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Abstract We prove the local existence and uniqueness of week solution of the

hyperbolic-parabolic Chemotaxis system with some nonlinear product terms. For one

dimensional case, we prove also the global existence and uniqueness of the solution for

the problem.
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1. Introduction

Let u(x, t) and v(x, t) represent the population of an organism and an external

signal at place x ∈ Ω ⊂ RN and time t respectively, in general speaking, the external

signal is produced by the individuals and decays, which is described by a nonlinear

function g(v, u). Under the spatial spread of the external signal is driven by diffusion,

the full system for u and v reads (see [1-3])

ut = ∇(d∇u− χ(v)∇v · u), (1)

vt = d∆v + g(v, u). (2)

In the case of that the external stimulus were based on the light (or the electro-

magnetic wave), H. Chen and S. Wu [4] studied following hyperbolic-parabolic type

chemotaxis system:

ut = ∇(d∇u− χ(v)∇v · u), (3)

vtt = d∆v + g(v, u), (4)

*Research supported by NSFC (No.10631020).
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where v represents the potential function of the external signal, for example, if the

external signal is the electromagnetic field, then v would be voltage (in this case ∇v

denotes the electromagnetic field).

The result of [4] gives the existence and uniqueness of the solution for the system

(3)-(4) with Neumann boundary value condition on a smoothly bounded open domain

Ω and g(v, u) = −v + f(u). In this paper, we shall study the case for more general

nonlinear term g(v, u).

Throughout this article, we assume that we can choose a constant σ, satisfying

1 < σ < 2, (5)

N < 2σ < N + 2, (6)

σ − 1 ≥
N

4
, (7)

where 1 ≤ N ≤ 3 are space dimensions.

It is easy to check that there exists some constant σ such that the three conditions

above can be simultaneously satisfied in the cases of 1 ≤ N ≤ 3. In fact, we can choose

σ = 5
4 for N = 1, σ = 13

8 for N = 2 and σ = 15
8 for N = 3.

Next, we define

Xt0 = C([0, t0],H
σ(Ω) ∩ {

∂u

∂n
= 0 on ∂Ω}),

X∞ = C([0,+∞),Hσ(Ω) ∩ {
∂u

∂n
= 0 on ∂Ω}),

Yt0 = C([0, t0],H
2(Ω) ∩ {

∂v

∂n
= 0 on ∂Ω}) ∩ C1([0, t0],H

1(Ω)),

Y∞ = C([0,+∞),H2(Ω) ∩ {
∂v

∂n
= 0 on ∂Ω}) ∩ C1([0,+∞),H1(Ω)),

and

Zt0 = C1([0, t0], L
2(Ω)), Z∞ = C1([0,∞), L2(Ω))),

Wt0 = C2([0, t0], L
2(Ω)), W∞ = C2([0,∞), L2(Ω)).

2. Local Existence and Uniqueness for g(u, v) = αuv

In this section we consider following system in which the nonlinear function g(u, v)

is a product term:































ut = ∇(∇u− χu∇v), in Ω × (0, T ),

vtt = ∆v + αuv, in Ω × (0, T ),

∂u

∂n
=
∂v

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0, v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω,

(8)
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where Ω ⊂ RN , a bounded open domain Ω with smooth boundary, α is a constant and

χ is a nonnegative constant.

We have following result

Theorem 2.1 Under the conditions (5), (6) and (7), for each initial data u0 ∈

Hσ(Ω) ∩ {∂u
∂n

= 0 on ∂Ω}, ϕ ∈ H2(Ω) ∩ { ∂v
∂n

= 0 on ∂Ω} and ψ ∈ H1(Ω), the

problem (8) has a unique local solution (u, v) ∈ (Xt0 ∩ Zt0) × (Yt0 ∩Wt0).

Let us divide the system (8) into two parts,



















ut = ∇(∇u− χu∇v), in Ω × (0, T ),

∂u

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0, in Ω,

(9)

and


















vtt = ∆v + αuv, in Ω × (0, T ),

∂v

∂n
= 0, on ∂Ω × (0, T ),

v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω.

(10)

For v ∈ Yt0 fixed, by using the proposition [5, p.273], we can deduce that for each

u0 ∈ Hσ(Ω) ∩ {∂u
∂n

= 0 on ∂Ω} and v ∈ Yt0 , the problem (9) has a unique solution

u ∈ Xt0 ∩ Zt0 (also see the proof of [4, Lemma 3.2]).

Secondly we have

Lemma 2.2 Assume σ satisfies the conditions (5), (6) and (7), then for the so-

lution u ∈ Xt0 ∩ Zt0 of (9), there exists a constant C, which is independent of t0, such

that

‖u‖Xt0
≤ C ‖u0‖Hσ + Ct

1−σ
2

0 ‖v‖Yt0
· ‖u‖Xt0

. (11)

Proof See [4, Lemma 3.3].

Lemma 2.3 If u ∈ Xt0 , v ∈ L2(0, t0;W
1,4(Ω)), then uv ∈ L2(0, t0;H

1(Ω)) and

‖uv‖H1 ≤ c(‖u‖L4 · ‖v‖W 1,4 + ‖v‖L4 · ‖u‖W 1,4), 0 ≤ t ≤ t0, (12)

for some positive constant c.

Proof Since u ∈ Xt0 , we have that u(t, ·) ∈ Hσ(Ω) for each t (0 ≤ t ≤ t0). By

Sobolev imbedding theorem, we know that Hσ ⊂W
1, 2N

N−2(σ−1) .

The condition (7) implies that 2N
N−2(σ−1) ≥ 4, which means u ∈ W 1,4. By virtue of

Cauchy inequality, we have

‖uv‖L2 ≤ ‖u‖L4 · ‖v‖L4 , 0 ≤ t ≤ t0. (13)

Furthermore ∇(uv) = ∇u · v + u · ∇v, which implies that

‖∇(uv)‖L2 ≤ ‖∇u · v‖L2 + ‖u · ∇v‖L2 , 0 ≤ t ≤ t0. (14)
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Thus we use Cauchy inequality to get

‖∇u · v‖L2 ≤ ‖∇u‖L4 · ‖v‖L4 0 ≤ t ≤ t0, (15)

‖∇v · u‖L2 ≤ ‖∇v‖L4 · ‖u‖L4 0 ≤ t ≤ t0. (16)

Lemma 2.3 is proved.

Similar to [4, Lemma 3.1], we can deduce that

Lemma 2.4 For each T > 0, assume

ϕ ∈ H2(Ω) ∩ {
∂u

∂n
= 0 on ∂Ω}, ψ ∈ H1(Ω), u ∈ Xt0 ,

then the problem (10) has a unique solution v ∈ Yt0 ∩Wt0 and

‖v‖Yt0
≤ ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1 + t0 ‖u‖Xt0

· ‖v‖Yt0
). (17)

Proof of Theorem 2.1 Let g ∈ Xt0 , g(0) = u0 and v = v(g) denotes the

corresponding solution of following equation


















vtt = ∆v + αgv,

∂v

∂n
= 0, on ∂Ω × (0, T ),

v(0, ·) = ϕ, vt(0, ·) = ψ.

(18)

By using Lemma 2.4, we know that the problem (18) has a unique local solution

v ∈ Yt0 , which satisfies

‖v‖Yt0
≤ ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1) + ct0e

|α|t0 ‖g‖Xt0
· ‖v‖Yt0

. (19)

For the solution v above, let u = u(v(g)) be the corresponding solution of



















ut = ∇(∇u− χu∇v),

∂u

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0 = g(0).

(20)

The lemma 2.2 shows that the solution u ∈ Xt0 , thus we have obtained a mapping

G : Xt0 → Xt0 , defined by Gg = u(v(g)), and the estimate (11) gives

‖Gg‖Xt0
≤ C ‖u0‖Hσ + Ct

1−σ
2

0 · ‖v‖Yt0
· ‖Gg‖Xt0

. (21)

Next, we choose a ball BM = {g ∈ Xt0 |g(0) = u0, ‖g(t, · )‖Hσ ≤M , 0 ≤ t ≤ t0},

where M = 2C ‖u0‖Hσ and the constant C(≥ 1) is given by (11).

For g ∈ BM , we know that from the estimate (19)

‖v‖Yt0
≤ ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1) + ct0e

|α|t0 ‖g‖Xt0
· ‖v‖Yt0

≤ ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1) + ct0e
|α|t0M · ‖v‖Yt0

. (22)
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Thus we choose t0 > 0 small enough, then

‖v‖Yt0
≤ 2ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1). (23)

In view of (21) and (22), we obtain

‖Gg‖Xt0
≤ C ‖u0‖Hσ + Ct

1−σ
2

0 · 2ce|α|t0(‖ϕ‖H2 + ‖ψ‖H1) · ‖Gg‖Xt0
.

Choosing t0 small enough, so that 2ct0 ·e
|α|t0(‖ϕ‖H2 +‖ψ‖H1) ≤ 1

2 , then ‖Gg‖Xt0
≤

2C ‖u0‖Hσ = M , which indicates that G maps BM into BM itself.

Next, we shall prove that G is contract mapping for sufficiently small t0.

Let us consider that g1, g2 ∈ Xt0 , and let vi (i = 1, 2) be the corresponding solutions

of the problem (18). Thus the difference Gg1 −Gg2 satisfies:

Gg1−Gg2 = u1 − u2

= −χ

∫ t

0
T (t− s)u1∆v1ds−χ

∫ t

0
T (t− s)∇u1∇v1ds

+ χ

∫ t

0
T (t− s)u2∇v2ds+χ

∫ t

0
T (t− s)∇u2∇v2ds

=−χ

∫ t

0
T (t− s)(u1∆v1 − u2∆v2)ds−χ

∫ t

0
T (t− s)(∇u1∇v1−∇u2∇v2)ds,

where T (t) = et∆ is a mapping from L2(Ω) to Hσ(Ω) with norm cσt
−σ

2 . Thus we have

∥

∥

∥

∥

∫ t

0
T (t− s)(u1∆v1 − u2∆v2)ds

∥

∥

∥

∥

Hσ

≤

∥

∥

∥

∥

∫ t

0
T (t− s)u1(∆v1 − ∆v2)ds

∥

∥

∥

∥

Hσ

+

∥

∥

∥

∥

∫ t

0
T (t− s)(u1 − u2)∆v2ds

∥

∥

∥

∥

Hσ

,

and

∥

∥

∥

∥

∫ t

0
T (t− s)u1(∆v1 − ∆v2)ds

∥

∥

∥

∥

Hσ

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖u1(∆v1 − ∆v2)‖2

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖u1‖L∞ · ‖∆(v1 − v2)‖2 ,

where ‖·‖p as the norm of Lp, and σ > N
2 , so

∥

∥

∥

∥

∫ t

0
T (t− s)u1(∆v1 − ∆v2)ds

∥

∥

∥

∥

Hσ

≤ Ct
1−σ

2
0 sup

0≤t≤t0

‖u1‖Hσ · ‖∆(v1 − v2)‖2

≤ CMt
1−σ

2
0 sup

0≤t≤t0

‖v1 − v2‖H2 .
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Similarly, we have

∥

∥

∥

∥

∫ t

0
T (t− s)(u1 − u2)∆v2ds

∥

∥

∥

∥

Hσ

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖(u1 − u2)∆v2‖2

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖v2‖H2 · ‖u1 − u2‖L∞

≤ ct
1−σ

2
0 ‖v2‖Yt0

· ‖u1 − u2‖Xt0
,

which means
∥

∥

∥

∥

∫ t

0
T (t− s)(u1∆v1 − u2∆v2)ds

∥

∥

∥

∥

Hσ

≤ Ct
1−σ

2
0 ‖v1 − v2‖Yt0

+ Ct
1−σ

2
0 ‖v2‖Yt0

· ‖u1 − u2‖Xt0
, 0 ≤ t ≤ t0.

Secondly, we have

∥

∥

∥

∥

∫ t

0
T (t− s)(∇u1∇v1 −∇u2∇v2)ds

∥

∥

∥

∥

Hσ

≤

∥

∥

∥

∥

∫ t

0
T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥

∥

∥

∥

Hσ

+

∥

∥

∥

∥

∫ t

0
T (t− s)(∇u2∇v1 −∇u2∇v2)ds

∥

∥

∥

∥

Hσ

.

Here
∥

∥

∥

∥

∫ t

0
T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥

∥

∥

∥

Hσ

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖∇v1 · ∇(u1 − u2)‖2 , 0 ≤ t ≤ t0.

By Sobolev imbedding theorem, H1(Ω) →֒ L∞(Ω) for N = 1, we have

‖∇f1∇f2‖2 ≤ ‖∇f1‖∞ · ‖∇f2‖2

≤ c ‖f1‖H2 · ‖f2‖H1

≤ c ‖f1‖H2 · ‖f2‖Hσ .

For N = 2, 3, we have H1(Ω) →֒ L
N

σ−1 (Ω), Hσ−1(Ω) →֒ L
2N

N−2(σ−1) (Ω), thus f2
1 ∈

L
N

2(σ−1) , f2
2 ∈ L

N
N−2(σ−1) if f1 ∈ H1 and f2 ∈ Hσ−1. Hence Cauchy inequality yields

∥

∥

∥f2
1 f

2
2

∥

∥

∥

1
≤

∥

∥

∥f2
1

∥

∥

∥

N
2(σ−1)

·
∥

∥

∥f2
2

∥

∥

∥

N
N−2(σ−1)

,

which implies ‖f1f2‖2 ≤ ‖f1‖ N
σ−1

· ‖f2‖ 2N
N−2(σ−1)

. Thus

‖∇f1∇f2‖2 ≤ ‖∇f1‖ N
σ−1

· ‖∇f2‖ 2N
N−2(σ−1)

≤ c ‖∇f1‖H1 · ‖∇f2‖ 2N
N−2(σ−1)

≤ c ‖f1‖H2 · ‖∇f2‖Hσ−1 ≤ c ‖f1‖H2 · ‖f2‖Hσ .
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Therefore, we obtain
∥

∥

∥

∥

∫ t

0
T (t− s)(∇u1∇v1 −∇u2∇v1)ds

∥

∥

∥

∥

Hσ

≤ Ct
1−σ

2
0 ‖v1‖Yt0

· ‖u1 − u2‖Xt0
, 0 ≤ t ≤ t0.

Similarly
∥

∥

∥

∥

∫ t

0
T (t− s)(∇u2∇v1 −∇u2∇v2)ds

∥

∥

∥

∥

Hσ

≤ ct
1−σ

2
0 sup

0≤t≤t0

‖∇u2 · ∇(v1 − v2)‖2

≤ ct
1−σ

2
0 ‖u2‖Xt0

· ‖v1 − v2‖Yt0

≤ cMt
1−σ

2
0 ‖v1 − v2‖Yt0

, 0 ≤ t ≤ t0.

Hence we have deduced that

‖Gg1−Gg2‖Xt0
=‖u1 − u2‖Xt0

≤2ct
1−σ

2
0 ‖v1 − v2‖Yt0

+ ct
1−σ

2
0 (‖v2‖Yt0

+ ‖v1‖Yt0
) · ‖Gg1 −Gg2‖Xt0

. (24)

Next, the difference v1 − v2 satisfies































(v1 − v2)tt = ∆(v1 − v2) + α(g1v1 − g2v2)

= ∆(v1 − v2) + αv1(g1 − g2) + αg2(v1 − v2),

∂v1

∂n
=
∂v2

∂n
= 0, on ∂Ω × (0, T ),

(v1 − v2)(0, ·) = 0, (v1 − v2)t(0, ·) = 0.

Applying Lemma 2.3 and Lemma 2.4, we have

‖v1 − v2‖Yt0
≤ce|α|t0(

∫ t0

0
‖αv1(g1 − g2) + αg2(v1 − v2)‖H1dτ)

≤c |α| e|α|t0 · t0 · sup
0≤τ≤t0

‖v1(g1 − g2) + g2(v1 − v2)‖H1

≤c |α| e|α|t0 · t0 · sup
0≤τ≤t0

‖v1(g1 − g2)‖H1

+ c |α| e|α|t0 · t0 · sup
0≤τ≤t0

‖g2(v1 − v2)‖H1

≤c |α| e|α|t0 · t0 · sup
0≤τ≤t0

(‖v1‖H2 · ‖g1 − g2‖Hσ)

+ c |α| e|α|t0 · t0 · sup
0≤τ≤t0

(‖g2‖Hσ · ‖v1 − v2‖H2)

≤c |α| e|α|t0 · t0 · ‖v1‖Yt0
· ‖g1 − g2‖Xt0

+ c |α| e|α|t0 · t0 · ‖g2‖Xt0
· ‖v1 − v2‖Yt0

.

Thus we choose t0 small enough to get

‖v1 − v2‖Yt0
≤ 2c |α| t0e

|α|t0 · ‖v1‖Yt0
· ‖g1 − g2‖Xt0

. (25)



52 Chen Hua and Wu Shaohua Vol.21

For t0 small enough, we use the estimate (23) directly to get

‖vi‖Yt0
≤ c1e

|α|t0 · (‖ϕ‖H2 + ‖ψ‖H1), i = 1, 2. (26)

Since 1 − σ
2 > 0, thus combining the estimates (24), (25) and (26) and choosing t0

small enough, we can deduce that the mapping G is contract. So it follows that the

problem (8) has a unique local solution (u, v) ∈ (Xt0 ∩Zt0)× (Yt0 ∩Wt0), Theorem 2.1

is proved.

3. Local and Global Existence and Uniqueness

for g(u, v) = h(v2)v + f(u)

Consider the following system


























ut = ∇(∇u− χu∇v), in Ω × (0, T ),

vtt = ∆v + h(v2)v + f(u), in Ω × (0, T ),
∂u

∂n
=
∂v

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0, v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω,

(27)

where Ω ⊂ RN (1 ≤ N ≤ 3) is a bounded open domain with smooth boundary, and

the functions h(x), f(x) ∈ C2(R) satisfying following conditions (cf. [6]):

(a) For N = 1, h is bounded on bounded sets and h′(w)w is bounded on bounded

sets of R+.

(b) For N = 2, |h(w)| ≤ c(wk + 1) and |h′(w)w| ≤ c(wk + 1), for k ≥ 0.

(c) For N = 3, |h(w)| ≤ c(wk + 1), and |h′(w)w| ≤ c(wk + 1), for 0 ≤ k ≤ 1.

Theorem 3.1 Under the conditions (a), (b) and (c), if σ satisfies the conditions

(5), (6) and (7), then for each initial data u0 ∈ Hσ(Ω) ∩ {∂u
∂n

= 0 on ∂Ω}, ϕ ∈

H2(Ω) ∩ { ∂v
∂n

= 0 on ∂Ω} and ψ ∈ H1(Ω), the problem (27) has a unique local solution

(u, v) ∈ (Xt0 ∩Zt0)×(Yt0 ∩Wt0). In the case of N = 1, σ = 5
4 and u0 ≥ 0, then the one-

dimensional problem (27) has a unique global solution (u, v) ∈ (X∞∩Z∞)×(Y∞∩W∞).

The result of Theorem 3.1 has following obviously extension:

Corollary 3.2 For a positive integer m, if u0 ∈ Hσ+m(Ω) ∩ {∂u
∂n

= 0 on ∂Ω},

ϕ ∈ H2+m(Ω) ∩ { ∂v
∂n

= 0 on ∂Ω}, ψ ∈ H1+m(Ω) and f ∈ C2+m(R) (or f ∈ C2+m
0 (R)

in the case of N = 1 and σ = 5
4), then the solution (u, v) of (27) also belongs to

Xm
t0

× Y m
t0

(or Xm
∞ × Y m

∞ in the case of N = 1 and σ = 5
4). Where

Xm
t0

= C([0, t0],H
σ+m(Ω) ∩ {

∂u

∂n
= 0 on ∂Ω}),

Xm
∞ = C([0,+∞),Hσ+m(Ω) ∩ {

∂u

∂n
= 0 on ∂Ω}),

Y m
t0

= C([0, t0],H
2+m(Ω) ∩ {

∂v

∂n
= 0 on ∂Ω}) ∩ C1([0, t0],H

1+m(Ω)),

Y m
∞ = C([0,+∞),H2+m(Ω) ∩ {

∂v

∂n
= 0 on ∂Ω}) ∩ C1([0,+∞),H1+m(Ω)).
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In order to prove Theorem 3.1, we divide the system (27) into two parts,



















ut = ∇(∇u− χu∇v), in Ω × (0, T ),
∂u

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0, in Ω,

(28)

and


















vtt = ∆v + h(v2)v + f(u), in Ω × (0, T ),
∂v

∂n
= 0, on ∂Ω × (0, T ),

v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω.

(29)

We have

Lemma 3.3 For each T > 0, suppose

ϕ ∈ H2(Ω) ∩ {
∂u

∂n
= 0 on ∂Ω}, ψ ∈ H1(Ω), f(u) ∈ C([0, T ];H1(Ω)),

then (29) has a unique solution v ∈ YT ∩WT and satisfies

v ∈ C([0, T ];H2(Ω) ∩ {
∂v

∂n
= 0 on ∂Ω}),

vt ∈ C([0, T ];H1(Ω)), vtt ∈ C([0, T ];L2(Ω)),

and

‖v(t, ·)‖H2(Ω) + ‖vt(t, ·)‖H1(Ω)

≤ ecT (‖ϕ‖H2(Ω) + ‖ψ‖H1(Ω) +

∫ T

0
‖f(u(τ, ·))‖H1(Ω) dτ), ∀t ∈ [0, T ], (30)

where C > 0 is a constant which is independent of T .

Proof Set vt = w, we introduce following system

{

vt = w,

wt = △v + h(v2)v + f(u),
(31)

then we obtain a abstract form, for U = (v,w):

Ut = LU + F (U) in X = H1(Ω) × L2(Ω), (32)

where D(L) = H2(Ω) ∩ { ∂v
∂n

= 0 on ∂Ω} × H1(Ω) and L(v,w) = (w,△v − v) for

(v,w) ∈ D(L), F (v,w) = (0, (h(v2) + 1)v + f(u)).

We know that L is a generator of a unitary group. If we can prove that F (U) :

X → X, and F (U) is locally Lipschitz from X to X, then we can obtain the existence

of solution of (29).
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Firstly we prove that

F (U) : X → X.

For N = 1 and v ∈ H1(Ω) →֒ L∞(Ω), the condition (a) gives h(v2)v ∈ L2(Ω), so

F (v,w) ∈ X. If N = 2, then for each p > 0, v ∈ H1(Ω) →֒ Lp(Ω), so we can also

deduce that h(v2)v ∈ L2(Ω) by using the condition (b) and Cauchy inequality, which

implies F (v,w) ∈ X. If N = 3, then v ∈ H1(Ω) →֒ L
2N

N−2 (Ω) ( 2N
N−2 = 6), similarly we

have, from Cauchy inequality, that
∥

∥

∥h(v2)v
∥

∥

∥

2
≤

∥

∥

∥h(v2)
∥

∥

∥

N
· ‖v‖ 2N

N−2
,

thus the condition (c) implies that h(v2)v ∈ L2(Ω) and F (v,w) ∈ X.

Secondly, we prove that F (U) is locally Lipschitz from X to X. Since

F (U1) − F (U2) = F (v1, w1) − F (v2, w2)

= (0, h(v2
1)v1 − h(v2

2)v2 + v1 − v2),

and

‖F (U1) − F (U2)‖X =
∥

∥

∥h(v2
1)v1 − h(v2

2)v2 + v1 − v2

∥

∥

∥

L2

≤
∥

∥

∥h(v2
1)v1 − h(v2

2)v2
∥

∥

∥

L2
+ ‖v1 − v2‖L2 .

Observe that
∥

∥

∥h(v2
1)v1 − h(v2

2)v2
∥

∥

∥

L2
=

∥

∥

∥

∥

∫ v1

v2

(h(ξ2) + 2ξ2h′(ξ2))dξ

∥

∥

∥

∥

L2

≤

∥

∥

∥

∥

∫ v1

v2

h(ξ2)dξ

∥

∥

∥

∥

L2

+

∥

∥

∥

∥

∫ v1

v2

2ξ2h′(ξ2))dξ

∥

∥

∥

∥

L2

.

Similar to the process above, we have that

‖F (U1) − F (U2)‖X ≤ C ‖v1 − v2‖H1 ≤ C ‖U1 − U2‖X ,

thus F is locally Lipschitz function, which implies the existence of the solution of (29).

Now we prove the estimate (30), which implies the uniqueness of the solution. From

the equation (32), we have

‖U(t)‖H2×H1 ≤‖T (t)U0‖H2×H1 +

∫ t

0
‖T (t− s)F (U(s))‖H2×H1 ds

≤‖U0‖H2×H1 +

∫ t

0
‖F (U)‖H2×H1 ds

=‖ϕ‖H2 + ‖ψ‖H1 +

∫ t

0

∥

∥

∥(h(v2) + 1)v + f(u)
∥

∥

∥

H1
ds

≤‖ϕ‖H2 + ‖ψ‖H1 +

∫ t

0

∥

∥

∥(h(v2) + 1)v
∥

∥

∥

H1
ds

+

∫ t

0
‖f(u)‖H1ds, 0 ≤ t ≤ T, (33)
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where T (t) = etL. From the conditions (a), (b) and (c), we know that
∥

∥h(v2)v
∥

∥

H1 ≤

C ‖v‖H2, so

‖U(t)‖H2×H1

≤ ‖ϕ‖H2 + ‖ψ‖H1 + c

∫ t

0
‖v‖H2ds+

∫ T

0
‖f(u)‖H1ds

≤ ‖ϕ‖H2 + ‖ψ‖H1 + c

∫ t

0
‖U(s)‖H2×H1ds+

∫ T

0
‖f(u)‖H1ds, 0 ≤ t ≤ T.

By using the Gronwall inequality, we have that

‖U‖H2×H1 ≤ ect(‖ϕ‖H2 + ‖ψ‖H1 +

∫ T

0
‖f(u)‖H1ds)

≤ecT (‖ϕ‖H2 + ‖ψ‖H1 +

∫ T

0
‖f(u)‖H1ds), 0 ≤ t ≤ T, (34)

which is the estimate (30).

The proof of Theorem 3.1 Consider g ∈ Xt0 , g(0) = u0 and let v = v(g) denote

the corresponding solution of following equation


















vtt = ∆v + h(v2)v + f(g), in Ω × (0, T ),

∂v

∂n
= 0, on ∂Ω × (0, T ),

v(0, ·) = ϕ, vt(0, ·) = ψ, in Ω.

(35)

In terms of Lemma 3.3, we can solve the problem (35) to get the solution v ∈ Yt0

and

‖v‖Yt0
≤ ect0(‖ϕ‖H2(Ω) + ‖ψ‖H1(Ω) +

∫ t0

0
‖f(g(τ, ·))‖H1(Ω) dτ). (36)

For above v, we define u = u(v(g)) to be the corresponding solution of



















ut = ∇(∇u− χu∇v), in Ω × (0, T ),

∂v

∂n
= 0, on ∂Ω × (0, T ),

u(0, ·) = u0 = g(0), in Ω.

(37)

Thus from Lemma 2.2, we know the solution u ∈ Xt0 , which implies that we have a

mapping G : Xt0 → Xt0 , as defined by Gg = u(v(g)). Let BM = {g ∈ Xt0 | g(0) = u0,

‖g(t, ·)‖Hσ ≤M, 0 ≤ t ≤ t0}, where M = 2C ‖u0‖Hσ and the constant C ≥ 1 is given

by (11), then from the estimates (11) and (36), we have

‖Gg‖Xt0
≤ C ‖u0‖Hσ + Ct

1−σ
2

0 ‖v‖Yt0
· ‖Gg‖Xt0

≤ C ‖u0‖Hσ + Ct
1−σ

2
0 ect0(‖ϕ‖H2 + ‖ψ‖H1

+

∫ t0

0
‖f(g(τ, ·))‖H1dτ) · ‖Gg‖Xt0

. (38)
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If g ∈ BM , ‖g‖H1 ≤ ‖g‖Hσ ≤M , and f ∈ C2(R), we can deduce that

‖f(g(τ, ·))‖H1 ≤ ‖f‖C2[−M,M ] ·M + ‖f(0)‖L2 ,

thus the estimate (38) gives that ‖Gg‖Xt0
≤ 2C ‖u0‖Hσ if t0 > 0 is small enough.

Hence we have proved that, for t0 > 0 small enough, G maps BM into BM itself. It

is similar to the proof of Theorem 2.1, we can prove that, if t0 is small enough, the

mapping G is a contract mapping, that means the problem (27) has a unique local

solution (u, v) ∈ (Xt0 ∩ Zt0) × (Yt0 ∩Wt0).

Next, similar to the estimate (30), we can prove that, for s ≤ 2, the solution (u, v)

will satisfy

‖v(t, ·)‖Hs ≤ ect0(c0 +

∫ t0

0
‖f(u(τ, ·))‖Hs−1dτ), 0 ≤ t ≤ t0, (39)

where c0 = ‖ϕ‖H2 + ‖ψ‖H1 and c is independent of t0. In fact, from the equation (32)

we know that U = (v,w) and F (U) = (0, h(v2) + 1)v + f(u)). Then for s > 1 we have

Hs ×Hs−1 ⊂ H1 × L2. If we denote T (t) |Hs×Hs−1 as the restriction of T (t) = etL on

Hs ×Hs−1, thus, by similar process of (33) and (34), we can deduce that

‖U(t)‖Hs×Hs−1 ≤ ect0(‖ϕ‖H2 + ‖ψ‖H1 +

∫ t0

0
‖f(u)‖Hs−1dτ), 0 ≤ t ≤ t0. (40)

If s < 1, then H1 × L2 ⊂ Hs × Hs−1, we use Hahn-Banach theorem to get the

operator T (t) can be continuously extended on Hs × Hs−1 and the norm of T (t) is

invariable. Thus for s < 1, we have also that

‖U(t)‖Hs×Hs−1 ≤ ect0(‖ϕ‖H2 + ‖ψ‖H1 +

∫ t0

0
‖f(u)‖Hs−1dτ), 0 ≤ t ≤ t0. (41)

The estimate (39) can be deduced directly by (40) and (41).

In the case of N = 1, we know the problem (27) has a unique local solution (u, v) ∈

(Xt0 × Yt0) ∩ (Zt0 ×Wt0). If we take s=1/2 in (39), then

‖v(t, ·)‖2

H
1
2
≤ ce2ct0(c0 +

∫ t0

0
‖f(u(τ, ·))‖2

H
−

1
2
dτ), 0 ≤ t ≤ t0. (42)

Since u0 ≥ 0 and from the first equation of (27), we can deduce that ‖u(t, ·)‖L1 =

‖u0‖L1 , also Sobolev imbedding theorem implies that W 0,1(Ω) →֒ H− 1
2 (Ω), hence we

have

‖v(t, ·)‖2

H
1
2
≤ ce2ct0(c0 +

∫ t0

0
‖f(u(τ, ·))‖2

H
−

1
2
dτ)

≤ ce2ct0(c0 +

∫ t0

0
‖f(u(τ, ·))‖2

L1dτ)

≤ ce2ct0(c0 +

∫ t0

0
(M1 ‖u‖L1 + ‖f(0)‖L1)

2dτ)

= ce2ct0(c0 + t0(M1 ‖u0‖L1 + ‖f(0)‖L1)
2), 0 ≤ t ≤ t0, (43)
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where M1 = ‖f‖C2.

On the other hand, for each s ≤ σ and 0 ≤ σ0 < 2,

‖u(t, ·)‖Hs ≤ c ‖u0‖Hσ + ct
1−

σ0
2

0 sup
0≤t≤t0

‖∇(u∇v)‖Hs−σ0

≤ c ‖u0‖Hσ + ct
1−

σ0
2

0 sup
0≤t≤t0

‖u∇v‖Hs−σ0+1 , 0 ≤ t ≤ t0. (44)

Especially for s = −1
2 + 1

4 and σ0 = 2 − 1
8 , we have

‖u(t, ·)‖
H

−
1
2+ 1

4
≤ c ‖u0‖Hσ + ct

1
16
0 sup

0≤t≤t0

‖u∇v‖
H

−1− 1
8
, 0 ≤ t ≤ t0. (45)

By Sobolev imbedding theorem and (43),

‖u∇v‖
H

−1− 1
8
≤ c ‖u‖

H
−1− 1

8
· ‖∇v‖

W
−1− 1

8
,∞

≤ c ‖u‖H−1 · ‖∇v‖
H

−
1
2

≤ c ‖u‖L1 · ‖v‖
H

1
2

≤ c ‖u0‖L1 · ect0(c
1
2
0 + t

1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1)), 0 ≤ t ≤ t0. (46)

Thus from (45) we have

‖u(t, ·)‖
H

−
1
4
≤ c ‖u0‖Hσ + ct

1
16
0 sup

0≤t≤t0

‖u∇v‖
H

−1− 1
8

≤ c ‖u0‖Hσ + ct
1
16
0 ‖u0‖L1 · e

ct0(c
1
2
0 + t

1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1)). (47)

Take s = 1
2 + 1

4 = 3
4 in (39), then from (47) we have

‖v(t, ·)‖2

H
3
4
≤ ce2ct0(c0 +

∫ t0

0
‖f(u(τ, ·))‖2

H
3
4
−1dτ)

≤ ce2ct0(c0 + t0(M1 sup
0≤τ≤t0

‖u(τ, ·)‖
H

−
1
4

+ ‖f(0)‖
H

−
1
4
)2)

≤ ce2ct0{c0 + t0[M1[c ‖u0‖Hσ + ct
1
16
0 ‖u0‖L1 · ect0(c

1
2
0

+t
1
2
0 (M1 ‖u0‖L1 + ‖f(0)‖L1))] + ‖f(0)‖

H
−

1
4
]2}, 0 ≤ t ≤ t0. (48)

Take s = −1
2 + 1

4 + 1
4 = 0 and σ0 = 2 − 1

8 in (44) again, we obtain

‖u(t, ·)‖L2 ≤ c ‖u0‖Hσ + ct
1−

σ0
2

0 sup
0≤t≤t0

‖∇(u∇v)‖H−σ0

≤ c ‖u0‖Hσ + ct
1
16
0 sup

0≤t≤t0

‖u∇v‖H−σ0+1

≤ c ‖u0‖Hσ + ct
1
16
0 sup

0≤t≤t0

‖u∇v‖
H

−1+ 1
8
, 0 ≤ t ≤ t0. (49)
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Here

‖u∇v‖
H

−1+ 1
8
≤ c ‖u‖

H
−1+ 1

8
· ‖∇v‖

W
−1+ 1

8
,∞

≤ c ‖u‖
H

−
1
4
· ‖∇v‖

H
−

1
2 +1

4

≤ c ‖u‖
H

−
1
4
· ‖v‖

H
3
4
, 0 ≤ t ≤ t0, (50)

which implies, from the estimate (49), that

‖u(t, ·)‖L2 ≤ c ‖u0‖Hσ + ct
1−

σ0
2

0 sup
0≤t≤t0

‖∇(u∇v)‖H−σ0

≤ c ‖u0‖Hσ + ct
1
16
0 sup

0≤t≤t0

‖u∇v‖
H

−1+ 1
8

≤ c ‖u0‖Hσ + ct
1
16
0 · sup

0≤t≤t0

‖u‖
H

−
1
4
· ‖v‖

H
3
4
, 0 ≤ t ≤ t0. (51)

From the estimates (47) and (48) above, we have obtained that ‖u(t, ·)‖L2 grows by

a bounded manner in time.

Again we take s = 1
2 + 1

4 + 1
4 = 1 in (39), then the estimates (39) and (51) imply

that ‖v(t, ·)‖H1 grows also by a bounded manner in time.

Taking s = −1
2 + 1

4 + 1
4 + 1

4 = 1
4 and σ0 = 2− 1

8 in (44) once more, since ‖v(t, ·)‖H1

grows by a bounded manner in time, similar to which we have done in (49), (50) and

(51), we can deduce that ‖u(t, ·)‖
H

1
4

grows by a bounded manner in time.

Let us repeat processes above four times, we can prove that ‖u(t, ·)‖
H

5
4

(σ = 5
4 )

and ‖v(t, ·)‖H2 grow by a bounded manner in time, that means the solution of (27) is

global.
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