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Abstract In this paper, we discuss the Landau-Lifshitz equations with applied
magnetic fields. The equations describing the bubbles in the ferromagnets and the
behaviors of the solutions near the singularities are given. We found that the applied
fields do not affect the bubbles and we have the same conclusions as in reference [1].
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1. Introduction

Let M be a two dimensional manifold without boundary. We consider the following
Landau-Lifshitz equation describing the evolution of spin fields in continuum ferromag-
nets with applied magnetic fields:

∂tu = −u× (u×∆u) + u×∆u + u× h(u), (x, t) ∈ M × (0,+∞) (1.1)

with the initial condition
u(x, 0) = u0(x) (1.2)

where |u0(x)| = 1 for x ∈ Ω, u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) is the spin chain vector
and h(u) denotes the applied fields.

Using |u| = 1 and a× (b× c) = (a · c)b− (a · b)c, we know that (1.1) is equivalent to

∂tu = ∆u + u×∆u + |∇u|2u + u× h(u), (x, t) ∈ M × (0,+∞). (1.3)
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and the Natural Science Foundation of Guangdong Province(No.000671, No.031495).
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This equation was first derived on phenomenological grounds by Landau-Lifshitz
[2]. It plays a fundamental role in the understanding of non-equilibrium magnetism.

Let the applied field h(u) satisfy: h(u) ∈ L∞(W 1,∞(M), IR+). Then for any u0 ∈
H1(M, S1), the Cauchy problem (1.1) and (1.2) admits unique solution [3] which is
regular within finite time and develops singular points beginning at some time, t = T

for example, but with at most finitely many points on the plane t = T .
In this note, we want to know what will happen near these points and what is the

local behavior of the solution near its singularities.
For the solutions of harmonic map heat flow, Struwe [4] has shown that for any

u0 ∈ H1(M, N), the solution exists and is unique which is smooth away from at most
finitely many points in M × IR+. Moreover, if the solution u develops a singularity at
(x0, T ), by choosing a suitable sequence ti ↑ T and rescaling u(·, ti) properly near x0,
one can obtain finitely many nonconstant harmonic maps φi (1 ≤ i ≤ L) from IR2 → N

and they can be extended to the harmonic maps from S2 to N referred as bubbles.
Qing [5] proved that if the target manifold N is a sphere, these bubbles are responsible
for the energy loss at the singular times T = ∞. This is the so called energy identity:

lim
ti↑T

∫

Bδ(x0)
|∇u|2(x, ti)dx =

∫

Bδ(x0)
|∇u|2(x, T )dx +

L∑

i=1

∫

IR2
|∇φi|2(x)dx (1.4)

where Bδ(x0) is a small neighborhood of x0, which does not contain any other singular
points of u. Recently Qing’s results have been generated to the flow of harmonic maps
to arbitrary compact target manifold in [6–8] In [7] the energy identity (1.4) has been
proved for any general target manifolds and for any finite singular time T < ∞.

For the ferromagnetic equation without applied fields, [1] proves the similar results
as above. However, in our case, as stated in [3], since we do not know whether the
energy is decreasing with time, we proved in [3] that the singular points the solution
develops at time T may keep singular with time increasing, the exception set of singular
points in M × IR+ may be not a finite set but some lines. So our discussions only apply
to the first time t = T at which the solution first develops singular points. Our studies
show that the bubbles at layer t = T can be described by the same method as in [1].

In this paper, the following notations are used. For a point z0 = (x0, t0), Pr(z0)
denotes the cylinder

Pr(z0) = {(x, t) ∈ IR2 × IR+ : |x− x0| < r, t0 − r2 < t < t0}
and Br(x0) denotes the ball centered at x = x0 with radius r. If z0 = (0, 0) or x0 = 0,
we simply denote Pr = Pr(0) and Br = Br(0). For Q ⊂ IR+ × IR2, Cα,2α(Q) denotes
the Hölder space on Q and

W 1,2
p = {u ∈ Lp(Q) : ut,∇u,∇2u ∈ Lp(Q)}.

The energy of u(x, t) on Ω ⊂ IR2 at the time t is denoted by E(u, Ω)(t) i.e.

E(u, Ω)(t) =
∫

Ω
e(u(x, t))dx (1.5)
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where e(u) = |∇u|2.
2. Some Lemmas

In the following, we always assume M = IR2 and denote E(u,M)(t) by E(u)(t).
Similarly to [1], we may prove the following lemmas.

Lemma 2.1 (Energy Inequality) Let u ∈ C∞(M × (0, T ), S2) be a solution of
(1.1) and (1.2). Then we have

(1) For any t ∈ (0, T )

E(u)(t) +
∫ t

0

∫

M
|ut|2dxdt ≤ E(u)(0) +

∫ t

0

∫

M
(u× h(u) + h(u))ut. (2.1)

(2) For any x0 ∈ M , any 0 < r < R, and any 0 < t1 < t2 < T , there exists a
constant C0 > 0 such that

E(u,Br(x0))(t2) +
∫ t2

t1

∫

Ω
|ut|2dxdt

≤ E(u,Br(x0))(t1) +
C0

(R− r)2

∫ t2

t1

∫

BR(x0)
|∇u|2dxdt

+
∫ t2

t1

∫

BR(x0)
φ2|u× h(u) + h(u)|2, (2.2)

where φ ∈ C∞
0 (BR(x0)) is a cutoff function such that 0 ≤ φ ≤ 1, φ ≡ 1 in Br(x0)

(0 < r < R), φ ≡ 0 outside BR(x0) and |∇φ| ≤ C
R− r .

Lemma 2.2 Let u ∈ C∞(PR, S2) be a solution of (1.3) and (1.2). Then for any
0 < r′ < r < R and for any p > 4, α = 1

2(1− 4
p) there holds

‖∇u‖Cα,2α(Pr) ≤ C
{
(R− r)−2+ 4

p + R
4
p ‖∇u‖2

L∞(PR)

}
(2.3)

‖u‖
W 1,2

p (Pr)
≤ C

{
(R− r)−2+ 4

p + R
4
p ‖∇u‖2

L∞(PR)

}
(2.4)

‖D2u‖L∞(Pr′ ) ≤ C
{
r

4
p ‖∇u‖3

L∞(Pr) + ‖∇u‖L∞(Pr)‖D2u‖Lp(Pr)

+(r − r′)−2+ 4
p (1 + ‖∇u‖L∞) + (r − r′)−1‖D2u‖2

Lp(Pr)

}
(2.5)

where C is independent of r, r′, R.

Lemma 2.3 (Small Energy Regularity) There exist ε0 > 0 and C > 0 such
that for any solution u ∈ C∞(PR(z0), S2) of (1.1) and (1.2), if

sup
t∈[t0−R2,t0]

∫

BR(x0)
|∇u|2(x, t)dx ≤ ε0 (2.6)
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then
‖∇u‖L∞(P R

3
(z0)) ≤ CR−1 (2.7)

‖∇u‖Cα,2αP R
4

(z0) ≤ C(α)R−1−2α, 0 < α < 1/2 (2.8)

and
‖D2u‖L∞P R

5
(z0) ≤ CR−2. (2.9)

3. Bubbles

In this section we shall study the behavior of the solutions of (1.1) near their singu-
larities.

Let u ∈ C∞(M × (0, T ), S2) be a solution of (1.1) with u0 ∈ H1(M, S2) which
develops singularities at t = T (see [3]). By Lemma 2.3 it is easy to see that the
singularities (x, T ) are characterized by

lim
t↑T

sup
∫

BR(x)
|∇u|2(y, t)dydt ≥ ε0, ∀R > 0 (3.1)

where ε0 > 0 is determined by Lemma 2.3.
Let (x1, T ), · · · , (xk, T ) be the singular points at t = T . Choose R > 0 such that

B2R(xi) ∩B2R(xj) = ∅ for i 6= j. Then it follows from the energy inequality (2.2) that

for τ = T − ε0R
2

2C0E(u)(0)

E(u,BR(xi))(t) +
∫ t

τ

∫

BR(xi)
|ut|2dxdt

≤ CR−2
∫ t

τ

∫

B2R(xi)
|∇u|2dxdt + E(u,B2R(xi))(τ)

+
∫ t

τ

∫

B2R(xi)
|u× h(u) + h(u)|2dxdt. (3.2)

Here it follows from (2.1) that

E(u)(τ) =
∫

M
|∇u|2dx

≤ E(u)(0) +
∫ τ

0

∫

M
|u× h(u) + h(u)|2. (3.3)

Therefore

k∑

i=1

E(u,BR(xi))(t) +
k∑

i=1

∫ t

τ

∫

BR(xi)
|ut|2
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≤ CR−2
k∑

i=1

∫ t

τ

∫

B2R(xi)
|∇u|2 +

k∑

i=1

E(u,B2R(xi))(τ).

+
k∑

i=1

∫ t

τ

∫

B2R(xi)
|u× h(u) + h(u)|2. (3.4)

The equation (3.3) and (3.4) yields

kε0 ≤
k∑

i=1

lim
t↑T

sup
∫

BR(xi)∩M
|∇u|2(x, t)dx

≤ C0R
−2 ε0R

2

2C0E(u)(0)

[
kE(u)(0) +

∫ τ

0

∫

M
|h(u)|2

]

+ lim
t↑T

sup
∫ t

τ

∫

M
|h(u)|2dxdt +

k∑

i=1

∫

B2R(xi)
|∇u|2(x, τ)dx. (3.5)

It follows from (3.5) and the continuity of u that

k ≤ C1 (3.6)

where C1 is a finite number (One may compare this result with the one in [3]). Hence
we may choose a number δ > 0 such that Bδ(xi) ∩ Bδ(xj) = ∅ if i 6= j. For simplicity,
we may assume that there is only one singular point, x0, on t = T and consider the
only one ball Bδ(x0).

In this case we have the following theorem describing the bubble which is just the
same as in [1]. In other word, the applied fields do not affect the bubbles.

Theorem 3.1 There exist sequence tm ↑ T , xm → x0, Rm ↓ 0 and a smooth
non-constant harmonic mapping φ : R2 → S2 such that as m →∞.

(1) The rescaling sequence vm(x) = u(Rmx + xm, tm) → φ(x) strongly in H1
loc ∩

C1
loc(R

2, S2). Moreover, φ has finite energy and extends to a harmonic mapping: S2 →
S2, referred as bubble.

(2) The sequence u(·, tm) → u(·, T ) strongly in H1
loc ∩ C1

loc(Bδ(x0) \ {x0}) but not
in H1(Bδ(x0)).

(3) If T = +∞, we have, in addition, that ut(·, tm) → 0 strongly in L2(Bδ(x0)).

Proof It follows from (2.1) that for u0 ∈ H1(M, S2) and 0 < t < T

E(u)(t) +
1
2

∫ t

0

∫

M
|ut|2dxdt ≤ M∗ (3.7)

for some positive constant M∗. Therefore we may choose a sequence τm ↑ T such that

∇u(·, τm) ⇀ ∇u(·, T ), weakly in L2(M).
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If T = +∞, then
ut(·, τm) → 0, strongly in L2(M).

From Lemma 2.3, if

ε0 ≥ sup
[t0−R2,t0]

∫

BR(x0)
|∇u|2dx

then (x0, t0) is a regular point. Now (x0, T ) is a singular point, so we have

ε0 ≤ sup
[T−R2,T ]

∫

BR(x0)
|∇u|2dx.

Take xm → x0, Rm ↓ 0, such that

ε0 = sup
[T−δ2,τm]

sup
x∈Bδ(x0)

∫

BRm (x)
|∇u|2(y, t)dy

=
∫

BRm (xm)
|∇u|2(x, τm)dx. (3.8)

Let C0 be as before and

0 < C2
1 ≤

ε2

4C0M∗

where M∗ is determined by (3.7). For any t ∈ [τm − C2
1R2

m, τm] it follows from the
integral inequality (for r = Rm, R = 2Rm, x0 = xm, t1 = t, t2 = τm) that

ε0 =
∫

BRm (xm)
|∇u|2(x, τm)dx

≤ E(u,B2Rm(xm)(t)) + C0R
−2
m

∫ τm

t

∫

B2Rm (xm)
|∇u|2

+
∫ τm

t

∫

B2Rm (xm)
|h(u)|2. (3.9)

Applying (2.2) (since 0 ≤ τm − t ≤ C2
1R2

m ≤ ε0
4C0E(u)(0)R

2
m), we have

C0R
−2
m

∫ τm

t

∫

B2Rm (xm)
|∇u|2 ≤ C0R

−2
m (τm − t)

∫

M
|∇u|2

≤ C0R
−2
m [E(u)(0) +

∫ τm

0

∫

M
|h(u)|2]

≤ ε0

4
. (3.10)

Hence we have

ε0 =
∫

BRm (xm)
|∇u|2(x, τm)dx

≤ E(u,B2Rm(xm))(t) +
ε0

4
+

∫ τm

t

∫

B2Rm (xm)
|h(u)|2

≤
∫

B2Rm (xm)
|∇u|2 +

ε0

4
+

ε0

4
(3.11)
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under the assumptions on h.
Finally we have ∫

B2Rm (xm)
|∇u|2(x, t)dxdt ≥ ε0

2
. (3.12)

Denote Dm =
{
x ∈ IR2 : Rmx + xm ∈ Bδ(x0)

}
and let wm(x, t) = u(Rmx+xm, R2

mt

+τm), then wm : Dm × [−C2
1 , 0

] → S2 and solves

∂twm = ∆wm + |∇wm|2wm + wm ×∆wm + R2
mwm × h(wm) (3.13)

and as m →∞ ∫ 0

−C2
1

∫

Dm

|∂twm|2 ≤
∫ τm

τm−C2
1R2

m

∫

M
|∂tu|2 → 0. (3.14)

It follows from (3.12) that for all t ∈ [−C2
1 , 0]

∫

B2

|∇wm|2(x, t)dxdt =
∫

B2Rm (xm)
|∇u|2(x,R2

mt + τm)dx ≥ ε0

2
. (3.15)

Using (3.8) we know that for m large enough

ε0 = sup
[τm−C2

1 ,τm]

sup
x∈Bδ(x0)

∫

BRm (x)
|∇u|2(y, t)dy

≥ sup
[−C2

1 ,0]

sup
x∈Dm

∫

B1(x)
|∇wm|2(y, t)dy (3.16)

where we have used Rmy + xm → x0.
Now applying Lemma 2.3 to the equation (3.13) we get

sup
t∈[

−C2
1

4
,0]

‖∇wm‖C2α
loc

(IR2) ≤ C. (3.17)

Combining (3.14), (3.15), (3.16) with (3.17) we may choose a sequence ηm ∈ (−C2
1

4 , 0)
such that as ηm →∞ ∫

Dm

|∂twm|2(x, ηm)dx → 0, (3.18)
∫

B2

|∇wm|2(x, ηm)dx ≥ ε0

2
, (3.19)

‖∇wm(·, ηm)‖C2α
loc

(IR2) ≤ C. (3.20)

Hence there exists a subsequence of {wm(x, ηm)} (still denote it by {wm(x, ηm)})
and a mapping φ : IR2 → S2 such that

wm(·, ηm) → φ, strongly in H1
loc ∩ C1

loc(IR
2, S2). (3.21)

Let t = ηm in (3.13) and then let m → ∞. We get from (3.18), (3.20) and Rm → 0
that

∆φ + φ×∆φ + |∇φ|2φ = 0, (3.22)
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therefore
φ× [∆φ + φ×∆φ + |∇φ|2φ] = 0,

that is
φ×∆φ + φ× (φ×∆φ) = 0.

Hence
φ×∆φ = −φ× (φ×∆φ) = ∆φ + |∇φ|2φ.

This implies
∆φ + |∇φ|2φ = 0. (3.23)

On the other hand φ ∈ H1
loc∩C1

loc(IR
2, S2), then we have from (3.23) that φ is a smooth

harmonic mapping which is not a constant since
∫
B2
|∇φ|2dx ≥ ε0

2 .
It follows from (3.21) and (2.1) that

∫

IR2
|∇φ|2dx ≤ lim

m→∞ sup
∫

Dm

|∇wm|2(x, ηm)dx

≤ lim
m→∞ sup

∫

M
|∇u|2(x,R2

mηm + τm)dx

≤ lim
m→∞ sup[E(u)(0) +

∫ R2
mηm+τm

0

∫

M
|h(u)|2]

≤ M∗. (3.24)

This implies that φ has finite energy.
From the conformal equivalence we know IR2 = S2\{p}, therefore φ may be extended

to a smooth harmonic mapping from S2 to S2. Now let tm = R2
mηm + τm, then

vm(x) = wm(x, ηm) = u(Rmx + xm, tm) is the desired re-scaling sequence in conclusion
(1) of Theorem 3.1.

If T = +∞, then it follows from

ut(·, τm) → 0, strongly in L2(M)

that ∫

Dm

|∂twm|2(x, 0) ≤ R2
m

∫

Bδ(x0)
|∂tu|2(x, tm)dx → 0.

This implies that (3.18), (3.19) and (3.20) hold for ηm = 0 since (3.15) and (3.16) hold
for t ∈ [−C2

1 , 0].
So if T = +∞, by letting tm = τm, we may get conclusion (1) and (3) of Theorem

3.1. Now we prove that (2) of the theorem holds.
It follows from the characterizations of the singularities and Lemma 2.3 that ∀x ∈

Bδ(x0) \ {x0} there holds

‖∇u‖Cα,2α(PR/4(x,T )) ≤ C(R)
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for some R > 0 and all 0 < α < 1/2. Especially, we have

‖∇u(·, tm)‖C2α(BR/4(x)) ≤ C.

This implies that there exists a subsequence of u(·, tm) (still denote it by u(·, tm)) such
that

∇u(·, tm) → ∇u(·, T ), strongly in C2α′(BR/4(x))

for some 0 < α′ < α. So the conclusion (2) of Theorem 3.1 follows.
Finally we prove that ∇u(·, tm) can not converge to ∇u(·, T ) in H1(Bδ(x0)). If on

the contrary, we assume

∇u(·, tm) → ∇u(·, T ), strongly in H1(Bδ(x0)),

then we should have from E(u)(T ) ≤ M∗ that there exists r > 0 such that
∫

Br(x0)
|∇u|2(x, T )dx ≤ ε0

4
.

Thus there exists m such that for m > m we have
∫

Br(x0)
|∇u|2(x, tm)dx ≤ ε0

2
.

Choose tJ in such set and m > m such that T − tJ < r2

8C0M
∗ then as before we have

sup
t∈[tJ ,T ]

∫

B r
2
(x0)

|∇u|2(x, T )dx ≤ ε0.

This combined with the small energy regularity theorem yields

sup
t∈[T− r

8
,T ]
‖∇u‖C2α(B r

8
(x0)) ≤ C(r).

This implies that (x0, T ) is not a singular point. This leads to a contradiction.
The theorem is proved. Q.E.D

4. Energy Identity

The conclusion (1) of Theorem 3.1 in above section describes the bubbles. In fact,
if we choose different subsequence of {wm(·, ηm)} = {u(Rmx + xm, tm)}, then we get
different bubbles at each singular point. Noticing that u has only finite energy and
since each bubble φ is not a constant and each bubble cut off some energy from the
singularity, we know that at each singular point, there are only finitely many bubbles.

In this section we shall prove that the energy concentrated at each singular point
is consumed by such bubbles. That is, we want to prove:
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Theorem 4.1 Let u ∈ C∞(M×(0, T ), S2) be a solution of (1.1) with u0 ∈ H1(M, S2)
and assume that u develops singular points at t = T , (xi, T ) (i = 1, 2, · · · , p). Let φj

(j = 1, 2, · · · , q) be the bubbles of these singular points in the sense of Theorem 1.1
(q ≥ p). Then one has

lim
t↑T

E(u)(t) = E(u)(T ) +
q∑

j=1

E(φj , IR
2). (4.1)

To prove this theorem, we first recall two lemmas from [7]

Lemma 4.1 [7] There exists ε1 > 0 such that if u ∈ C∞([R1, R2]×S1, S2) satisfies

urr + uθθ = |∇u|2u + F (4.2)

and sup
[R1,R2]×S1

|∇u| ≤ ε1, then there is a constant C > 0 such that

∫ R2

R1

(∫

S1×{r}
|uθ|2dθ

)1/2

dr

≤ C





(∫

S1×{R1}
|uθ|2dθ

)1/2

+

(∫

S1×{R2}
|uθ|2dθ

)1/2

+

(∫ R2

R1

(e2r
∫

S1×{r}
|F |2dθ)dr

)1/2


 . (4.3)

Lemma 4.2 [7] Let u ∈ C∞(B1, S
2) be a solution of (4.2). If F ∈ L2(B1), then

for any 0 < R < 1
∫

∂BR

|ur|2ds ≤ R−2
∫

∂BR

|uθ|2ds + 2
∫

BR

|F ||∇u|dx. (4.4)

Using these two lemmas we first prove:

Lemma 4.3 Let u ∈ C∞(M×(0, T ), S2) be a solution of (1.1) with u0 ∈ H1(M, S2)
and assume that (x0, T ) is the unique singular point of u on Bδ(x0) × {t = T}. Then
there exists a positive constant L > 0 such that

lim
t↑T

E(u,Bδ(x0))(t) = E(u,Bδ(x0))(T ) + L. (4.5)

Proof There exists a subsequence {tm}: tm ↑ T such that

E(u,Bδ(x0))(tm) = E(u,Bδ(x0) \Bη(x0))(tm) + E(u,Bη(x0))(tm). (4.6)

Choose tm ↑ T such that lim
t↑T

E(u,Bδ(x0))(tm) exists. We have lim
t↑T

E(u,Bη(x0))(tm)

exists. Sending ηm → 0 we have

lim
m→∞E(u,Bδ(x0))(tm) = E(u,Bδ(x0))(T ) + L, L > 0. (4.7)
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Suppose {sm} is a sequence such that sm ↑ T and

lim
m→∞E(u,Bδ(x0))(sm) = E(u,Bδ(x0))(T ) + S, S > 0 (4.8)

we want to prove S = T .
Taking a subsequence of {sm} (still denote by {sm}) such that sm ≤ tm ≤ sm+1 ≤

tm+1 and noting that tm ↑ T , sm ↑ T , T < +∞, we get sm+1 − sm → 0, tm − sm → 0.
Using (2.2), for 0 < η < δ, 1

j < η, t1 = sm, t2 = tm, we have

E(u,B 1
j
(x0))(tm) +

∫ t2

t1

∫

M
|ut|2

≤ C0(η − 1
j
)−2

∫ tm

sm

∫

Bη(x0)
|∇u|2 + E(u,Bη(x0))(sm)

+
∫ tm

sm

∫

Bη(x0)
|h(u)|2. (4.9)

Therefore

E(u,B 1
j
(x0))(tm)−C0(η − 1

j
)−2(tm − sm)E(u)(0)− (tm − sm)C1 ≤ E(u,Bη(x0))(sm).

(4.10)
And hence

E(u,Bδ(x0))(T ) + S = lim
m→∞{E(u,Bδ(x0) \Bη(x0))(sm) + E(u,Bη(x0))(sm)}

≥E(u,Bδ(x0) \Bη(x0))(T ) + lim
m→∞E(u,B 1

j
(x0))(tm)

=E(u,Bδ(x0) \Bη(x0))(T ) + E(u,B 1
j
(x0))(T ) + L. (4.11)

Letting η → 0 and j →∞ in (4.11) we are led to S ≥ L. Similarly we can prove S ≤ L.
Therefore S = L. The lemma is proved.

The proof shows that lim
t↑T

E(u)(t) exists.

Now we are in the position to prove Theorem 4.1.
Proof of Theorem 4.1 We assume that there is only one singular point (0, T ) at

t = T , and there is only one bubble φ separated at (0, T ) in the sense of above section.
First we assume T = +∞.
Let tm, xm, Rm be the sequences in Theorem 3.1. Then the sequence u(·, tm) satisfies

(3.3) and ut(·, tm) solves (3.4). Denote um = u(·, tm), then vm = um(Rmx+xm) satisfies
(3.2). For small δ > 0 and large R > 0, set IA = [RmR, δ], IB = [| ln δ|, | lnRmR|],
Am(δ,R) = IA × S1 and Bm(δ,R) = IB × S1, (rm, θm) is the coordinates centered at
xm. Define a mapping f(r, θ) for (r, θ) ∈ IR1 × S1 by f(r, θ) = (e−r, θ). Let IR1 × S1

be given the flat metric dr2 + dθ2. Then f is a conform mapping from Bm(δ,R) to
Am(δ,R). Let wm(r, θ) = um(f(r, θ)) = um(e−r, θ). Then it follows from (1.3) that

∆wm + wm ×∆wm + |∇wm|2wm = gm, in [| ln δ|,∞]× S1 (4.12)
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where
gm = e−2rut(e−r, θ, tm)− e−2ru× h(u). (4.13)

Taking cross product with wm on both sides of (4.12) and using

a× (b× c) = (a · c)b− (a · b)c,

we have
∆wm + |∇wm|2wm =

1
2
(gm − wm × gm), in [| ln δ|,∞]× S1 (4.14)

and there also holds

E(wm, Bm(δ,R)) = E(um, Am(δ,R)). (4.15)

Now we are in the position to use the same method as in [1] to finish the proof of the
equality

lim
t↑T

E(u)(t) = E(φ, IR2) + E(u)(T ). (4.16)

We omit the details. This proves (4.1).
Similar equality holds for T < ∞. Theorem 4.1 is proved.
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