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Abstract We study the structure and behavior of non-negative radial solution for
the following elliptic equation

∆u = uν , x ∈ Rn

with 0 < ν < 1. We also obtain the detailed asymptotic expansion of u near infinity.
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1. Introduction

In this paper, we consider the structure and behavior of non-negative radial solution
of the following nonlinear equation

∆u = uν , x ∈ Rn, 0 < ν < 1. (1.1)

Problem (1.1) appears in several applications in mechanics and physics, and in partic-
ular can be treated as the equation of equilibrium states in thin films. For backgrounds
on (1.1), we refer to [1 - 7] and the references therein.

The Cauchy problem
{

ut = ∆u + up, x ∈ Rn, t > 0, p > 1,

u|t=0 = φ ∈ C0(Rn) ≡ C(Rn) ∩ L∞(Rn), φ ≥ 0, φ 6≡ 0
(1.2)

has been studied by many authors ([8 - 12]). The structure and expansion of the non-
negative radial solution of the steady-state problem of (1.2) also have been studied in
[12, 13]. The author also refers to [14, 15] when this paper is in preparation.
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2. Structure and Behavior

Definition 2.1 We say that u is a regular solution of (1.1) if u ∈ C2(Rn) and
u satisfies (1.1). We call u a singular solution of (1.1) if u ∈ C2(Rn \ {0}) ∩ C(Rn)
satisfies (1.1) in Rn \ {0} with non-removable zero at x = 0.

In the follows, we set

δ =
2

1− ν
, L =

[
δ(δ + n− 2)

] 1
ν−1

.

Proposition 2.2. When 0 < ν < 1, all nontrivial non-negative radial regular
solutions of (1.1) are included in a family {uα}α>0 with uα being the unique positive
solution of the problem





u′′ +
n− 1

r
u′ = uν in (0,∞),

u(0) = α, u′(0) = 0.
(2.1)

uα is increasing in r, r2/(ν−1)uα(r) → L as r → ∞ and uα(r) = αu1(α(ν−1)/2r).
Moreover, the only radial singular solution of (1.1) is

u0(r) = Lr2/(1−ν).

Proof We can obtain the result by phase plane analysis, see [16]. Assume u is a
nontrivial non-negative radial solution of (1.1). Let

r = |x|, t = − ln r, v(t) = r−δu(r). (2.2)

By ur and urr, then we have

urr +
n− 1

r
ur = rδνvν ,

i.e.,

v′′ − (2δ + n− 2)v′ + (δ2 + nδ − 2δ)v = vν . (2.3)

Let q(v) = v′(t), then vtt =
dq

dv
q. Denote C0 = 2δ + n− 2 and by (2.3) we have

q
dq

dv
− C0q + v(Lν−1 − vν−1) = 0. (2.4)

On (v, vt) plane, we know (L, 0) is the only unstable equilibrium point, which implies
v(t) → L as t → −∞. That is

lim
r→∞ r−2/(1−ν)u(r) = L.

If uα(0) = α > 0, by scaling invariance, we have uα(r) = αu1(α(ν−1)/2r). All
solutions of (1.1) form a one-parameter family of solutions.
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We can obtain that rn−1ur is increasing in r since (rn−1ur)r = rn−1uν ≥ 0. It
follows that rn−1ur ≥ 0. So u is increasing in r.

If u(0) = 0, from above we know ur ≥ 0 and rn−1ur → 0 as r → 0. Noting that

rn−1ur =
∫ r

0
sn−1uν(s)ds ≤ uν(r)

∫ r

0
sn−1ds =

1
n

uν(r)rn,

we have uru
−ν(r) ≤ r

n
. Now integrating over (0, r), we see that

∫ r

0
uru

−ν(s)ds ≤
∫ r

0

s

n
ds,

i.e.,
u(r) ≤ Crδ, (2.5)

where C is a constant depending on n and ν. We consider the function v defined at
(2.2) which satisfies (2.3) and then we know v(t) → L as t → −∞. From (2.5), we see
that v(t) ≤ C for all t. A simple ODE theory shows that v(t) → L as t → +∞ (since
L is the only positive equilibrium point).

Now multiplying the equation of (2.3) for v(t) by v′(t) and integrating over (−∞,+∞),
we see that

∫ +∞

−∞
v′′v′ − (2δ + n− 2)(v′)2 + δ(δ + n− 2)vv′dt =

∫ +∞

−∞
vνv′dt.

Noting the fact v(t) → L as t → −∞ and t →∞, we obtain

−(n + 2δ − 2)
∫ +∞

−∞
(v′(t))2dt = 0,

which implies v(t) ≡ L. Thus u = u0(r) = Lr2/(1−ν).
Proposition 2.3 Assume ū (u

¯
) is a radial regular super-solution (sub-solution)

of (1.1). If uα is a positive radial regular solution of (1.1), then for any θ > (<)1, ū

(u
¯
) cannot stay above (below) θuα.

Proof Suppose that ū > θuα, let v(t) =
ū(r)
uα(r)

, t = ln r, then v > 1 and

v′′(t) +
(

2ru′α(r)
uα(r)

+ n− 2
)

v′(t) + r2uν−1
α (r)(v − vν)(t) < 0 on (−∞,∞). (2.6)

Denote the coefficient of v′ by g1(t). By (2.6) and the fact v > 1, v′′ + g1(t)v′ < 0.
Hence

exp
{∫ t

0
g1(s)ds

}
v′(t) ≤ exp

{∫ τ

0
g1(s)ds

}
v′(τ) if t ≥ τ. (2.7)

In fact, (exp{∫ t
0 g1(s)ds}v′(t))′ < 0. Since ru′α(r) → 0 as r → 0+, we have g1(t) → n− 2

as t → −∞. It follows from the fact v(t) → ū(0)
uα(0)

as t → −∞ that there exists a
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sequence tm → −∞ such that v′(tm) → 0. Now in (2.7), letting τ = (tm) → −∞, we
have either v′ < 0 on (−∞,+∞) ) or v′ ≡ 0( A priori, v′(t) ≤ 0 and if there exists t0
such that v′(t0) ≤ 0, then by (2.7) again v′(t) < 0 if t ≥ t0. Hence the strict inequality
in (2.7) must be true which in turn implies that v′ < 0 on (−∞,+∞). But by (2.6)
and v > 1 we see that v′ ≡ 0 is impossible. Since v′ < 0 we have for a large T and
some constant C > 0,

v′′ + g1(t)v′ ≤ −C if t ≥ T,

which implies that v = 0 at some t0. This contradicts the fact v > 1.
Another case can be proved similarly.

3. Expansion Near Infinity

In this section, we study the expansion of u near infinity which is the non-negative
radial solution of (1.1) for n ≥ 3.

Noting that δ =
2

1− ν
∈ (2,∞), we have

(2δ + n− 2)2 − 8(δ + n− 2) > 0.

Therefore, the solutions of the equation

σtt + (2δ + n− 2)σt + 2(δ + n− 2)σ = 0 (3.1)

can be written as linear combinations of e−λ1t and e−λ2t, where

λ1(ν, n) =
2δ + n− 2− [(2δ + n− 2)2 − 8(δ + n− 2)]1/2

2
> 0 (3.2)

and

λ2(ν, n) =
2δ + n− 2 + [(2δ + n− 2)2 − 8(δ + n− 2)]1/2

2
> 0 (3.3)

are two roots of

λ2 − (2δ + n− 2)λ + 2(δ + n− 2) = 0. (3.4)

To study the behavior of the solutions of (3.1), we consider three cases: (a) 2δ + n −
2− 2λ1 < λ1, (b) 2δ + n− 2− 2λ1 = λ1, (c) 2δ + n− 2− 2λ1 > λ1.

If (a) occurs, we have

2δ + n− 2− 2λ1 =[(2δ + n− 2)2 − 8(δ + n− 2)]1/2

<
1
2
(2δ + n− 2)− 1

2
[(2δ + n− 2)2 − 8(δ + n− 2)]1/2,

i.e.,

(2δ + n− 2)2 < 9(δ + n− 2)
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and

4δ2 + (4n− 17)δ + (n− 2)(n− 11) < 0. (3.5)

This equation has two roots:

δ1 =
17− 4n− 3(8n− 7)1/2

8
,

δ2 =
17− 4n + 3(8n− 7)1/2

8
.

We easily know that

δ1 < δ < δ2.

So, if δ1 < δ < δ2, then 2δ + n− 2− 2λ1 < λ1. Thus we know from (4.28) of [15] that
any solution σ(t) of (3.1) satisfies

σ(t) =





a1e
−λ1t + O(e−λ2t) if δ1 < δ < δ2,

a1e
−λ1t + O(te−2λ2t) if δ = δ2,

a1e
−λ1t + O(e−2λ2t) if δ > δ2.

(3.6)

It is straightforward to show that for n ≥ 3 there exists an infinite sequence νk <

νk+1 < · · · < 1 such that λ2(ν, n) = kλ1(ν, n) if and only if ν = νk(n), where [a] = the
largest integer which is smaller than a + 1. It is not hard to see that

νk =
n + 2− zk

n− 2− zk
, k ≥

[n

2

]
,

where zk is the only zero of h(z)− k = 0 and the function

h(z) =
[z + (z2 − 4z − 4(n− 2))1/2]2

4(z + n− 2)
, z ∈ [n + 2,∞)

is strictly increasing in [n + 2,∞). It is also possible to give a more explicit expression
for νk(n). To this end we set y = 2δ + n− 2 > n + 2. Then λ2 = kλ1 if and only

k =
λ2

λ1
=

y + (Y (y))1/2

y − (Y (y))1/2
,

which is equivalent to

k − 1
k + 1

=
(Y (y))1/2

y
=

[
1− 4

y
− 4(n− 2)

y2

]1/2

, (3.7)

where Y is defined

Y (y) = y2 − 4y − 4(n− 2).
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Squaring both side of (3.7) and multiplying by y2, we obtain
[
1−

(
k − 1
k + 1

)2
]

y2 − 4y − 4(n− 2) = 0. (3.8)

Now νk(n) may be obtained by solving y explicitly( in fact, we can obtain zk = y ).
Incidentally, the fact that k ≥ n

2
also follows easily from (3.7) since y > n+2 and then

k − 1
k + 1

≥ (Y (n + 2))1/2

n + 2
=

n− 2
n + 2

.

Thus, k ≥ n

2
.

It follows from Proposition 2.2 that if u is a non-negative radial solution of (1.1),
then lim

r→∞ r−δu(r) must always exist. Now we derive a more detailed asymptotic ex-
pansion of u near infinity.

Theorem 3.1 Let u be a non-negative radial solution of (1.1) and lim
r→∞ r−δu(r) >

0. Then the following statements hold:
(i) For ν = νk(n), k ≥

[n

2

]
, we have λ2 = kλ1 and, near infinity,

u(r) = Lrδ +a1r
δ−λ1 + · · ·+ ak−1r

δ−(k−1)λ1

+akr
δ−kλ1 ln r + brδ−λ2 + · · ·+ O(r−(n+2−ε)). (3.9)

(ii) For νk < ν < νk+1(n), k ≥
[n

2

]
, we have kλ1 < λ2 < (k + 1)λ1, and, near

infinity,

u(r) = Lrδ +a1r
δ−λ1 + · · ·+ akr

δ−kλ1

+ brδ−λ2 + crδ−(k+1)λ1 + · · ·+ O(r−(n+2−ε)). (3.10)

The constant L = [δ(n + δ − 2)]1/(ν−1) and is independent of the particular solution
u. The coefficients a2, a3, · · ·, an, · · · are uniquely determined once a1 is determined.
Moreover, once a1, b are determined then all the coefficients in (3.9) and (3.10) are
uniquely determined.

Proof We start with the proof of (ii). The proof is closely related to the proof of
Theorem 2.5 of [3, 9]. First , we know from Proposition 2.2 that

lim
r→∞ r−δu(r) = L.

Setting t = ln r, w(t) = r−δu(r)− L, we see that w satisfies the equation

wtt + (2δ + n− 2)wt + 2(δ + n− 2)w(t)− g(w) = 0, t ≥ t0 = ln R (3.11)

and g(τ) = (τ + L)ν − Lν − νLν−1τ satisfies

g(τ) =
ν(ν − 1)

2
Lν−2τ2 + O(τ3) for τ near 0. (3.12)
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By standard arguments it follows that

w(t) = a1e
−λ1t + be−λ2t +

1
λ1 − λ2

∫ t

t0

(
eλ2(s−t) − eλ1(s−t)

)
g(w(s))dt′, (3.13)

where a1, b are two constants. Notice that −λ1, −λ2 are the roots of the characteristic
polynomial of the linear part of (3.11), where λ1 and λ2 are in (3.2) and (3.3). For each
positive integer M ≥ 2, g(τ) admits the following expansion

g(τ) = d2τ
2 + d3τ

3 + · · ·+ dMτM + O(τM+1) (3.14)

near τ = 0, where the constants d2, d3, · · · , dM depend only upon ν and n. When
k ≥

[n

2

]
, (n ≥ 3), we have from (3.6) that ( since λ2 > 2λ1, 2δ + n− 2− 2λ1 > λ1)

w(t) = a1e
−λ1t + O(e−2λ1t) (3.15)

near t = ∞. Substituting (3.14) and (3.15) into (3.13) we obtain

w(t)=a1e
−λ1t + be−λ2t +

1
λ1 − λ2

∫ t

t0

(eλ2(s−t) − eλ1(s−t))ϕ(s)ds

=a1e
−λ1t + be−λ2t +

1
λ1 − λ2

{∫ t

0
eλ2(s−t)ϕ(s)ds−

∫ t0

0
eλ2(s−t)ϕ(s)ds

}

− 1
λ1 − λ2

{∫ ∞

t0

eλ1(s−t)ϕ(s)ds−
∫ ∞

t
eλ1(s−t)ϕ(s)ds

}

=a1e
−λ2t + a2e

−2λ1t + O(e−min(3λ1, λ2)t), (3.16)

where ϕ(s) = d2a
2
1e
−2λ1s + O(e−(λ1+2λ1)s), positive constant a2 depends only on a1, ν

and n. Substituting (3.16) and (3.14) into (3.13) , by similar computation , after (k−1)
steps we arrive at

w(t) = a1e
−λ1t + a2e

−2λ1t + · · ·+ ake
−kλ1t + O(e−λ2t) (3.17)

near infinity, where a2 = a2(a1, ν, n) , ak = ak(a1, ν, n). Repeating this process once
more, we obtain

w(t) = a1e
−λ1t + a2e

−2λ1t + · · ·+ ake
−kλ1t + b1e

−λ1t + O(e−(k+1)λ1t) (3.18)

near infinity. Now iterating the above process with (3.18), (3.14) into (3.13) after
finitely many steps (with the integer M in (3.14) getting larger each time) we arrive
at, for each positive integer `,

w(t) =
`+k∑

i=1

aie
−iλ1t +

∑

j∈J

bje
−jλ2t +

∑

(i,j)∈I

cije
−(iλ1+jλ2)t + O(e−(`λ1+λ2)t), (3.19)
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where

J = {j ∈ Z : j ≥ 1, jλ2 < `λ1 + λ2},
I = {(i, j) ∈ Z × Z : i ≥ 1, j ≥ 1, iλ1 + jλ2 < `λ1 + λ2}

and ai depend only upon a1, ν, n, bj depend only upon b1, ν, n, and cij depend only
upon a1, b1, ν, n. (Here Z=the set of all integers.) Taking ` large enough and then
substituting (3.19) into w(t) = r−δu(r)− L, we obtain (3.10).

Part(i) may be proved similarly by the arguments above together with the proof of
Lemmas 4.3 and 4.4 in [15].

Remark Theorem 3.1 is stated in a special way with the forms of expansions
(3.9) and (3.10). The expansion of u near infinity may have more general forms. In
particular, it is clear from the proof above what the missing terms in (3.9) and (3.10)
are. Moreover, it is also clear from the proof above that the expansions (3.9) and (3.10)
do not have to stop at O(r−(n+2−ε)), they can go on to an arbitrarily high order.
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