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Abstract In this paper, we study the asymptotic behavior of the solutions to the
bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the
initial boundary problem of the model admits a global smooth solution which decays
to the steady state exponentially fast.
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1. Introduction

We are concerned with the large time behavior of smooth solutions to the one-
dimension Euler-Poisson(or hydrodynamic) model for semiconductors in the case of
two carriers, i.e. electron and hole

ne + (nu), =0, (1.1)
h + (hv)y =0, (1.2)
(mu)e + (0 + p(n))e = ns — (1.3)
(o) + (o + a(), =~ = . (1.4
G =~ h —d(x) (15)

(t,z) € (0,00) x (0,1) where (n,h) and (u,v) are densities and velocities for electrons
and holes, respectively. 7 = nu and k = hv stand for the electron and hole current
densities. ¢ denotes the electrostatic potential and the doping profile d(x) describes
fixed charged background ions. 7, and 7, are the momentum relaxation times for
electrons and holes, respectively. We assume 7,, = 7, = 1 for convenience. To simplify
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the proof, we take d(z) as a nonnegative constant d and choose the typical form for
pressure, namely:

nn R
Y Th

n

The case with two different constants can be dealt with similarly.

Recently, the hydrodynamic model of semiconductors has attracted a lot of atten-
tion, because of its function to describe hot electron effects which are not accounted for
in the classical drift-diffusion model. Rigorous results have been obtained in various
papers. Most of them are concerned with the unipolar case, which only discusses the
effect of the electron. However, there are few results on the bipolar case which is of
more importance and physical meaning. Fang and Ito [1] show the existence of weak
solutions to the system (1.1)-(1.5) in the transonic case using the viscosity argument.
Natalini [2], Hsiao and Zhang [3] considered the relaxation limit problem from the bipo-
lar hydrodynamic model to the drift-diffusion equations. Zhu and Hattori [4] showed
the existence of the strong solutions to the Cauchy problem of (1.1)-(1.5) and discussed
the asymptotic stability of the steady state solution, without the decay rate, when the
doping profile is close to zero.

In the present paper, we will consider the initial boundary value problems for (1.1)-
(1.5) with the following initial data

(naha.ja k) = (n07h07j0a k(])(x), T € (07 1) (17)

and the density and potential Dirichlet boundary conditions

n(0,t) =n(1,t) =n, >0, (1.8)
h(0,t) = h(1,t) =h, t>0, (1.9)
(0,t) = ¢(1,t) = ¢, t>0. (1.10)

Here, 2, h and ¢ > 0, and 7 — h = d. This kind of boundary conditions is commonly
used in physics of semiconductor devices.

The goal of this paper is to investigate the global existence of smooth solutions to
(1.1)-(1.5) with (1.7)-(1.10) and the large time behavior of them when the initial data
(1.7) are assumed to be perturbations of a steady state (7, h,j, k, E) of (1.1)-(1.5) with
j= k = 0 which satisfies:

p(n)z = ﬁé:m
ah)e = ~ho. (111)
Gge =N —h—d
with the boundary condition
n(0) = n,
h(0) = h
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from which we get 2(1) = 7 and k(1) = h. It is easy to prove that the above stationary
problem admits uniquely the constant solution (7, h, 0,0, ¢).
Next, put

Yo =mno(z) — 7,  no(x) = ho(x) — h.

The main result of this paper is the following theorem.

Theorem 1  Assume (10,0, jo, ko) € H2. Then there exists eg > 0, such that if
Il (%0, Mo, jo, ko)l g2 < €0, the IBVP (1.1)-(1.5)with (1.7)-(1.10) admits a global smooth
solution (n, h, j, k,¢)(x,t) satisfying:

H(n - ﬁ7h - B?j7k7¢ - (5)H2H2 S O(l)“(q/}O?UOij,kO)H%I? eXp{_ﬁt}’ i Z 0

with a positive constant 3.

Remark The result of this paper describes an interesting phenomenon in the
bipolar hydrodynamic model for semiconductors: due to the reciprocal action between
electrons and holes, the effect of elliptic mode is somehow weakened, on the other
hand, the boundary effect becomes strong in the evolutionary carriers. Therefore, we
can prove that the solutions to (1.1)-(1.5) and (1.7)-(1.10) tend to the steady state
exponentially fast as ¢ goes to co.

Let us also mention that the result of this paper is the generalization of [5] by Li,
Markowich and Mei, where the unipolar case is considered. However, new difficulties
occur from the reciprocal action between electrons and holes in our bipolar case and
more efforts are made to treat the coupled terms by electrons and holes.

2. The Proof of Theorem 1

Set
vb=n—-n, n=h—h, e=d¢—a. (2.1)
Then the new variables satisfy the systems
Yy + jo =0, (2.2)
ne + ky =0, (2.3)
2
ot (4 7) = p(A))a + 4 () = (04 P)ew =0, (24)
_ _ k2 _
kt+(CJ(n+h)—Q(h))x+k+(n+ﬁ)x+(n+h)ex =0, (2.5)
€xz =Y — 1, (26)
with the following initial-boundary conditions
P(0,t) =¢(1,t) =0, t>0, (2.7)

n(0,t) =n(1,t) =0, t>0, (2.8)
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e(0,t) =e(1,t) =0, t>0, (2.9)
¢(3«"70) = ¢0(.€L’), 77('7}’0) = 770(1')7 (2'10)
j(@,0) = jo(x), k(x,0) = ko(x). (2.11)

To prove Theorem 1, we first establish the a priori estimates.
Lemma 2 Suppose (y,1n,j,k) satisfies (2.2)-(2.11). There exist some positive
constants €1 > 0 and o > 0 such that, for any T > 0, if

sup ||(71b777aja k;)(t)HH2 <ey, (212)
0<t<T
then, for any t € [0,T],
14y, 4, ks €)1 72 < O(1) (Il (%0, m0, Jo, ko) |I72 exp(—at). (2.13)

We assume that 1 is chosen so small that
O<n_<wv+n<ng, 0<h_ <n+h<hy

with n_,ny,h_, and h4 constants.
The proof of Lemma 2 consists of 5 steps. In Steps 1-3, we bound e, j, k by ¢, n in
certain senses. And in Steps 4-5 we carry out the energy estimates on v, 7 in detail.
Step 1 For e, we have

1 1 1
/ eggou)/ (02 + n?)da, eggou)/ (2 + 12)dz, (2.14)
0 0 0

1 1 1 1
| <o [wi+niae, <o) [ @i+, & <o) [ W +nd)d
(2.15)
To prove (2.14), we multiply (2.6) with e, and integrating over (0, 1) to yield, after
integration by parts, that

1 1
| e < [ jew = mide

1 1
< [lenlds + [ fevida
0 0

([ o) (o) (] ) .

with the help of (2.9) and Hoélder inequality. Then Poincaré inequality gives the first
one of (2.14).

On the other hand, by the integral mean value theorem, there exists a curve z1(t)
satisfying 0 < z1(¢) < 1 such that

1/2

1

ei(wl(t),t) :/ ei(x,t)daf,

0
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thus ®
1
e2(z,t) = e2(x1(t),t) + 2/ ezerzdr

xT

1 1
</ 2dx+2/ lexesrs|dx
<2/ e d:n—i—/ e AT

<o) [ W+,

by (2.6) and Young inequality. The proof of (2.14) is completed.
Next, we prove (2.15). Differentiating (2.6) with respect to ¢ leads to

Cxzt = Pt — Nt (216)
Multiplying (2.16) by e, and integrating it over [0, 1], we get that

1 1
/0 eitdx :/0 et(ny — y)dx

with the observation that e;(0,¢) = e;(1,¢) = 0. Similar to the above arguments, we
have

1 1
/0 ez < 0(1)/0 (W7 + nf)da. (2.17)
Similarly, the integral mean value theorem can also lead to the following two in-
equalities
e2, < 2/ ztdaﬂ-/ el dr, €< 2/ dat—i—/ e2,dx. (2.18)

The other two estimates in (2.15) follow from (2.16), (2.17), (2.18) and Poincaré in-
equality immediately.
Step 2 For j, we have

1 1 1
/0 j2de < O(l)(exp{—cot}/o jéda +/0 (7 +? + 772)d:v>, (2.19)
1 1
72 <O (expl—cot} | Gdu+ [ (W7 +v? +n?)d). (2.20)

/1 20 < 01 B by Yoo o 2 9
jide <O()(exp{-coty | jdde+ [ (W7 +vi+ 0 +ndde),  (221)
0 0 0

with ¢y > 0 a constant.

Let us prove (2.19) first.

Now, multiplying (2.4) with j and integrating it over (0,1), one has, by (2.7) and
integration by parts, that

1d
2dt/ Pda) + /‘7 1
‘+/ ¢+n)6xjdx+/ [p(¢+ﬁ)—p(ﬁ)+
=L+ 1+ Is.

-2

J
Y +n

ERE
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The Iy, I> and I3 can be estimated as follows:

1
IlS/
0

IN
N[ =

0

IN

3 1
n 0
1 z 1

I
1
I /
0

< O(eq

Therefore, we have

d

for a positive constant b, independent of ¢ and T, provided &1 is small enough.

Integrating the above

1 1 1
/ j2dz < exp{—cot}/ jedr +0(1)(1 - exp{—COt})/ (¥ + 0 + 47 )da.
0 0 0

3j%ja

1
dx < 0(51)/ j2d,
n 0

7200 [ (@),

0
2
Y+n

) [ o0 [,

¢ |p( +n) —p(n) +

dt (/Olﬁdfv) +b /011'2 <0(1) /01<w2 +u7 + %) da,

inequality over [0, t] gives

with a constant ¢y > 0, which implies (2.19).

(2.20) and (2.21) can be proved by (2.19) and the following relations

and

(1){

in view of (2.4) and (2.14). Thus, the proof of (2.19)-(2.21) is finished.

p(+n) —pn) +

(1) (72 + 2 + 7 + 0% + %)

1 1
52 g/ jde+2/ |jzdldz
0 0

1 1
< 2/ j2d:v+/ wfd:v
0 0

j2

Y+n

By the similar procedure, we get the following estimates for k.

Step 3 For k, we have

1 1 1
/ Edx < O(l)(exp{—clt}/ k3dx +/ (i +¢* + 772)dx),
0 0 0

¥ < 00) (expl-at) [ Kzt [ 0 + 02+ o)),

1 1 1
/ k:tng(l)(exp{—clt}/ k:gdx+/ (0 + 02 + 92+ n?)ds),
0 0 0

2
} +O0(1) (5 + (v +71)%€2)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
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with ¢; > 0 a constant.
Step 4

1
/0 (W7 + 07 + % + 02+ 4%+ n7)dx < O1)| (Yo, 10, Jo, ko) |32 exp{ Bt} (2.27)

1
/O (62 + 63} + eim)dl‘ < O(l)H(wOv ’r]OajOa kO)H%[Q exp{_ﬁlt} (228)

with 81 > 0 a constant, provided that €1 is small enough.
We prove (2.27) now.
Differentiating (2.4) with respect to x and using (2.2) and (2.6), we obtain

j2
Y+n
Multiplying (2.29) with ¢ and integrating over [0, 1], one has, by (2.7) and integrating

Yyt + Yy + Ypeg + (Y + 1) (Y —n) — [ +p(Y+n)— p(ﬁ)} =0. (2.29)

rxr

by parts, that

d

o R e w?d:c+/ (atrea + v~ 0o+ [ (47~ dm)da

+A v+n

1 1

It is easy to show that / (¢ — ?n)dz is bounded by 0(51)/ ¥?. By the Hoélder
0 0

inequality and (2.14), we get

(Y +n) — p(ﬁ))wwxda: = 0. (2.30)

/01 betbends > —0(59(/01 e§)1/2(/01 W) 2z > —0(e)) /Ol(w2 e, (2.31)

By (2.2), we have

L, 42 L2ty 292
/(¢+ )%’_7/{éin_XJ+me
> ~0(e) [ + v (2.32)

In view of (2.7), by Poincaré inequality, we have

1

/1(}?(7# + 1) — p(n))spedr = / p/(¢ + ﬁ)¢§d$
0 0
1
> 0(1) /O (2 + 92)dz. (2.33)

Thus, (2.30)-(2.33) imply

d

dt/ ( 0P ) dm—/ ¢tdm+a1/l<w2+w§)d:c+ﬁ/01<w2—wmdx

< 0(51)/0 (Y2 +n?)dz. (2.34)
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where a; is a positive constant. Differentiating (2.5) with respect to x, by the alike
process as above, one has
d Ly 'y Lo o R
f/ (572 + mm dw—/ ntdﬂf+az/ (n +nx)dw+h/ (n” —n)dz
dt 2 0 0 0
1
<0e) [t} + e

where a9 is a positive constant. Next, multiplying (2.29) by 1y and integrating it over
= (1, ¢) = 0, that

(2.35)

[0, 1], we have, using (0, t)
¢ [ 50 +nw2 ot [Cwpae—a [Cwnde s [0 e+ [ etands

dt
+ /0 m ), Wroda + /0 p(v+7) = p(R)) Vizdz = 0. (2.36)

1 1
It is easy to see that / (v — n)Ypedr is bounded by 0(61)/ (¢? + ¢?)dz, and
0 0

1 1
exzthrdr by O(eq) / (¢? + 1p?)dz, with the help of (2.14). The last two integrals
0

n (2.36) are estimated as follows.

1 1
| 1o+ 1) = p)atinads = | pw + )t
0 0
L P (Y +n): — 2/ " (¢ + n)pide

d
=
d
d—/o o7+ )62~ ey / Vde.  (2.37)

By (2.2) and (2.21), we get
2 - /1 2¢tj1/]tx dr — /1 j2'¢:)ﬂ/}m dx
; _—

Log
/0 <¢+ﬁ)x¢“dl’: b+ @ +n)?
- Z/ﬁiﬁz ot [ e [ e
N e
> jtjoli(ﬁwz) dw—O(sl)/ol(wi+w$+w2+n2>daz

— O(e1) exp{—cot} /0 2de. (2.38)

From (2.36)-(2.38), it follows

d 72
[ 4pemd - L [ e —n [ s

1
<O [ W2+t + w§>dx O el -at) [ e (239)
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The corresponding estimate for 7 is

k2n2
(n+ h)?

1 1
< 0(e1) / (02 + 0>+ + n?)dx + O(e1) exp{—cot} / k3dx. (2.40)
0 0

d [t - _ 1 st
— / {77,52 + hn2 + q/(77 + h)ni — ]dx + 2/ nfdx — 2h/ Yndx
dt Jo 0 0

h x (2.39) + n x (2.40) gives

d/1 Rl?+nyg? + ’(w—l—ﬁ)@/ﬂ—%}—%ﬁ[ 24 h? + 9/ (n + h)n?
dt 0 t p T ('(/}‘i‘ﬁ)Q UD n pn N
k277926 —7 R _ o
_m}—thwn dm+2h/0 wtdx—l-Qn/O n; dx

<O [ W3+ 9% 402 407 407+ )+ Oer) xpf—cot) [ (45 + i) (241)

Thus, h x (2.34) + 7 x (2.35) + (2.41) yields

d o1l 5 2 2 N2 70
a/o {hbi/} + Yy + ) + 1y +P(¢+”)¢x—m]
1 _ _ ]€2 2
o 0?4 O+ R ﬁ}

_ 1
- 2nh¢n}dfc + as/ (W + 2+ 97 + 0 + 02+ n7)dz
0

<O(e1) exp{—cot} /Ol(k‘g + jo)dz. (2.42)

with a3 > 0 a constant if ¢; is small enough. By Young inequality and (2.12), we can
show that

ea (W2 + 02 + vF + 1P + 2 + 0}

AL 2, - / o 4577
Shbw + b+ p + Y+ p (P + )y — m}
7l _ _ 4k>n? -
o e+ nf g (g + Rl — ﬁ] — 2nhyn
<er (02 + 92+ 0+ + 02 + ) (243)

for some positive constants co < ¢1, provided ; is small enough.

This combined with (2.41) implies (2.27). And (2.28) follows from (2.27), (2.14),
(2.6) and Poincaré inequality.

Step 5

1
/0 (7 -+ i Vo 17 + 1+ 0+ 1) dz < O(1)]| (Yo, 10)[| 772 exp{— ot} (2.44)
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1
| (€4 €2+ 2 < O (Woum) e exo{ Gt} (245)

with B2 > 0 a constant, provided that €; is small enough.
We prove (2.44) first. Differentiating (2.29) with respect to ¢, we have

Ve + Ve + (Ve — M) + Vurer + Yuear + (P(Y —1))e

2
J — - _
- [w oo A) )] =0, (2.46)
Multiplying (2.46) with ¢, and integrating it over [0, 1], and using ¥,(0,t) = ¢4 (1,t) =
0, we get

1 1 1
& [ Got+vads — [ hdo+n [ 02— dim)do+ [ (s + reainds

1
dt 0

1, 42 1
+ /0 Lﬂj-l- = +p( +n) — p('ﬁ)}mt@bxtdl‘ + /0 (V(p —n))bpdz = 0. (2.47)

1
The last integral of the above equality is bounded by O(eq) / (Y% + n* + ¥?). The
0

other integrals in that equality can be treated as follows.
By (2.6) and (2.15), we have

1 1 1
/0 (Q;Z)xte:c +¢xext)wtdx :/O ¢x6xt¢tdx - ;/0 ¢t2€xx
1
> ~0(e) [ (wf +)da. (2.49)
0
By (2.2) and (2.21), we have

1. a2
/0 {ﬁ} ot Vo4

_ /1{2jtjz e it 2debe  PUm 2j2wx¢t} bord
o lp+a  Yrn @W+n)? @W+a)? (@+a)?  (@+a)pBlTT

1
>~ 0(e1) /0 (2 + 2 + 2 + 02 + 92, + 2 )da

1
—O(sl)exp{—cot}/o jed. (2.49)

1 1 1
| o+ 1) = p@einde = [ @+ mp2da+ [ 80+ it
0 0 0
1 1
> [P+ nud - o) [ W+ vk)de. (250)
0 0

Thus (2.47)-(2.50) imply

d

11 1 , B 1 B 1
G [ Gui s vsde+ [ W+ muide— [ vhde+n [ @R = vm)da
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1
< 0(e1) /0 (W2 4 0% + 2 + g2 + 2, + 92)dx
1
+ O(el)exp{—c(]t}/ jadaz. (2.51)
0

The corresponding estimates for n are

d

11 1 ~ 1 S
*/ (*n3+ntmt)d:ﬂ+/ Q’(n+h)n§tdfﬂ—/ nftdw+h/ (nf — Yune)da
dt Jo "2 0 0 0

1
< 0(61)/ (0% +0? + 47+ + 1) de
0
1
+ O(e1) exp{—cot}/ k3dz. (2.52)
0

Multiplying (2.46) by ¢y and integrating it over [0, 1], we have

d

11 1 1 1
- / *(%21, + W?)dw + / ¢§tdﬂf - ﬁ/ NeYpdx + / (Yuter + Yyept)Yude
dt Jo 2 0 0 0

+ /01 [wj_i - +p(¥ +n) —P(ﬁ)]zt¢mttd$ + /01 [@ZJ(@Z} - n)L@bttd;p =0. (2.53)

1
It is easy to see that the last integral in (2.53) is bounded by 0(51)/ (V2 +n? +
0

Y2 )dz. Next, we estimate the other integrals.
By (2.14) and (2.15), we get

1 1 1 1
|| Wares + vueayiude <0G [ (e +ui)de+ 5 [ led (03 +vR)de
0 0 0
1
<O(ey) [t + 0+ + v)do. (254

By (2.2), we have

1 -2 L9244 2,1 9 '1/12
/0 [w‘i ﬁ]xthttdx :/0 M;; + ﬂr; _ wi;)QWmdaz

Lr 2524 257t L 520
= [ap @ pa e = [ e
=Iy + I + Ig. (2.55)

Using (2.24) and ¢4(0,t) = ¢y (1,t) = 0, we have

Iy = - /01 [ﬂahwidx * /01 [wzﬁv - ijf%]xw“dx

1 1
> 0(1) /0 V2 (g + ju)dz — O(1) /0 Drtht Gy + by da
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1
1) /0 V(02 + ety + 2)de

1
>~ 0(c1) / (2 + 02, + $2)da, (2.56)

d [t 2% 257t
= Jy (o ~ @ s

Lo 255 2]'2% 2th 2520 1 9
d 2jjt 2j2¢t

dt Jo {(w +n)? (Y ﬁ)methdx
1
—0(ey) /0 (02, + 92 + 52 + % + j2)dz,

(2.57)
and
7 05 ]]tht B /1 Peg Uz
2¢+n (¢ +n)? o (¢¥+n)
2., .2 2
/ iy e~ OLe )/0 (W 02+ 0% 40P + 92 do
—O(sl)exp{—cot}/ jedz. (2.58)
0
Thus (2.55) — (2.58) imply
Lr g2 d Y1 257 2]t 73
/0 [w+ } w’”“dx—dt/ [(¢+ﬁ)3_(w+ﬁ) (w+n) 7)o
1
- 0(61>/0 (W + 0% + 07 +9f + ¥+ U + Ji)da
— O(e1) exp{—cot} /1 jad. (2.59)
0

By ¥4(0,t) = ¥y (1,t) = 0, we have
1
/0 [p(@b + ﬁ) - p(ﬁ)]xtd]xwtdx

1
= /0 (0" (¢ + R)pipe + D' (¢ + 1) at| Yo d

1
:% : ; (¢+n)¢xtd$—/ P (¥ + R 2y dr — */ (4 + R)Yb?,

_/0 p/,(¢ + ﬁ)wt:ﬂ¢xwttdx _/0 p (w + ﬁ)¢t¢xm¢ttd$
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da (1, o Lo ) , ,
Z% /0 oP (Y + n)pgdr — O(eq) /0 (Vi + s, + e + Yi)de. (2.60)

On the other hand, we differentiate (2.4) with respect to ¢, and have with the help
of (2.14), (2.15), (2.19) and (2.21), that:

/01 jadr <O(1) /01 [u}jj - +p(+n) —p(ﬁ)Ltdx

1
+0(1)/0 (2 + 92 + 02 + €2, + e2)da
1
<O [ (6% + P + 97 + 1 + 0
1
+ ¢t2t)d$ + O(1) exp{—cot} /0 jgda:. (2.61)
Thus, (2.53), (2.54), (2.59), (2.60) and (2.61) give

d (1, , 2jji 252 722
@/0 W+~ et Al s R

1 1
—I-/O 1/1,52tdx—ﬁ/0 Needx

1
<0(e1) /0 (2 + 12 + 02+ 62 + 02, + 92 )da
+ O(e1) exp{—cot} /01 jedz. (2.62)

The same procedure gives:

d 1 9 T 9 2kky 2k>n; k03,
- Z hn?) — i - — T __1d
&y [+~ o+ e

1 ol
+/ nhdx — h/ Yendx
0 0
1
<O(e) [ (W20 + 2 41 + o+ )
1
+o(e1) exp{—cot}/ k3dz. (2.63)
0
By(2.27), h x (2.51) + 7 x (2.53) + 2h x (2.62) + 27 x (2.63) leads to
d 45t 45%1 7203

Lrl o 2y =002
a/0 h[iwt + Yithu + Py + 10 + (W+n)? (p+n)3 (¢+ﬁ)2]d$

(n+h?2  (m+h)3  (n+h)?

d o r1 - Akk 4k2 E2n?2
+ @/@ ﬁbn? + Nt + Miy + b+ d L L }d:c
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d [t - _ ol i Ca )
_ £/0 2nhpnedx + h/o (Vi +p/(¢+n)¢§t)dx+n/o (2 + ¢ (7 + R)nZ)de

<O(e1)|l (v, M0, Jo, ko) |3 (exp{—cot} + exp{—Fit})

1
+oler) [+ + v+ n2)da (264

In addition, from (2.29), we have

1 1
| ke <O [0+ 02+ 02+ 0k + 2+ P (265)

The similar estimate for 7, is

1 1
/ 2 de < O(1) / W2+ 02+ 12, + 02 + €+ k2)da. (2.66)
0 0

By the same argument as (2.43), using(2.64)-(2.66), we can prove (2.44). It is easy
to see that (2.45) follows from (2.6), (2.15) and (2.7).

Proof of Theorem 1

Based on Lemma 2, the proof of Theorem 1 is standard. In fact, combining the
standard theory of existence and uniqueness of local (in time) solutions ( see, for in-
stance Majda [6]) with the estimates (2.13), we can extend the local solution by the
usual continuation arguments and show that the estimates (2.13) hold globally( see, for
instance Hsiao and Luo [7]) if the perturbation ||(¢0, 70, jo, ko)l g2 is sufficiently small.
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