x-Vu
== 78 oy (I -0 g )
x-Vo x-Vou
(o) e o oo

If we parameterize MY by

y— (. —lyl), lyl<-T,
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then do=+/2dy. If we set 7i(y) = u(y,—|y|) and 5(y) =v(y,—|y|), then

T —Ut,
x|

Vo x-Vo

T — vf/
vl |«

where Vii= 2]3:0 diit and Vu= 2]3:1 dju. Therefore

ly-va|>  _y-Va |y-Vo|> _y-Vo
= ( NPV Al W ALA P
w<r\ 1l V] ] wl )

:_/y<|T ol (!y Vii+i|>+|y-Vi+7| )dy

-I-/ 24qy-Vi+ o> +oy-Vo)d
W'MQ a2+ iy Vir+[ol2+oy- Vo) dy.
To evaluate the second term, note that, if we use polar coordinates y =rw, then
I
ay-Vii/|y| =10 u:ia,(u ).

Hence, integration by parts gives

/ysn_y T 2/52/|T ()] r*drdo(w)
2/ (IT|w) !ledcf // (rw)rdrdo(w)

uzdcf/
2 oDy ly|<IT| Iy! .

RvZ )
/ o7 vvdyzl/ vzda—/ Z)—dy
i<t 1yl 2 Japy wl<IT! Yl

Combing these with the earlier formula and switching back to the original coordinates

and

gives
]]—i Hl Vu—u —|—i 2—|—ti-VU—v —1—12 do
V2 Mg\ x| ] |x] SE]
+1 (u?+0%)do. (3.11)

2 JaDr
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When it comes to |, we first notice that
TQ—l—utu—l—vtv:T< u'|*+ ] \2—1— F—I—— -Vu —|——x Vv)—l—utu—l—vtv

1
:T<§]u’]2+—]v’|2+§1-"> +up(u+x-Vu)+ovi(v+x-Vo),

while
lup(u+x-Vu)|= ut<’x lzu—i—x Vu)‘: uth(‘ ‘u—l—Vu)
2
= xut(wu—i—Vu) < — T( |u t]2 ‘—u—l—Vu >,
2
]vt(v+x-VzJ)|§—T<§]vt! +§\WU+VU| >
Consequently,

]z—T/ lex—T/ < \Vu\z——\Vu—i— zu\z ]Vv]z——\Vv—i— 2v[z)dx
Dy 2 Dy | x| |x|
1 1 uz
:T/ —Fdx—l—T{/ ( NVu+v——= Vv>dx—|— <—+ )dx}
T /2 A 2 Jou i ¥ T2

Using integration by parts as before, we find that

1 u? 1 u?

-Vudx+= —dx== —do,
/ Yk 2 Jo; |22 2 Jap, =T
v? 1 v?

1
-Vodx+ = ——dx== —do,
/DT [x]? 2Jo, X 2Jap, =T

which yields
]>]T|/ —Fdx——/ (u?+v?)do
2 JaDr

Combining this with (3.10) and (3.11), we see that

1
T Fdx
Uy
2
||>

X u
§CT4+—/ t<'—-Vu—u+—
72 I\ T Vet g
u—l—v

<CT*+ \T]/ ( -Vu— ut‘ —i—‘ -Vo— vt|)da—|— —
|x] Myt

2
X
'| | -Vo— U+

do. (3.12)
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By (3.5), the second last term can be bounded by |T|Flux(u,v;M9), and the last term can
also be controlled by the energy flux. In fact, if we use (H2) and Holder’s inequality, then
we have

2 2 2 2
u (Y u (Y
[ 0= [ ot [ Tao
T I VAT A T

S(/M%‘t‘—édaf [</M%u6da>%+ (/M%zﬁda) %]

1
1 3
<2|T| [/MO c0(1+§P)da]
T

3

4
<2|T|[CoFlux(u,0;M9)]3 +2|T| (?NCOIT\3>

If we plug in our estimates for the last two terms into (3.12), we conclude for small |T|
that

3
/ %de gcyT|3+F1ux(u,v;M%)+2[C0F1ux(u,v;M%)]%+2(4§c0> IT|
Dt

<C[|T| +Flux(u,0;M$) + (Flux(u,0; M%) %} .
This finally gives us the result since Flux(u,v;M(%) —0as T /0. .

To finish the proof of the global existence theorem, we are just left with showing that
the kinetic energy can not concentrate.

Proposition 3.2. Let k=5 and let (u,v) be as in Proposition 1.3. Then

1
lim w2+ [0'[*)dx=0. 3.13
B 3 fsger ) (3.13)
Proof. From the assumptions (H2) and (H4), the non-concentrate of the potential energy
from semi-linearity F

1
lim = Fdx=0.
t/T*z |x—x0|<T*—t

is equivalent to

lim (|ul®+]v|®)dx=0.

t /T J | x—xo|<Tu—t
The proof of Proposition 1.3 shows that this in turn implies that, for backward light cone
through (xo,T.) we have

u,v€ L{L2(A(0,0,T,)). (3.14)
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Applying (1.9) to

vy — AV =—(Fo)

and arguing as in the proof of Proposition 1.3 gives for Jo=A(0;to,s)

1 1
64 )" 64.)"
sup / lul°dx ) + sup / |v]|°dx
to<t<T, \ [x=x0|<Tu—t to<t<T, \/|x—x0|<Tu—t

{u;t—Au’: —(Fu)’

:H“/HL""Lﬁ o) 1171 L2LE(Jo)
<C Y 3%u( o)l 2qaey+Cll ) s
||=2
#C L [0ototlua+ €I s
=2
<c 2 (Ha’* 1) 2y 9% to>uLz<Rs>)
la|=2

+CI<1+”‘11’4M/HL1L2 (Jo) +H’u‘4v,HL1L2 +H‘v’4u,HL1L2 +”‘v’4v,HL1L2 ))

<y (Ha’* 1) 2y 3% to>uLz<Rs>)

|af=2

4+ (1l 19 s+ 10 1 s
1ol g 19 g+ 1o 1 D )
~Clt0)+C (Il 1 s+ Il g0 1 s

‘|‘HUHL4L12 (Jo) H” [ z=re(s0) +HUHL4L12 ]O)HUIHL;”LQ(]O))/

The result (3.14) implies that the L{L!?(Jy) norm goes to zero as ty — T.. We therefore
conclude that, if ¢ is close to T,

1 1
3 3
sup (/ \u’]6dx> + sup (/ ]v’\6dx> <2C(tp)-
|x—2xo| <T.—t to<t<T, \V|x—xo|<Te—t

to<t<T.
But the application of Holder’s inequality shows that this leads to

1 1
3
(/ ]u’]zdx> <2C(t) <43”(T*—t)3> ,
|x—xo|<Tx—t
1
3

(s i) <2cn (Sr)
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Hence we obtained the desired result (3.13). This completes the proof of Proposition
3.2. O
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