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Abstract In this note, we establish some estimates of solutions of the scalar
Ginzburg-Landau equation and other nonlinear Laplacian equation ∆u = f(x, u). This
will give an estimate of the Hausdorff dimension for the free boundary of the obstacle
problem.
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1. Introduction

Recently there are many interesting results appeared in the study of mathemat-
ical theory of super-conductivity. There people considered Dirichlet and Neumann
boundary problems. There are a lot of such articles related to bifurcation and stability
properties about solutions. People also like to find multiple solutions for complex valued
Ginzburg-Landau equations. One interesting problem is the obstacle problem for the
scalar Ginzburg-Landau equation. However, the free boundary problems, in particular,
obstacle problems, are seldom considered in this theory. Such problem is nature since
the Ginzburg-Landau equation has a closed relation with the minimal surface theory.
The Obstacle problems for minimal surfaces or for constant mean curvature surfaces
have attracted a lot of people. As is well-known, the free boundary problems are very
important in science and technology, one may see the article of A. Friedman [1] for
more exposition. One such problem for linear elliptic partial differential equations is
the obstacle problem, which is considered by many famous mathematicians. In the
linear elliptic problem case, L.Caffarelli [2] proved a very beautiful result. In fact, he
can show that the solution is C1,1 and the free boundary is an n-1 dimensional sub-
manifold. His argument is very delicate. As he pointed out, his method can be used to
treat some nonlinear problems. Some of his results and arguments have been extended

*This work was supported in part by national 973 key project , by NSFC and by the Key Support

Project of the National Education Ministry of China.



50 Ma Li and Su Ning Vol.17

to p-Laplacian problems by K.Lee and H.Shahgholian [3]. One natural question is if a
similar result is true for the obstacle problem in the super-conductivity theory.

In this paper, we study the obstacle problem for the scalar Ginzburg-Landau model.
Let D ⊂ Rn be a bounded smooth domain. We are now given a (smooth) bounded
function f(x) on ∂D ( we assume that f has an extension f ∈ C2,µ(D)), and a (smooth)
function φ(x) ∈ C2,µ(D) with ϕ(x) < f(x) for every x ∈ ∂D. We study the partial
differential equation (GL)o:

∆u + λu(1− u2) = 0 in {u > ϕ},

where λ > 0 is a (large) constant.
Let M = |f |L∞ . Let u0 = inf{−1,−M} and u1 = sup{1,M}. It is clear that u0 is

a sub-solution of (GL)o, and u1 is a super-solution of (GL)o.
We can get a solution by the direct method. Define K to be the closed convex set

K := {u ∈ H1;u0 ≤ u ≤ u1, u|∂D = f, u ≥ ϕ}

Clearly, since we can extend f on all D such that f ∈ K, K is closed, non-empty convex
subset of H1.

Set
J(u) =

∫
D
|du|2 +

λ

4

∫
D

(u2 − 1)2

on K. Then it is easy to see that the infimum is achieved on K. In fact, the minimizer
u satisfies the Ginzburg-Landau type equation

∆u + λu(1− u2) = 0 in {u > ϕ},

where λ > 0 is a (large) constant. By using a simple comparison argument, it is easy
to see that the solution is unique. Let

Ω := {x;u(x) > ϕ(x)}

Then we meet the question about the regularity of the solution. It is easy to see that
since this u is in L∞, it is C1,α, α ∈ (0, 1), ( by Theorem 1 in [4]). Furthermore, by
adapting the argument in [2], we can show that u is in C1,1, and smooth away from the
free boundary S := {u = ϕ} (see the next section). So the key part is to understand
the regularity about the free boundary.

To understand the regularity of this minimizer near the free boundary, without loss
of generality, we need only to study the following model problem. In the unit ball of
Rn we consider a given function w with the following properties:

(a) w ≥ 0, w ∈ C1,1;

(b) ∆w = g(x) in the set Ω = {w > 0};
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(c) 0 ∈ ∂Ω, i.e. the point 0 is on the free boundary.

Assume g(x) = −∆ϕ > 0, where ϕ is the obstacle function, which is assumed to be
given in the class C2,µ. Hence g ∈ Cµ.

Our main result is the following result, which is Theorem 5.3 at the end of of this
paper.

Theorem Given f, ϕ as above. Let u be the solution of the above. Then u ∈ C1,1.
Set g = −∆ϕ− λϕ(1− ϕ2) and assume that g(x) > 0, x ∈ D.

Let Nδ = {x : d(x, ∂Ω) ≤ δ} be the neighborhood of the free boundary ∂Ω. Then

|Nδ ∩Br| ≤ Cδrn−1.

In particular, the free boundary has locally finite (n−1)–dimensional Hausdorff measure,
and

Hn−1(∂Ω ∩Br) ≤ Crn−1.

We will follow the method of L.Caffarelli [2] ( see also [5]), but we treat a little
more difficult case than that considered by L. Caffarelli. In fact, we pay more attention
to the results applicable to nonlinear elliptic problems. It is not hard to see that our
result can be extended to the generalized G-L model

∆u + λu(b(x)− u2) = 0 in {u > ϕ},

where b(x) is a positive function on D. It is our belief that this kind of result is also
true for p-Laplacian (p > 2) operator, however, we will not consider this.

2. Regularity of the Solution

Let F (u) =
1
4
(u2 − 1)2.

In this section, we prove by following an argument in [2] the C1,1 regularity of the
solution u of the obstacle problem for G-L model (GL)o. We may take λ = 1.

Take any ξ ∈ C1
0 (D) and ξ ≥ 0. Let ε > 0. Let

uε = min{u1, u + εξ}.

Then
uε = u + εξ − ξε

where
ξε = max{0, u + εξ − u1} ≥ 0.

J is differentiable at u in the direction uε − u. Then, we find

0 ≤< J ′(u), uε − u > .
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Sending ε → 0, we get 0 ≤< J ′(u), ξ >. This means that we have

∆u + λu(1− u2) ≤ 0 in D,

in H1-sense, and
∆u + λu(1− u2) = 0 in {u > ϕ}.

Let V be the solution of the following problem

∆V − F ′(u) = 0, in D

with the Dirichlet boundary condition

V = f, in ∂D.

It is well-known that this V is in C2,µ(D).
Define U = u− V , and let a = ϕ− V on D. Then we have

∆U ≤ 0 in D

and
∆U = 0 in {U > a},

Then we are in the situation treated by L.Caffarelli [2]. So, we have the C1,1

regularity for U , and then for u.
From here, we may believe (as in [2]) that the free boundary S is an n-1 dimensional

C1,µ sub-manifold. However, we need time to verify this.

3. Gradient Estimates And Maximum Growth

In this section, in the unit ball of Rn we consider a function w in the unit ball of
Rn with the following properties:

(a) w ≥ 0, w ∈ C1,1;

(b) ∆w = g(x) in the set Ω = {w > 0};

(c) 0 ∈ ∂Ω, i.e. the point 0 is on the free boundary.

Assume g(x) = −∆ϕ > 0, where ϕ is the obstacle function, given in the class C2,µ.
Hence g ∈ Cµ. In [2], L. Caffarelli considered the special case where g = 1.

We begin with well-known estimates:
Lemma 3.1 Let ∆w = g in BR(x0), then

|∇w(x0)| ≤
n

R
oscBR(x0)w + R sup

BR(x0)
g. (3.1)

By the C1,1 regularity of w, we have

|D2w| ≤ C. (3.2)
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For a proof of this result, one may see [6].
Lemma 3.2 (Gradient Bound) There exists C > 0 such that

|∇w(x)| ≤ C
√

w(x), x ∈ Ω.

Proof Let x0 ∈ Ω and w(x0) = h > 0 and R = c
√

h with c > 0 small enough.
Then from the estimate (3.2),BR(x0) ⊂ Ω.

First, let v solve the problem{
−∆v = g(x) in BR(x0),

v = 0 on ∂BR(x0).

Since 0 < g ≤ C, we may verify that 0 ≤ v ≤ C(R2 − |x− x0|2).
Consider the function

u(x) = w(x) + v(x),

then u is harmonic, and positive in BR(x0). By the Harnack inequality

sup
BR(x0)

u ≤ Cu(x0),

and so
supw ≤ supu ≤ Cu(x0) ≤ C[w(x0) + R2].

Hence it follows from (3.1)that

|∇w(x0)| ≤
C

R
w(x0) + CR.

To conclude, we note that w(x0) = h and R = c
√

h, which completes the proof.
Lemma 3.3 (Maximum Growth) There exists c > 0 such that for every x0 ∈ Ω

and R0 = dist(x0, ∂D ∩ Ω),

sup
BR(x0)

w ≥ cR2, 0 < R < R0.

Proof Let g0 = min g. Then

u = w − g0

2n
|x− x0|2

is subharmonic in BR(x0) ∩ Ω and u(x0) = w(x0) > 0. Thus u reaches a positive
maximum on ∂(BR(x0) ∩ Ω). But on BR(x0) ∩ ∂Ω

u = − g0

2n
|x− x0|2 < 0.

Hence, u takes its positive maximum at some x1 ∈ ∂BR(x0) ∩ Ω (which is nonempty).
Namely,

u(x1) = w(x1)−
g0

2n
R2 > 0.

Therefore,
max

BR(x0)
w ≥ w(x1) ≥

g0

2n
R2.
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Remark 3.4 i) From the proof we may give the constants explicitly:

c =
min g

2n
.

ii) The same results are also true for a function w in the unit ball B1 of Rn with
the following properties:

(a) w ≥ 0, w ∈ C1,1;

(b) ∆w(x)− w(x) = g(x) in the set Ω = {w > 0};

(c) 0 ∈ ∂Ω, i.e. the point 0 is on the free boundary.

Here we assume g(x) > 0 and g ∈ Cα(B1). One can see [5] for more comments.

4. Nonlinear Equations

By using the standard comparison argument we have

min{−1,min
Γ

u} ≤ u ≤ max{1,max
Γ

u},

where Γ is the boundary of the domain D. The function w = u− ϕ satisfies

∆w = −λu(1− u2)−∆ϕ(x) in {w > 0}. (4.1)

and a similar gradient estimate is true:

|∇w(x)| ≤ (λC1 + C2)
√

w(x), x ∈ Ω.

The maximum growth estimates for the solution w = u − ϕ > 0 is also true near
the free boundary {w = 0} provided the right side of the equation (4.1) is positive:

Assumption g = −∆ϕ− λϕ(1− ϕ2) > 0 over the closure of D.
Remark This condition is nature. In fact, if −∆ϕ > 0, and −1 ≤ ϕ < 0, then

g = −∆ϕ− λϕ(1− ϕ2) > 0

for all λ > 0.
Under this assumption we may write (4.1) as

∆w = g(x) + λ[ϕ(1− ϕ2)− u(1− u2)],

and then
G(x, ϕ, u) = g(x) + λ[ϕ(1− ϕ2)− u(1− u2)] ≥ 1

2
g(x) > 0

if w = u− ϕ > 0 is small enough.
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More general nonlinearities Consider the bounded solution of the following
equation

∆u = f(u, x) in {u > ϕ},

where f is a proper function, and we impose the condition that ∆ϕ < f(ϕ, x). Then
we get for w = u− ϕ the equation

∆w = f(u, x)−∆ϕ > f(u, x)− f(ϕ, x) in {w > 0}.

Note that on the free boundary {w = 0} we have

∆w > f(u, x)− f(ϕ, x) = 0.

Hence the gradient bound and the maximum growth are true for this problem.

Remark 4.1 Consider the equations of type

∆u = f(Du, u, x) in {u > ϕ}.

There are some difficulties, even we use f(|Du|, u, x) to replace f(Du, u, x). At this
moment, we leave this open.

5. Estimates for Free Boundaries

We derive the free boundary estimates by following L.Caffarelli’s idea [5].

Lemma 5.1 (“Gradient Strip” Estimates) Let we = Dew be the directional deriva-
tive of w in the direction e. Assume that g ∈ W 1,n. Then there exists C > 0 such that∫

{0≤we≤h} ∩Br

|∇we|2 ≤ Chrn−1.

Proof Truncate we at levels ε and h: we = min[(we − ε)+, h]. Then from Green
formula and ∆we = Deg it follows that∫

Br

∇we · ∇wedx = −
∫

Br

weDegdx +
∫

∂Br

weDνweds.

Since ε ≤ we ≤ h, |Dνw| ≤ |D2w| ≤ C, Deg ∈ Ln(Br), we have∫
{ε≤we≤h} ∩Br

|∇we|2dx ≤ h

∫
Br

|Deg|dx + h

∫
∂Br

|Dνwe|ds ≤ Chrn−1,

which leads to the conclusion by letting ε → 0.

Lemma 5.2 (“Level Strip” Estimates) Let Sh = {0 < w < h2}. Then there exists
C > 0 such that

|Sh ∩Br| ≤ Chrn−1.
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Proof It follows from the Gradient Bound that

Sh ⊂ {|∇w| ≤ h} ⊂
n⋃

i=1

{|wei | ≤ h}.

Thus,

|Sh ∩Br| ≤
1

min g2

∫
Sh ∩Br

(∆w)2dx ≤ C

∫
Sh ∩Br

|D2w|2dx

≤ C
n∑

i,j=1

∫
{|wei |≤h}

|∇wej |2dx ≤ Chrn−1.

Theorem 5.3 Let Nδ = {x : d(x, ∂Ω) ≤ δ} be the neighborhood of the free boundary
∂Ω. Then

|Nδ ∩Br| ≤ Cδrn−1.

In particular, the free boundary has locally finite (n−1)–dimensional Hausdorff measure,
and

Hn−1(∂Ω ∩Br) ≤ Crn−1.

Proof From |D2w| ≤ C it follows that

0 < w(x) < Cδ2, x ∈ Nδ ∩ Ω,

that is, (Nδ ∩ Ω) ⊂ Sδ. Thus

|Nδ ∩ Ω ∩Br| ≤ Cδrn−1.

Then we get a proof of the result by the definition of Hausdorff measure.
We remark that with a little more effort, we can follow [2] to prove that the free

boundary S := {u = ϕ} = ∂Ω is an n − 1 dimensional C1,1 sub-manifold in D. This
may be a very useful fact for further study related to scalar G-L models.
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