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1. Introduction

In this paper we study the existence and regularity of global self-similar solutions
of the Cauchy problem for the semi-linear heat equation

ut −4u = µuα+1, u(0, x) = f(x) (1.1)

and the Cauchy problem for the convection-diffusion equation

∂tu−4u = ~a · ∇(|u|αu), u(0, x) = f(x), (1.2)

where µ ∈ R, ~a ∈ Rn \ {0}, α > 0, u = u(t, x) is a real-valued function defined on
R+ × Rn and the initial data f is a real-valued function.
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No.1 Besov spaces and self-similar solutions for nonlinear evolution equations 27

Self-similar solutions have been studied for other semilinear evolution equations
such as the semilinear wave equation [1-4], the Navier-Stokes equations [5, 6] and the
Schroedinger equations [7-10]. They often describe the large time behavior of general
global solutions to the evolution equations under certain conditions. For example, it
was shown in [6] that self-similar solutions for the Navier-Stokes equations constructed
by Cannone [5] provide the large time asymptotic behavior of the global solutions.

A solution u(t, x) of (1.1) or (1.2) is called a self-similar solution if for λ > 0,

u(t, x) = λ
2
α u(λ2t, λx).

It is easy to verify that u is a self-similar solution if and only if

u(t, x) = t−
1
α u

(
1,

x√
t

)
= t−

1
α V

(
x√
t

)

for some function V (x) called the profile of the self-similar solution u. Thus the Self-
similar solution to nonlinear evolution equations can be studied through the study
of the associated semi-linear elliptic equations for V (x). However, it is usually very
difficult to solve such nonlinear elliptic equations. On the other hand, the initial data
for self-similar solutions must satisfy, for λ > 0,

f(x) = λ
2
α f(λx). (1.3)

This leads to another way of looking for self-similar solutions of (1.1) or (1.2) by the
study of small global well-posedness in some suitable function spaces of the Cauchy
problem (1.1) or (1.2) with initial data f satisfying (1.3). These new global solutions
admit a class of self-similar solutions. However, the condition (1.3) means that f is
homogeneous degree −2/α. Such homogeneous functions, in general, do not belong to
the usual spaces such as the usual Sobolev space Hs,p, where the global well-posedness
of the Cauchy problem holds. Thus, in order to construct self-similar solutions for
evolution equations such as (1.1) or (1.2) we have to choose a suitable homogeneous
Banach space X of degree −2/α and to show that the problem generates a global flow
in X.

The well-posedness of the Cauchy problem for the heat equation (1.1) has been
studied by many authors. For example, the existence and uniqueness of solutions have
been studied in [7, 11-16] for the case when the initial data is in Sobolev spaces and in
[17] for the case when the initial data is in Besov spaces. Self-similar solutions have also
been dealt with for the heat equation (1.1) in [18, 14] by the study of the associated
elliptic problem and in, e.g. [7] by studying the Cauchy problem. In [19, 20], the global
solutions of the nonlinear heat equation have been shown to be asymptotically close
to its self-similar solution. On the other hand, the global well-posedness including the
large time behavior of the solution has been proved for the convection-diffusion (1.2) in
[21], whilst the existence of positive self-similar solutions for (1.2) has been established
in [22] in the case when α = 1/n through the study of the associated elliptic problem.
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The remaining part of this paper is organized as follows. In Section 2, we introduce
some Besov spaces and Strichartz estimates needed in this paper. Section 3 is devoted
to the study of self-similar solutions for the semilinear heat and convection-diffusion
equations. In the appendix we give a proof of an equivalent norm for Besov spaces
(Proposition 2.1 below), which was given previously in [23] without proof and is used
in this paper to study the structure of self-similar solutions for evolution equations.

We conclude this section with introducing several definitions and notations. De-
note by S(Rn) and S ′(Rn) the Schwartz space and the space of Schwartz distribution
functions respectively. For integer m, Cm(Rn) denotes the usual space of m-times
continuously differentiable functions on Rn, and for 1 ≤ r ≤ ∞, Lr(Rn) denotes the
usual Lebesgue space on Rn with the norm ‖ · ‖r. For s ∈ R and 1 < r < ∞, let
Hs,r(Rn) = (1 − 4)−

s
2 Lr(Rn), the inhomogeneous Sobolev space in terms of Bessel

potentials, let Ḣs,r(Rn) = (−4)−
s
2 Lr(Rn), the homogeneous Sobolev space in terms

of Riesz potentials, and write Hs(Rn) = Hs,2(Rn) and Ḣs(Rn) = Ḣs,2(Rn). For the
detailed definitions of the above function spaces see, e.g. [24-28]. We shall omit Rn

from spaces and norms. For any interval I ∈ R and any Banach space X we denote
by C(I;X) the space of strongly continuous functions from I to X, by Lq(I;X) the
space of strongly measurable functions from I to X with ‖u(·);X‖ ∈ Lq(I), and by
C∗(I;X) the space of functions in L∞(I;X) that are continuous in the distributional
sense. For a given function space X we denote by Ẋ its homogeneous space. Finally,
for any q > 0, q′ stands for the dual to q, i.e., 1/q + 1/q′ = 1.

2. Preliminaries

2.1 Besov spaces

In this subsection we introduce some equivalent definitions and norms for Besov
spaces needed in this paper. The reader is referred to the well-known books [23, 24,
27, 28] for details.

Let s > 0, 1 ≤ p ≤ ∞, 1 ≤ m ≤ ∞. We first introduce the following equivalent
norms for the Besov spaces Ḃs

p,m and Bs
p,m :

|v‖Ḃs
p,m

'
∑

|α|=N

(∫ ∞

0
t−mσ sup

|y|≤t
‖ M2

y ∂αv‖m
p

dt

t

) 1
m

, (2.1)

‖v‖Bs
p,m

' ‖v‖p + |v‖Ḃs
p,m

, (2.2)

where

M2
y v , τyv + τ−yv − 2v, τ±yv(·) = v(· ± y),

∂α = ∂α1
1 ∂α2

2 · · · ∂αn
n , ∂i =

∂

∂xi
, i = 1, · · ·n,
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α = (α1, · · · , αn) and s = N + σ with a nonnegative integer N and 0 < σ < 2. In the
special case when s is not an integer, (2.1) is also equivalent to the following norm:

‖v‖Ḃs
p,m

'
∑

|α|=[s]

(∫ ∞

0
t−m(s−[s]) sup

|y|≤t
‖ My ∂αv‖m

p

dt

t

) 1
m

, (2.3)

where M±y v(·) = τ±yv − v and [s] denotes the largest integer not larger than s. In the
case when m = ∞, the norm ‖v‖Ḃs

p,∞
in the above definition should be modified as

follows:

‖v‖Ḃs
p,∞

'
∑

|α|=N

sup
t>0

sup
|y|≤t

t−σ‖ M2
y ∂αv‖p, s ∈ R (2.4)

‖v‖Ḃs
p,∞

'
∑

|α|=[s]

sup
t>0

sup
|y|≤t

t−s−[s]‖ My ∂αv‖p, s 6∈ Z. (2.5)

We now introduce the Littlewood-Paley characterization of Besov spaces. Let ϕ̂0 ∈
C∞

c (R) with

ϕ̂0(ξ) =

{
1, |ξ| ≤ 1,

0, |ξ| ≥ 2
(2.6)

be the real-valued radial Bump function. It is easy to see that

ϕ̂j(ξ) = ϕ̂0(2−jξ), j ∈ Z,

ψ̂j(ξ) = ϕ̂0(2−jξ)− ϕ̂0(2−j+1ξ), j ∈ Z (2.7)

are also real-valued radial Bump functions satisfying that

sup
ξ∈Rn

2j|α||∂αψ̂j(ξ)| < ∞, j ∈ Z,

sup
ξ∈Rn

2j|α||∂αϕ̂j(ξ)| < ∞, j ∈ Z.

We have the Littlewood–Paley decomposition:

ϕ̂0(ξ) +
∞∑

j=0

ψ̂j(ξ) = 1, ξ ∈ Rn, (2.8)

∑

j∈Z
ψ̂j(ξ) = 1, ξ ∈ Rn \ {0}, (2.9)

lim
j→+∞

ϕ̂j(ξ) = 1, ξ ∈ Rn. (2.10)

For convenience, we introduce the following notations:

4jf = F−1ψ̂jFf = ψj ∗ f, j ∈ Z, (2.11)

Sjf = F−1ϕ̂jFf = ϕj ∗ f, j ∈ Z. (2.12)
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Then we have the following Littlewood-Paley definition of Besov spaces:

Bs
p,q =

{
f ∈ S ′(Rn)

∣∣∣∣‖f‖Bs
p,q

= ‖S0f‖p +
( ∞∑

j=1

2jsq‖4jf‖q
p

) 1
q

= ‖ϕ0 ∗ f‖p +
( ∞∑

j=1

2jsq‖ψj ∗ f‖q
p

) 1
q

< ∞
}

,

Ḃs
p,q =

{
f ∈ S ′(Rn)

∣∣∣∣‖f‖Ḃs
p,q

=
( ∑

j∈Z
2jsq‖4jf‖q

p

) 1
q

=
( ∑

j∈Z
2jsq‖ψj ∗ f‖q

p

) 1
q

< ∞
}

,

Ḃs
p,∞ =

{
f ∈ S ′(Rn)

∣∣∣∣‖f‖Ḃs
p,∞

= sup
j∈Z

2js‖4jf‖p = sup
j∈Z

2js‖ψj ∗ f‖p < ∞
}

,

Ḃ−σ
p,∞ =

{
f ∈ S ′(Rn)

∣∣∣∣‖f‖Ḃ−σ
p,∞ = sup

t>0
t

σ
2 ‖H(t)f‖p < ∞}, σ > 0,

where 1 ≤ p ≤ ∞, 1 ≤ q < ∞, s ∈ R and H(t) = et∆ is the heat semigroup. From the
Littlewood-Paley characterization of Besov spaces, one easily sees that

L3(R3) ⊂ L3,∞(R3) ⊂ Ḃ
−1+ 3

p1
p1,∞ ⊂ Ḃ

−1+ 3
p2

p2,∞ ⊂ Ḃ−1
∞,∞

for 3 ≤ p1 ≤ p2 ≤ ∞, where Lp,q denotes the Lorentz space (see [29, 25] for details).

Proposition 2.1 For µ ∈ R+ let ψ̂µ(ξ) = ψ̂0(µ−1ξ) and 4µf = F−1(ψ̂µ(ξ)f̂) =
ψµ ∗ f with ψ̂0 being defined as in (2.7). Then

‖f‖Ḃs
p,q

∼=
(∫ ∞

0
(µs‖4µf‖p)

q dµ

µ

) 1
q

. (2.13)

Note that 4µ with Greek letter such as µ has different definition from 4j with English
letter such as j. This equivalent norm of Besov spaces was introduced in [23]. However,
no proof was given there. The case with q = ∞ has been used by Planchon [6, 30, 2]
without a proof. We will give a proof in the appendix.

Besides the classical Besov spaces, we also need the so-called generalized Besov
spaces.

Definition 2.1 For s ∈ R, 1 ≤ q ≤ ∞ and any Banach space E, define Ḃs,q
E as

Ḃs,q
E = {f ∈ E| ‖f ; Ḃs,q

E ‖ = (
∑

j∈Z
2jsq‖4jf‖q

E)
1
q < ∞} (2.14)

where 4j is the Littlewood-Paley operator on Rn defined in (2.11) and (2.12).



No.1 Besov spaces and self-similar solutions for nonlinear evolution equations 31

Remark 2.1 (i) One easily verifies that Ḃs,q
E can be characterized equivalently for

s < 0 by

Ḃs,q
E = {f ∈ E| ‖f ; Ḃs,q

E ‖ = (
∑

j∈Z
2jsq‖Sjf‖q

E)
1
q < ∞}.

(ii) In the study of self-similar solutions we usually use the Besov spaces defined by
replacing Lp with the Lorentz space Lp,r.

(iii) Let E = Lq(I;Lr) with I = R or I ⊂ R being an interval. Then we have

Lq(I; Ḃs
r,ρ)

4
= Ḃs,ρ

Lq(I;Lr)

= {f ∈ Lq(I;Lr)| ‖f ; Ḃs,ρ
Lq(I;Lr)‖ = (

∑

j∈Z
2jsρ‖4jf‖ρ

Lq(I;Lr))
1
ρ < ∞}

(iv) In Proposition 2.1, if Lp is replaced with the Banach space E, then we have

‖f‖Ḃs,ρ
E

∼=
( ∫ ∞

0

(
µs‖4µf‖E

)ρ dµ

µ

) 1
ρ

,

where 4µ is defined as in Proposition 2.1. In particular, letting E = Lq(R, Lr)
gives

‖f ; Ḃs,ρ
Lq(R,Lr)‖ ∼=

( ∫ ∞

0

(
µs‖4µf‖Lq(R,Lr)

)ρ dµ

µ

) 1
ρ

,

‖f ; Ḃs,∞
Lq(R,Lr)‖ ∼= sup

µ>0
µs‖4µf‖Lq(R,Lr).

2.2 Strichartz estimates

We introduce the so-called admissible and generalized admissible triplets needed in
this paper.

Definition 2.2 The triplet (q, r, p) is said to be admissible if

1
q

=
n

2
(
1
p
− 1

r
),

where

1 < p ≤ r <





np

n− 2
, n > 2,

∞, n ≤ 2.
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Definition 2.3 The triplet (q, r, p) is called as a generalized admissible triplet with
respect to the heat operator if

1
q

=
n

2
(
1
p
− 1

r
),

where

1 < p ≤ r <





np

n− 2p
, n > 2p,

∞, n ≤ 2p.

Remark 2.2 (i) It is easy to see that if (q, r, p) is an admissible or a generalized
admissible triplet, then q is uniquely determined by r and p so we may write
q = q(r, p).

(ii) Clearly, r < q ≤ ∞ if (q, r, p) is an admissible triplet, and 1 < q ≤ ∞ if (q, r, p) is
a generalized admissible triplet.

Let B be a Banach space and let, for some T > 0, I = [0, T ) and İ = (0, T ). For
σ > 0 define Cσ(I;B) and its homogeneous space Ċσ(I;B) by

Cσ(I;B) := {f ∈ C(İ;B) | ‖f ; Cσ(I;B)‖ = sup
t∈I

t
1
σ ‖f‖B < ∞},

Ċσ(I;B) := {f ∈ Cσ(I;B) | lim
t→0+

t
1
σ ‖f‖B = 0}.

Define also C∗(I;B) := {v ∈ L∞(I;B) | v is continuous in the distributional sense }.
Then it is easy to see that:

(i) f ∈ Cσ(I;Lr) if and only if t
1
σ f ∈ Cb(I;Lr);

(ii) if (q, r, p) is a generalized admissible triplet, then

Cq(r,p)(I;Lr) = {f ∈ C(İ;Lr) | ‖f‖Cq(r,p)(I;Lr) = sup
t∈I

t
1
q ‖f‖r < ∞},

Ċq(r,p)(I;Lr) = {f ∈ Cq(r,p)(I;Lr) | lim
t→0+

t
1
q ‖f‖r = 0};

in particular, Cq(r,p)(I;Lr) = Cb(I;Lp) if r = p.

(iii) v ∈ C∗(I;B) means that v is a bounded flow in B.

It is well-known that the heat semigroup

H(t) = e4t = F−1(e−|ξ|
2t)F· = G(t, ·)∗

generates an analytic semigroup in Lp with 1 < p < ∞, where

G(t, x) = (4πt)−n/2 exp
(
−|x|

2

4t

)
, t > 0, x ∈ Rn
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is the fundamental solution of the heat operator ∂t −∆ in R+ × Rn. By Hörmander–
Mihlin multiplier theory and regularity estimates of the heat semigroup (see e.g. [17,
26]), one easily sees that for t > 0

‖H(t)ϕ‖r ≤ C|t|−n
2
( 1

p
− 1

r
)‖ϕ‖p, 1 ≤ p ≤ r ≤ ∞, (2.15)

‖(−4)
d
2 H(t)ϕ‖r ≤ Ct

− d
2
−n

2
( 1

p
− 1

r
)‖ϕ‖p, d ≥ 0, 1 ≤ p ≤ r ≤ ∞, p 6= ∞, (2.16)

‖H(t)ϕ‖Ḣs+θ,r ≤ Ct−
θ
2 ‖ϕ‖Ḣs,r , 1 < r < ∞, θ ≥ 0, (2.17)

‖H(t)ϕ‖Hs+θ,r ≤ C(T )t−
θ
2 ‖ϕ‖Hs,r , t ∈ (0, T ), 1 < r < ∞, θ ≥ 0. (2.18)

By making use of (2.15)-(2.18) and Marcinkiewicz’s interpolation theorem [26] one can
easily obtain the following space-time estimates (Strichartz estimates).

Proposition 2.2 Let I = [0,∞) or I = [0, T ) with T > 0.

(ii) Let (q, r, p) be any generalized admissible triplet and let ϕ ∈ Lp. Then H(·)ϕ ∈
Cq(r,p)(I;Lr) ∩ Cb(I;Lp) and

‖H(·)ϕ‖Cq(r,p)(I;Lr) ≤ C‖ϕ‖p, (2.19)

where C is constant independent of ϕ and T. Moreover, if r > p, then H(·)ϕ ∈
Ċq(r,p)(I;Lr), that is

lim
t→0

t
1

q(r,p) ‖H(t)ϕ‖r = 0,
1
q

=
n

2
(
1
p
− 1

r
). (2.20)

(ii) Let r ≥ p ≥ p0 := nα/2 > 1 and let (q, r, p0) be a generalized admissible triplet.

Then for ϕ ∈ Ḃ
n
p
− 2

α
p,∞ we have H(·)ϕ ∈ Cq(r,p0)(I;Lr) ∩ Cb(I; Ḃ

n
p
− 2

α
p,∞ ) and

‖H(·)ϕ‖Cq(r,p0)(I;Lr) ≤ C‖ϕ; Ḃ
n
p
− 2

α
p,∞ ‖, (2.21)

‖H(·)ϕ‖
C∗(I;Ḃ

n
p− 2

α
p,∞ )

≤ C‖ϕ; Ḃ
n
p
− 2

α
p,∞ ‖, (2.22)

where C is constant independent of ϕ and T.

Proof For the proof of (i) one can see [31, 32, 17]. The estimate (2.22) is obvious.
So we only prove (2.21).

sup
t∈I

t
1

q(r,p0) ‖H(t)ϕ‖r . sup
t∈I

t
1

q(r,p0)

(
t

2

)−n
2
( 1

p
− 1

r
)

‖H(
t

2
)ϕ‖p

. sup
t∈I

(t/2)
1
2
(n

p
− n

p0
)‖H(

t

2
)ϕ‖p

. sup
t∈R+

t
1
2
(n

p
− 2

α
)‖H(t)ϕ‖p = C‖ϕ; Ḃ

n
p
− 2

α
p,∞ ‖,

which implies (2.22). The proof is thus completed.
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Remark 2.3 (i) The estimate (2.19) easily follows from (2.16) and the defini-
tion of Cq(p,r)(I;Lr). The limit (2.20) can be easily shown by using the Banach-
Steinhaus theorem together with the fact that Lp is a separable Banach space
(see [12] for details).

(ii) If (q, r, p) is a generalized admissible triplet, then H(·)ϕ 6∈ Lq(I;Lr) since the
condition q > p is needed to use Marcinkiewicz’s interpolation theorem.

3. Self-similar Solutions

In this section we shall study the self-similar solutions for the semi-linear heat and
convection-diffusion equations. We first consider the heat equation (1.1).

Proposition 3.1 Let f ∈ Ḃsα
p,∞ satisfy (1.3) and let (q, r, p) be any admissible

triplet with r > p and sα =
n

p
− 2

α
. Then the self-similar solution u of (1.1) satisfies

that

u(t, x) = t−
1
α U(

x√
t
) ∈ Lq(R; Ḃsα

r,∞) = Ḃsα,∞
Lq

t Lr
x

if and only if its profile U ∈ Ḃsα
q,r.

Proof By using Fourier transforms one easily verifies that

4µu ∼=
∫

Rn

eix·ξψ̂µ(ξ)û(ξ, t)dξ ∼= t−
1
α

∫

Rn

eix·ξψ̂µ(ξ)Û(
x√
t
)(ξ)dξ

∼= t−
1
α

∫

Rn

eix·ξψ̂µ(ξ)Û(
√

tξ)d
√

tξ

∼= t−
1
α

∫

Rn

e
i x√

t
·√tξ

ψ̂√tµ(
√

tξ)Û(
√

tξ)d
√

tξ

∼= t−
1
α

∫

Rn

e
i x√

t
·ξ
ψ̂√tµ(ξ)Û(ξ)dξ

= t−
1
α (4√

tµU)(
x√
t
)

‖4µu‖Lq
t Lr

x
=

( ∫ ∞

0

(√
t
− 2

α ‖(4√
tµU)(

x√
t
)‖r

)q

dt

) 1
q

=
( ∫ ∞

0

(√
t

n
r
− 2

α ‖4√
tµU‖r

)q

dt

) 1
q

= µ
2
α
−n

r
− 2

q

( ∫ ∞

0

(
(
√

tµ)
n
r
− 2

α ‖4√
tµU‖r

)q

d(tµ2)
) 1

q

= 2
1
q µ

2
α
−n

r
− 2

q

( ∫ ∞

0

(
η

n
r
− 2

α ‖4ηU‖r

)q

ηdη

) 1
q

= 2
1
q µ

2
α
−n

r
− 2

q

( ∫ ∞

0

(
η

n
r
− 2

α
+ 2

q ‖4ηU‖r

)q dη

η

) 1
q

.
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Since for any admissible pair with r > p we have

sα =
n

p
− 2

α
=

n

r
+

2
q
− 2

α
,

then by the equivalent norm (2.13) of Besov spaces it follows that

sup
µ>0

µsα‖4µu‖Lq
t Lr

x
= 2

1
q sup

µ>0
µ

2
α
−n

r
− 2

q
+sα

( ∫ ∞

0

(
η

n
r
− 2

α
+ 2

q ‖4ηU‖r

)q dη

η

) 1
q

= 2
1
q

( ∫ ∞

0

(
ηsα‖4ηU‖r

)q dη

η

) 1
q ∼= ‖U‖Ḃsα

r,q
.

Proposition 3.2 Assume that f ∈ Ḃ
n
p
− 2

α
p,∞ satisfies (1.3). Let r ≥ p ≥ p0 =

nα

2
> 1

and let (q, r, p0) be any generalized admissible triplet. Assume that the self-similar
solution u of (1.1) satisfies that

u(t, x) = t−
1
α U(

x√
t
) = U√t(x) ∈ C∗([0,∞); Ḃ

n
p
− 2

α
p,∞ ) ∩ Cq(r,p0)(R+;Lr).

Then its profile U(x) satisfies that

‖u;C∗(R+; Ḃ
n
p
− 2

α
p,∞ )‖ ∼= ‖H(1)U‖p, (3.1)

‖u; Cq(r,p0)(R+;Lr)‖ ∼= ‖U‖r. (3.2)

Proof It is easy to verify that

‖u;C∗(R+, Ḃ
n
p
− 2

α
p,∞ )‖ = sup

t∈R+

t
− 1

2
(n

p
− 2

α
)‖H(t)U√t‖p

= sup
t∈R+

t
− 1

2
(n

p
− 2

α
)
t−

1
α ‖(H(1)U)(

x√
t
)‖p

= sup
t∈R+

t
− 1

2
(n

p
− 2

α
)− 1

α
+n

p ‖H(1)U‖p

= ‖H(1)U‖p,

‖u; Cq(r,p0)(R+, Lr)‖ = sup
t∈R+

t
1
q ‖U√t‖r = sup

t∈R+

√
t

2
q
− 2

α
−n

r ‖U(x)‖r = ‖U‖r.

The proof is completed.

Proposition 3.3 (i) Let f ∈ Lp. Then ‖40f‖p ≤ C‖H(1)f‖p.

(ii) Let f ∈ Ḃ
n
p
− 2

α
p,∞ satisfy (1.3) and let 40f ∈ L1 ∩ Lp. Then H(1)f ∈ Lp and

‖f ; Ḃ
n
p
− 2

α
p,∞ ‖ := ‖H(1)f‖p . ‖40f‖1 + ‖40f‖p.
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Proof One easily sees that for any initial data f satisfying (1.3),

‖H(t)f ;C∗(R+, Ḃ
n
p
− 2

α
p,∞ )‖ = ‖H(t)fλ;C∗(R+, Ḃ

n
p
− 2

α
p,∞ )‖

≤ sup
t∈R+

t
− 1

2
(n

p
− 2

α
)‖H(t)(H(1)f)√t‖p

≤ sup
t∈R+

t
− 1

2
(n

p
− 2

α
)
t−

1
α ‖H(1)(H(1)f)(

x√
t
)‖p

≤ ‖H(1)f‖p.

In particular, we have

‖f ;C∗(R+, Ḃ
n
p
− 2

α
p,∞ )‖ = sup

t∈R+

t
− 1

2
(n

p
− 2

α
)
t−

1
α ‖H(1)f(

x√
t
)‖p = ‖H(1)f‖p.

We now establish the relationship between ‖H(1)f‖p and ‖40f‖p for 1 < p < ∞.
First let ĥ(ξ) = ĥ(|ξ|) ∈ C∞

c satisfy that ĥ(ξ) = 1 for 2−1 < |ξ| < 2 and supp (ĥ) ⊂
{ξ | 2−2 ≤ |ξ| ≤ 22}. Then one easily sees that

‖40f‖p = ‖F−1(ψ̂(ξ)f̂(ξ))‖p = ‖F−1(ψ̂(ξ)h(ξ)f̂(ξ))‖p

≤ ‖F−1(e|ξ|
2
h(ξ)ψ̂(ξ)) ∗ F−1(e−|ξ|

2
f̂(ξ))‖p

≤ ‖F−1(e|ξ|
2
h(ξ)ψ̂(ξ))‖1‖F−1(e−|ξ|

2
f̂(ξ))‖p

. ‖H(1)f‖p.

Next decompose F = H(1)f as follows:

H(1)f = H(1)((1− ϕ0) ∗ f) + H(1)ϕ0 ∗ f

= F−1(e−|ξ|
2
(1− ϕ̂0)f̂) + F−1(e−|ξ|

2
ϕ̂0f̂)

4
== F1 + F2.

One easily verifies from the definition of ϕ̂0 (see (2.6)) that

supp (F̂1) ⊂ {ξ | |ξ| ≥ 1}, 4j(F1) = 0, j ≤ −1,

supp (F̂2) ⊂ {ξ | |ξ| ≤ 2}, 4j(F2) = 0, j ≥ 2.

Since f satisfies the scaling condition (1.3), it follows that

4j(f) = F−1(ψ̂0(
ξ

2j
)f̂) ∼=

∫

Rn

ei2jx·ξψ̂0(ξ)2jnf̂(2jξ)dξ

∼=
∫

Rn

ei2jx·ξψ̂0(ξ)f̂(
x

2j
)(ξ)dξ

∼=
∫

Rn

ei2jx·ξψ̂0(ξ)2j 2
α f̂(ξ)dξ

∼= 2j 2
α40(f)(2jx). (3.3)
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Noting that for ˆ̃
ψj =

2∑

`=−2

ψ̂j+` and ˆ̃ϕ(ξ) = e−|ξ|
2
ϕ̂(ξ),

4j(F2) = F−1
(
ψ̂j(ξ)F̂2

)
= F−1

(
ψ̂j(ξ)

ˆ̃
ψj(ξ)F̂2

)

= F−1
(
ψ̂j(ξ)

ˆ̃
ψj(ξ)ϕ̂(ξ)f̂ e−|ξ|

2
)

= 4j(f) ∗ 4̃j(ϕ̃),

we obtain that

‖4jF2‖p . ‖4̃j(ϕ̃)‖1‖4j(f)‖p . 2j( 2
α
−n

p
)‖40f‖p, j ≤ 1,

where use has been made of the fact that ‖4̃j(ϕ̃)‖1 ≤ C‖ϕ̃‖1. Now letting f1 = (1−ϕ̂)f̂
and using (3.3) and the regularity of the analytic semi-group H(t) we have for j ≥ 0,

‖4j(F1)‖p = ‖H(1)4j(f1)‖p . ‖4j(f1)‖1 . ‖4j(f)‖1 . 2( 2
α
−n)j‖40f‖1.

This implies the proposition and completes the proof.

Theorem 3.1 Let r ≥ p > p0 =
nα

2
> 1 and let (q, r, p0) be any generalized

admissible triplet satisfying that

max(p0, 1 + α) < r < p0(1 + α). (3.4)

Let f ∈ Ḃ
n
p
− 2

α
p,∞ satisfy (1.3). Then there exist η, β > 0 depending on p such that if

‖f‖
Ḃ

n
p− 2

α
p,∞

< η, then the problem (1.1) has a unique self-similar solution

u ∈ C∗

(
[0,∞); Ḃ

n
p
− 2

α
p,∞

)
∩ Cq(r,p0)([0,∞);Lr)

with

u(t, x) = H(t)f(x) + w(t, x) = H(t)f(x) + t−
1
α W

(
x√
t

)
= t−

1
α U

(
x√
t

)
, (3.5)

where
∥∥w(t, x);L∞(R+;Lp0)

∥∥ < ∞, (3.6)

sup
t>0

t
1

q(r,p0) ‖u(t, ·)‖r < β. (3.7)

Moreover,

U(·) = H(1)f(·) + W (·) ∈ Lr. (3.8)
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Proof From the equivalent norm of Besov spaces and Proposition 2.2, we obtain
that for any generalized admissible triplet (q, r, p0),

‖H(t)f ; Cq(r,p0)(R+;Lr)‖+ ‖H(t)f ;C∗(R+; Ḃ
n
p
− 2

α
p,∞ )‖ ≤ C‖f ; Ḃ

n
p
− 2

α
p,∞ )‖, (3.9)

where C > 0 is a constant independent of ϕ and (q, r, p0).
Denote by Λ the set of all generalized admissible triplets (q, r, p0) satisfying (3.4),

and define

X := {u ∈ C∗(R+; Ḃ
n
p
− 2

α
p,∞ )) ∩ Cq(r,p0)(R+;Lr), (q, r, p0) ∈ Λ}

with the norm

‖u;X‖ := sup
(q,r,p0)∈Λ

sup
t∈R+

t
1
q ‖u‖r + sup

t∈R+

‖u; Ḃ
n
p
− 2

α
p,∞ ‖.

Let us introduce the complete metric space

X = {u ∈ X | ‖u;X‖ ≤ M}
with the metric d(u, v) = ‖u− v;X‖, where M is a positive constant to be determined
later, and consider, in the metric space X , the operator T defined by

T u := H(t)f +
∫ t

0
H(t− τ)F (u(τ, ·))dτ = H(t)f + GF (u), u ∈ X , (3.10)

where F (u) = µuα+1. It can be shown that T is a contractive mapping from X into
itself. In fact, from the Lp–Lr estimates (2.15)–(2.18) of the heat semi-group H(t) it
follows that for any (q, r, p0) ∈ Λ and u ∈ X ,

‖GF (u); Cq(r,p0)(R+;Lr)‖ ≤ sup
t∈R+

t
1
q

∫ t

0
|t− τ |−n

2
( 1+α

r
− 1

r
)‖u‖α+1

r dτ

≤
∫ 1

0
|1− τ |−nα

2r τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C‖u; Cq(r,p0)(R+;Lr)‖α+1, (3.11)

where use has been made of the fact that nα/(2r) < 1 and q > 1 + α. Further, noting

that Lp0 ⊂ Ḃ
n
p
− 2

α
p,∞ ) we obtain again from (2.15)–(2.18) that for any (q, r, p0) ∈ Λ and

u ∈ X ,

‖GF (u);C∗(R+; Ḃ
n
p
− 2

α
p,∞ )‖ ≤ C‖GF (u);C∗(R+;Lp0)‖

≤ sup
t∈R+

∫ t

0
|t− τ |−

n
2
( 1+α

r
− 1

p0
)‖u‖α+1

r dτ

≤ C sup
t∈R+

∫ t

0
|t− τ |−

n
2
(α+1

r
− 1

p0
)
τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C

∫ 1

0
|1− τ |−

n
2
(α+1

r
− 1

p0
)
τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C‖u; Cq(r,p0)(R+;Lr)‖α+1. (3.12)
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Combining (3.9), (3.11) with (3.12) yields that for u ∈ X ,

‖T u;X‖ ≤ C‖f ; Ḃ
n
p
− 2

α
p,∞ ‖+ 2C‖u; Cq(r,p0)(I;Lr)‖α+1. (3.13)

Similarly, it can be derived that for u, v ∈ X

d(T u, T v) ≤ C[‖u; Cq(r,p0)(R+;Lr)‖α + ‖v; Cq(r,p0)(R+;Lr)‖α]d(u, v). (3.14)

Let M = 2C‖f ; Ḃ
n
p
− 2

α
p,∞ ‖. Then it is easy to see from (3.13)-(3.14) that there exist η > 0

and β > 0 such that if ‖f‖
Ḃ

n
p− 2

α
p,∞

< η, then T is a contractive mapping from X into

itself so, by the Banach contraction mapping principle, the problem (1.1) has a unique
solution u ∈ X satisfying (3.7). The results (3.5)-(3.8) follow from Propositions 2.2,
3.2 and 3.3. The theorem is thus proved.

Now consider the Cauchy problem for the convection-diffusion equation (1.2). we
have the following result.

Theorem 3.2 Let r ≥ p > p0 = nα > 1 and let (q, r, p0) be any generalized
admissible triplet satisfying that

max(p0, 1 + α) < r ≤ p0(1 + α). (3.15)

Let f ∈ Ḃ
n
p
− 1

α
p,∞ satisfy (1.3). Then there exist η, β > 0 depending on p such that if

‖f‖
Ḃ

n
p− 1

α
p,∞

< η, then the problem (1.2) has a unique self-similar solution

u ∈ C∗

(
R+; Ḃ

n
p
− 1

α
p,∞

)
∩ Cq(r,p0)

(
R+;Lr

)

with

u(t, x) = H(t)f(x) + w(t, x) = H(t)f(x) + t−
1
α W

(
x√
t

)
= t−

1
α U

(
x√
t

)
, (3.16)

where

∥∥w(t, x);L∞(R+;Lp0)
∥∥ < ∞, (3.17)

sup
t>0

t
1

q(r,p0) ‖u(t, ·)‖r < β. (3.18)

Moreover,

U(·) = H(1)f(·) + W (·) ∈ Lr. (3.19)
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Proof In view of the equivalent norm of Besov spaces and Proposition 2.2, it can
be seen that for any generalized admissible triplet (q, r, p0),

‖H(t)f ; Cq(r,p0)(R+;Lr)‖+ ‖H(t)f ;C∗(R+; Ḃ
n
p
− 1

α
p,∞ )‖ ≤ C‖f ; Ḃ

n
p
− 1

α
p,∞ )‖, (3.20)

where C > 0 is a constant independent of ϕ and (q, r, p0).
Denote by Λ∗ the set of all generalized admissible triplets (q, r, p0) satisfying (3.15).

Define

Y := {u ∈ C∗(R+; Ḃ
n
p
− 1

α
p,∞ )) ∩ Cq(r,p0)(R+;Lr), (q, r, p0) ∈ Λ∗}

with the norm

‖u;Y ‖ := sup
(q,r,p0)∈Λ∗

sup
t∈R+

t
1
q ‖u‖r + sup

t∈R+

‖u; Ḃ
n
p
− 1

α
p,∞ ‖.

Now introduce the complete metric space

Y := {u ∈ Y | ‖u;Y ‖ ≤ M}
with the metric d(u, v) = ‖u − v;Y ‖, u, v ∈ Y, where M > 0 is a constant to be
determined later, and consider, in the metric space Y, the operator T defined by (3.10)
with

F (u) = ~a · ∇(|u|αu).

We now prove that T is a contractive mapping from Y into itself. First, the Lp–Lr

estimates (2.15)–(2.18) of the heat semi-group H(t) imply that for any (q, r, p0) ∈ Λ∗

and u ∈ Y,

‖GF (u); Cq(r,p0)(R+;Lr)‖ ≤ sup
t∈R+

t
1
q

∫ t

0
|t− τ |− 1

2
−nα

2r ‖u‖α+1
r dτ

≤
∫ 1

0
|1− τ |−( 1

2
+nα

2r
)τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C‖u; Cq(r,p0)(R+;Lr)‖α+1, (3.21)

where use has been made of the fact that 1/2 + nα/(2r) < 1 and q > 1 + α. Next,

from the estimates (2.15)-(2.18) again, and since Lp0 ⊂ Ḃ
n
p
− 1

α
p,∞ , it follows that for any

(q, r, p0) ∈ Λ∗ and u ∈ Y,

‖GF (u);C∗(R+; Ḃ
n
p
− 1

α
p,∞ )‖ ≤ C‖GF (u);C∗(R+;Lp0)‖

≤ sup
t∈R+

∫ t

0
|t− τ |−

1
2
−n

2
( 1+α

r
− 1

p0
)‖u‖α+1

r dτ

≤ C sup
t∈R+

∫ t

0
|t− τ |−

1
2
−n

2
(α+1

r
− 1

p0
)
τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C

∫ 1

0
|1− τ |−

1
2
−n

2
(α+1

r
− 1

p0
)
τ
−α+1

q dτ‖u; Cq(r,p0)(R+;Lr)‖α+1

≤ C‖u; Cq(r,p0)(R+;Lr)‖α+1. (3.22)
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From (3.20)-(3.22) it follows that

‖T u;Y ‖ ≤C‖f ; Ḃ
n
p
− 1

α
p,∞ ‖+ 2C‖u; Cq(r,p0)(R+;Lr)‖α+1, u ∈ Y, (3.23)

d(T u, T v) ≤C[‖u; Cq(r,p0)(R+;Lr)‖α + ‖u; Cq(r,p0)(R+;Lr)‖α]d(u, v), u, v ∈ Y. (3.24)

Let M = 2C‖f ; Ḃ
n
p
− 1

α
p,∞ ‖. Then (3.23) and (3.24) imply that there exist η > 0 and β > 0

such that if ‖f‖
Ḃ

n
p− 1

α
p,∞

< η, then T is a contractive mapping from Y into itself so, by the

Banach contraction mapping principle, the problem (1.2) has a unique solution u ∈ Y
satisfying (3.18). The results (3.16)-(3.19) follow from Propositions 2.2, 3.2 and 3.3.
The proof is thus completed.

The following corollary means that Theorems 3.1 and 3.2 remain true without the
restrictions (3.4) and (3.15) on r, α and p0.

Corollary 3.1 (i) Let r ≥ p > p0 = nα/2 > 1 and let (q, r, p0) be any generalized

admissible triplet. Assume that f ∈ Ḃ
n
p
− 2

α
p,∞ satisfies (1.3). Then there exist η, β > 0

depending on p such that if ‖f‖
Ḃ

n
p− 2

α
p,∞

< η, then the problem (1.1) has a unique self-

similar solution

u ∈ C∗(R+; Ḃ
n
p
− 2

α
p,∞ ) ∩ Cq(r,p0)(R+;Lr)

satisfying (3.5)− (3.8).
(ii) Let α ≥ 1, r ≥ p > p0 = nα > 1 and let (q, r, p0) be any generalized admissible

triplet. Let f ∈ Ḃ
n
p
− 1

α
p,∞ satisfy (1.3). Then there exist η, β > 0 depending on p such

that if ‖f‖
Ḃ

n
p− 1

α
p,∞

< η, then the problem (1.2) has a unique self-similar solution

u ∈ C∗(R+; Ḃ
n
p
− 1

α
p,∞ ) ∩ Cq(r,p0)(R+;Lr)

satisfying (3.16)− (3.19).

Proof It is enough to prove that for any generalized admissible triplet (q, r, p0),
the solution u, obtained in Theorem 3.1 in the case when (q, r, p0) ∈ Λ (for (i)) or in
Theorem 3.2 in the case when (q, r, p0) ∈ Λ∗ (for (ii)), satisfies that u ∈ Cq(r,p0)(R+;Lr).

Consider first the case r ≤ 1 + α. By interpolation between C∗(R+;Lp0) and
any space Cq̃(r̃,p0)(R+;Lr̃) with (q̃, r̃, p0) ∈ Λ (or with (q̃, r̃, p0) ∈ Λ∗), we have u ∈
Cq(r,p0)(R+;Lr).

Consider now the case r ≥ p0(α + 1) (for (i)) or the case r > p0(α + 1) (for (ii)).
Let r̃ = p0(1 + α)− ε, with ε > 0 being chosen so small that

n

2

(
α + 1

r̃
− 1

r

)
< 1 (3.25)
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in the case of (i) or

1
2

+
n

2

(
α + 1

r̃
− 1

r

)
< 1 (3.26)

in the case of (ii). Note that (3.25) is guaranteed by the fact that r < np0/(n− 2p0) if
n > 2p0 and r < ∞ if n ≤ 2p0 in the case of (i), whilst (3.26) is true since p0 = nα ≥ n

and r < ∞ in the case of (ii). Let

1
q̃

=
n

2
(

1
p0
− 1

r̃
).

Then (q̃, r̃, p0) ∈ Λ, Λ∗ and q̃ > 1 + α. A direct calculation yields that

‖GF (u)‖Cq(r,p0)(R+;Lr) ≤ sup
t∈R+

t
1
q

∫ t

0
|t− τ |−n

2
(α+1

r̃
− 1

r
)‖u‖α+1

r̃ dτ

≤
∫ 1

0
|1− τ |−n

2
(α+1

r̃
− 1

r
)τ
− 1+α

q̃ dτ · ‖u; Cq̃(r̃,p0)(R+;Lr̃)‖α+1

≤ C‖u; Cq̃(r̃,p0)(R+;Lr̃)‖α+1,

where use has been made of (3.25) in the case of (i). For (ii) we have similarly as above
that

‖GF (u)‖Cq(r,p0)(R+;Lr) ≤ sup
t∈R+

t
1
q

∫ t

0
|t− τ |− 1

2
−n

2
(α+1

r̃
− 1

r
)‖u‖α+1

r̃ dτ

≤
∫ 1

0
|1− τ |− 1

2
−n

2
(α+1

r̃
− 1

r
)τ
− 1+α

q̃ dτ · ‖u; Cq̃(r̃,p0)(R+;Lr̃)‖α+1

≤ C‖u; Cq̃(r̃,p0)(R+;Lr̃)‖α+1,

where use has been made of (3.26). These estimates together with (3.9) and (3.10)
imply that u ∈ Cq(r,p0)(R+;Lr). The proof is thus complete.

Remark 3.1 (i) Denote by Σn−1 the unit sphere in Rn. Let Ω ∈ Ck(Σn−1) with
k > 0 and define

f(x) =
Ω(x′)
|x|d , x′ =

x

|x| , 0 < d < n.

Then Lemma 4 in [10] assures that

|40(f)(x)| ≤ C‖Ω‖Ck(1 + |x|)−k−d.

Thus, we only need to choose k with k ≥ n so that f ∈ Ḃ
n
p
− 2

α
p,∞ .

(ii) Theorems 3.1 and 3.2 and Corollary 3.1 generalize the previously known results
for the semilinear heat equation and for the Navier-Stokes equations:

∂tu + Au = P∇(u⊗ u), A = −P4, u(0, x) = f(x) ∈ Ep,
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where P denotes the orthogonal projection of the vector space [Lp]n into the subspace of
the divergence-free vector space Ep := {u ∈ [Lp]n | divu = 0}. In particular, the profile
U here belongs to the function spaces of a wider class compared with the previous
results. See [20, 6] for details.

(iii) Similar results in Theorems 3.1 and 3.2 and Corollary 3.1 remain valid if Ḃ
n
p
− 2

α
p,∞

(or Ḃ
n
p
− 1

α
p,∞ ) is replaced by the Lorentz space Lp0,∞ with p0 = nα/2 > 1 (or p0 = nα > 1).

(iv) Our method can be used to study self-similar solutions for other semi-linear
evolution equations such as the complex Ginzburg-Landau equation:

∂tu = (a + ib)4u + f(u), a > 0, b ∈ R,

the Burgers viscous equation:

∂tu− ∂2
xu = µ∂x(|u|α+1), µ ∈ R,

and the more general semi-linear parabolic equation:

ut −∆u = Q(D)f(u), (t, x) ∈ R+ × Rn, u(0, x) = ϕ(x), x ∈ Rn,

where Q(D) is a homogeneous pseudo-differential operator of order d ∈ [0, 2) and f(u)
is a nonlinear function which behaves like |u|αu with α > 0.

(v) Under suitable conditions, the global solution u(t, x) to the semilinear evolution
equation converges to a self-similar solution (see [20] for details).

Remark 3.2 In the study of the self-similar solutions of nonlinear Schrödinger
and wave equations, the Schrödinger-type semigroup S(t) = ei4t does not provide an
equivalent norm for the Besov space Ḃσ

p,∞. This is different from the study of the
self-similar solutions of parabolic equations where the heat semigroup H(t) = et4 does
provide an equivalent norm for the Besov space Ḃσ

p,∞ which was used in [5, 33, 20,
6]. However, to study self-similar solutions for the Schrödinger and wave equations,
Cazenave and Weissler [8] introduced the new function space

Eσ,p :=
{

f ∈ S(Rn) | sup
t

t
1
σ ‖S(t)f‖p < ∞,

σ =
2(α− 1)p

2p− n(α− 1)
, 2 < p < 2∗ =

2n

n− 2

}

(see also [10]). Recently in [30, 2, 9] the self-similar solutions have been studied for the
Schrödinger equations in the space C∗(R; Ḃsc

2,∞).
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Appendix: Proof of Proposition (2.1)

From the definition of ψ̂j and ψ̂µ it is easy to see that

supp(ψ̂j−1(ξ)) ⊂ {2j−2 ≤ |ξ| ≤ 2j},
supp(ψ̂j+2(ξ)) ⊂ {2j+1 ≤ |ξ| ≤ 2j+3},

supp(4̂µf) = supp(ψ̂µ(ξ)f̂) = supp(ψ̂0(
ξ

µ
)f̂) ⊂ {2j−1 ≤ |ξ| ≤ 2j+2}

for µ ∈ (2j , 2j+1). Thus it follows that

4µf =
∑

j∈Z
4j4µf =

j+2∑

k=j−1

4k4µf, µ ∈ (2j , 2j+1),

‖4µf‖p .
j+2∑

k=j−1

‖4kf‖p, µ ∈ (2j , 2j+1),

where use has been made of the fact that ψk(x) = 2kψ0(2kx) and ‖ψk‖1 = ‖ψ0‖1 < 1.

Further, it can be easily derived that

(∫ ∞

0
(µs‖4µf‖p)

q dµ

µ

) 1
q

=
( ∑

j∈Z

∫ 2j+1

2j

(
µs‖4µf‖p

)q dµ

µ

) 1
q

.
( ∑

j∈Z

∫ 2j+1

2j

(
µs

j+2∑

k=j−1

‖4kf‖p

)q dµ

µ

) 1
q

.
( ∑

j∈Z

j+2∑

k=j−1

∫ 2j+1

2j

(
µs‖4kf‖p

)q dµ

µ

) 1
q

.
( ∑

j∈Z

j+2∑

k=j−1

∫ 2j+1

2j

(
2(j+1)s‖4kf‖p

)q dµ

µ

) 1
q

.
( ∑

j∈Z

j+2∑

k=j−1

(
2(j+1)s‖4kf‖p

)q) 1
q

.
( ∑

j∈Z

(
2js‖4jf‖p

)q) 1
q ∼= ‖f‖Ḃs

p,q
,

where . denotes the presence of a constant.
On the other hand, since ψ̂0(ξ) = ψ̂0(|ξ|) and

∫

Rn

ψ̂0(ξ)
|ξ|n dξ =

∫

Σn

∫ ∞

0

ψ̂0(r)
rn

rn−1drdσ < ∞,
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where Σn is the unit sphere in Rn, it then follows that
∫ ∞

0

ψ̂0(r)
r

dr = C < ∞.

Thus a simple computation gives that for ξ 6= 0,

∫ ∞

0

ψ̂µ(ξ)
µ

dµ =
∫ ∞

0

ψ̂0(
|ξ|
µ )

µ
dµ =

∫ ∞

0

ψ̂0(r)
r

dr = C < ∞,

so

f̂(ξ) =
1
C

∫ ∞

0
ψ̂µ(ξ)f̂(ξ)

dµ

µ
,

ψ̂j f̂(ξ) =
1
C

∫ ∞

0
ψ̂j(ξ)ψ̂µ(ξ)f̂(ξ)

dµ

µ
.

The last equation implies that

4j(ξ)f(x) =
1
C

∫ ∞

0
4j4µf

dµ

µ
.

Noting that supp(ψ̂j) ⊂ (2j−1, 2j+1), we obtain that

‖4jf(x)‖p .
∫ ∞

0
‖4j4µf‖p

dµ

µ
.

∫ 2j+2

2j−2

‖4j4µf‖p
dµ

µ

.
( ∫ 2j+2

2j−2

‖4jf‖q
p

dµ

µ

) 1
q
( ∫ 2j+2

2j−2

dµ

µ

) 1
q′

.
( ∫ 2j+2

2j−2

‖4jf‖q
p

dµ

µ

) 1
q

( ∑

j∈Z
2js‖4jf‖q

p

) 1
q

≤
( ∑

j∈Z

∫ 2j+2

2j−2

2jsq‖4jf‖q
p

dµ

µ

) 1
q

.
( ∑

j∈Z

∫ 2j+2

2j−2

µqs‖4jf‖q
p

dµ

µ

) 1
q

.
( ∑

j∈Z

( ∫ 2j−1

2j−2

+
∫ 2j

2j−1

+
∫ 2j+1

2j

+
∫ 2j+2

2j+1

)
µqs‖4jf‖q

p

dµ

µ

) 1
q

.
( ∑

j∈Z

∫ 2j+1

2j

µqs‖4jf‖q
p

dµ

µ

) 1
q

∼=
( ∫ ∞

0

(
µs‖4µf‖p

)q dµ

µ

) 1
q

.

This completes the proof of Proposition 2.1.
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