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1. Introduction

In [1] we have introduced the concept of the completely reducible quasilinear hy-
perbolic system and discussed the singularity caused by eigenvectors for this kind of
system in the case of constant eigenvalues. In this paper we will present a method for
checking if a given quasilinear strictly hyperbolic system is completely reducible or not,
and give some examples.

2. A Necessary and Sufficient Condition for a Quasilinear Strictly

Hyperbolic System Being Completely Reducible

Consider the following first order quasilinear strictly hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= 0, (2.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x) and A(u) = (aij(u))
is an n× n matrix with suitably smooth entries aij(u) (i, j = 1, · · · , n).

By strict hyperbolicity, on the domain under consideration A(u) has n distinct real
eigenvalues

λ1(u), λ2(u), · · · , λn(u). (2.2)
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For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp. ri(u) = (ri1(u), · · · , rin(u))T )
be a left (resp. right) eigenvector corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (2.3)

All λi(u), li(u) and ri(u) (i = 1, · · · , n) have the same regularity as A(u). Without
loss of generality, we assume that

li(u)rj(u) ≡ δij (i, j = 1, · · · , n), (2.4)

where δij denotes the Kronecker’s symbol.
System (1.1) can be equivalently reduced to the following characteristic form

li(u)
(∂u

∂t
+ λi(u)

∂u

∂x

)
= 0 (i = 1, · · · , n). (2.5)

For i = 1, · · · , n, the i-th equation in (2.5) contains only the directional derivative of u

with respect to t along the i-th characteristic direction
dx

dt
= λi(u).

By the definition given in [1], system (2.1) is m-step (globally) completely reducible,
if there is a global diffeomorphism from Rn to Rn

u = u(ũ) (2.6)

such that the corresponding system for ũ

∂ũ

∂t
+ Ã(ũ)

∂ũ

∂x
= 0 (2.7)

has the following standard form:

Ã(ũ) =




Λ̃(1)(ũ)
Ã21(ũ) Λ̃(2)(ũ)

...
. . .

Ãm1(ũ) · · · Ãm,m−1(ũ) Λ̃(m)(ũ)




, (2.8)

where Λ̃(a)(ũ) (a = 1, · · · ,m) are diagonal matrices, the entries of which are given by
λ̃i(ũ) = λi(u(ũ)) (i = 1, · · · , n) respectively. If this diffeomorphism (2.6) is only valid in
a local domain, system (2.1) is called to be m-step locally completely reducible. If there
is no such diffeomorphism (2.6) even in the local sense, system (2.1) is non-completely
reducible.

Without loss of generality, in what follows we consider only the 2-step completely
reducible case.

By definition, under diffeomorphism (2.6), a 2-step completely reducible quasilinear
strictly hyperbolic system (2.1) can be reduced to the following standard form





∂ũ(1)

∂t
+ Λ̃(1)(ũ)

∂ũ(1)

∂x
= 0,

∂ũ(2)

∂t
+ Λ̃(2)(ũ)

∂ũ(2)

∂x
+ Ã21(ũ)

∂ũ(1)

∂x
= 0,

(2.9)
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where
ũ(1) = (ũ1, · · · , ũk)T , ũ(2) = (ũk+1, · · · , ũn)T (2.10)

and without loss of generality

Λ̃(1)(ũ) = diag{λ̃1(ũ), · · · , λ̃k(ũ)}, Λ̃(2)(ũ) = diag{λ̃k+1(ũ), · · · , λ̃n(ũ)}. (2.11)

This shows that the first k equations corresponding to λr(u) (r = 1, · · · , k) in the
system (2.5) of characteristic form must be diagonalizable.

Let
Li(u) = li(u)du. (2.12)

By Frobenius theorem (see [2, 3]) the i-th equation in system (2.5) is diagonalizable in
the local sense if and only if

Li(u)ΛdLi(u) ≡ 0, (2.13)

namely,

∑
p, q, r

circular summation

lir(u)
(∂lip(u)

∂uq
− ∂liq(u)

∂up

)
≡ 0,

∀p, q, r ∈ {1, · · · , n} different from each other. (2.14)

Hence, when (2.14) hold for i = 1, · · · , k, there exists at least a local diffeomorphism

u = u(ū) (2.15)

such that system (2.1) reduces to

∂ū

∂t
+ Ā(ū)

∂ū

∂x
= 0, (2.16)

where

Ā(ū) =

(
Λ̄(1)(ū) 0
Ā21(ū) Ā22(ū)

)
, (2.17)

then the corresponding matrix composed of the left eigenvectors is

L̄(ū) =

(
Ik 0

L̄21(ū) L̄22(ū)

)
, (2.18)

in which Ik denotes the unit matrix of order k; moreover,

Λ̄(1)(ū) = diag{λ̄1(ū), · · · , λ̄k(ū)} = diag{λ1(u(ū)), · · · , λk(u(ū))}. (2.19)

Set

Λ̄(ū) = diag{λ̄1(ū), · · · , λ̄n(ū)} = diag{λ1(u(ū)), · · · , λn(u(ū))} (2.20)
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and

Λ̄(2)(ū) = diag{λ̄k+1(ū), · · · , λ̄n(ū)} = diag{λk+1(u(ū)), · · · , λn(u(ū))}. (2.21)

By
Ā(ū) = L̄−1(ū)Λ̄(ū)L̄(ū), (2.22)

we have
Ā22(ū) = L̄−1

22 (ū)Λ̄(2)(ū)L̄22(ū). (2.23)

Hence, the eigenvalues of Ā22(ū) are given by (2.21) and the matrix composed of the
left eigenvectors of Ā22(ū) is just L̄22(ū).

Noting that the first k equations in system (2.16) are of the diagonal form, it is easy
to see that system (2.16) is 2-step completely reducible if and only if the left eigenvectors
of Ā22(ū) are all diagonalizable, namely, the reduced system, ū(1) = (ū1, · · · , ūk) being
regarded as parameters,

∂ū(2)

∂t
+ Ā22(ū)

∂ū(2)

∂x
= 0 (2.24)

can be rewritten in a diagonal form, where ū(2) = (ūk+1, · · · , ūn).
Let l̄i(ū) be a row vector of L̄22(ū), i.e., a left eigenvector of Ā22(ū), and

L̄i(ū) = l̄i(ū)dū(2) (i = k + 1, · · · , n). (2.25)

As before, the left eigenvectors of Ā22(ū) are all diagonalizable in the local sense if and
only if

L̄i(ū)ΛdL̄i(ū) ≡ 0 (i = k + 1, · · · , n), (2.26)

in which ū(1) = (ū1, · · · , ūk) are still regarded as parameters, namely, for i = k +
1, · · · , n,

∑
p, q, r

circular summation

l̄ir(ū)
(∂l̄ip(ū)

∂ūq
− ∂l̄iq(ū)

∂ūp

)
≡ 0,

∀ p, q, r ∈ {k + 1, · · · , n} different from each other. (2.27)

Under assumption (2.26) or (2.27), there exists at least a local diffeomorphism

ū = ū(ũ) (2.28)

such that system (2.16) can be further reduced to the standard form (2.9) of the 2-step
completely reducible system.

The m-step completely reducible system can be considered in an entirely similar
manner.

Thus, system (2.1) is locally completely reducible if and only if the system can be
successively diagonalizable, namely, in each step some equations in the corresponding
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reduced system are diagonalizable. When the diffeomorphisms used in the previous
procedure are valid all in the global sense, system (2.1) is then (globally) completely
reducible. When the previous procedure fails in a step (particularly in the first step,
namely, there is no equation in system (2.5), which can be diagonalizable even in the
local sense), system (2.1) is non-completely reducible.

3. Examples

Example 1 In system (2.1), suppose that n = 3 and

A(u) =




0 0 eu2

e−u2 0 eu2

e−u2 0 0


 . (3.1)

The eigenvalues are
λ1(u) ≡ −1 < λ2(u) ≡ 0 < λ3(u) ≡ 1 (3.2)

and the corresponding left eigenvectors can be taken as




l1(u) = (−e−u2 , 0, 1),

l2(u) = (1,−1, 1),

l3(u) = (e−u2 , 0, 1)

(3.3)

(cf. Example 4 in [1]).
Obviously, the equation corresponding to l2(u) in system (2.5) can be globally

diagonalizable. Moreover, it is easily seen that (2.14) fail for i = 1 and 3. Hence,
in the first step only one equation can be reduced to a diagonal form. Correspondingly,
setting

ū1 = u1, ū2 = u2 − u1 − u3, ū3 = u3 (3.4)

and noting

l̄i(ū) = li(u)
∂u

∂ū
, (3.5)

we have {
l̄1(ū) = (−e−(ū1+ū2+ū3), 0, 1),

l̄3(ū) = (e−(ū1+ū2+ū3), 0, 1),
(3.6)

hence the corresponding system of characteristic form can be rewritten as




e−ū1

(∂ū1

∂t
− ∂ū1

∂x

)
− eū2+ū3

(∂ū3

∂t
− ∂ū3

∂x

)
= 0,

∂ū2

∂t
= 0,

e−ū1

(∂ū1

∂t
+

∂ū1

∂x

)
+ eū2+ū3

(∂ū3

∂t
+

∂ū3

∂x

)
= 0.

(3.7)
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The reduced system composed of the first and third equations of (3.7), in which ū2 is
regarded as a parameter, can be reduced to a diagonal form by the following transfor-
mation {

ũ1 = e−ū1 + eū2+ū3 ,

ũ3 = e−ū1 − eū2+ū3 .
(3.8)

Hence, with the transformation (3.8) and ũ2 = ū2, the whole system (3.7) reduces to




∂ũ1

∂t
− ∂ũ1

∂x
+ a(ũ)

∂ũ2

∂x
= 0,

∂ũ2

∂t
= 0,

∂ũ3

∂t
+

∂ũ3

∂x
+ a(ũ)

∂ũ2

∂x
= 0,

(3.9)

where
a(ũ) =

ũ1 − ũ3

2
. (3.10)

(3.9) is of the standard form of the 2-step completely reducible system. However,
since (3.8) with ũ2 = ū2 is only a local diffeomorphism, the system under consideration
is only locally completely reducible.

Example 2 For the system given by A. Jeffrey [4], n=3 and

A(u) =



−ch2u2 0 −sh2u2

chu2 0 shu2

sh2u2 0 ch2u2


 . (3.11)

The eigenvalues are still given by (3.2) and the corresponding left eigenvectors can be
taken as 




l1(u) = (chu2, 0, shu2),

l2(u) = (chu2, 1, shu2),

l3(u) = (shu2, 0, chu2).

(3.12)

It can be easily checked that (2.14) fail for all i = 1, 2, 3. Hence, this system is
non-completely reducible and there is no equation in the corresponding characteristic
form (2.5), which can be diagonalizable.
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