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utt + k1uxxxx + k2uxxxxt + g(uxx)xx = f(x, t)

are proved by Galerkin method and the sufficient conditions of blow-up of solution in
finite time are given.

Key Words Nonlinear hyperbolic equation, initial boundary value problem, global
solution, blow-up of solution

2000 MR Subject Classification 35L35, 35G30.
Chinese Library Classification O175.27, O175.29, O175.4.

1. Introduction

In this work we devote to the following damped nonlinear hyperbolic equation

utt + k1ux4 + k2ux4t + g(uxx)xx = f(x, t), x ∈ Ω, t > 0 (1.1)

with the initial boundary value conditions

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0, t > 0, (1.2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω (1.3)

or with

ux(0, t) = ux(1, t) = 0, ux3(0, t) = ux3(1, t) = 0, t > 0, (1.4)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω (1.5)

or with

u(0, t) = u(1, t) = 0, ux(0, t) = ux(1, t) = 0, t > 0, (1.6)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ Ω, (1.7)
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where u(x, t) denotes an unknown function, k1 and k2 are two positive constants, g(s)
is a given nonlinear function, f(x, t) is a given function, ϕ(x) and ψ(x) are given initial
value functions which satisfy the continuous conditions:

ϕx2k(0) = ϕx2k(1) = ψx2k(0) = ψx2k(1) = 0, (k = 0, 1) in (1.3);

ϕx2k+1(0) = ϕx2k+1(1) = ψx2k+1(0) = ψx2k+1(1) = 0, (k = 0, 1) in (1.5)

and Ω = (0, 1).
The equation (1.1) describes the motion for a class of nonlinear beam models with

linear damping and general external time dependent forcing; for more physical inter-
pretation of the equation (1.1) we refer to [1, 2].

The equation (1.1) and its multidimensional case have attracted much attention in
recent years; for the well-posedness we refer to [3–5]. In [2] the authors have proved
that the problem (1.1), (1.6), (1.7) has a unique global weak solution. In [1] the
authors have been successful in proving the global existence of weak solutions for the
multidimensional problem (1.1), (1.6), (1.7) by using a variational approach and the
semigroup formulation. The energy decay of the mutidimensional problem (1.1), (1.6),
(1.7) was given in [6].

In this paper, we are going to prove that the problem (1.1)-(1.3) or the problem
(1.1), (1.4),(1.5) has a unique generalized global solution and a unique classical global
solution by Galerkin method. We shall also show that the problem (1.1), (1.6), (1.7)
has a unique generalized local solution. Finally, some sufficient conditions of blow-up
of the solution for the problem (1.1), (1.6), (1.7) are given.

Throughout this paper, we use the following notations:‖ · ‖, ‖ · ‖Qt , ‖ · ‖∞, ‖ · ‖p(Ω)

and ‖ · ‖p(Qt) denote the norm of spaces L2(Ω), L2(Qt), L∞(Ω), Hp(Ω) and Hp(Qt),
where Qt = Ω× (0, t) and 1 ≤ p <∞.

2. Global existence and uniqueness of solutions

In order to prove that the problem (1.1)-(1.3) has the generalized global solution
and the classical global solution, we now introduce an orthonormal base in L2(Ω). Let
{yi(x)} be the orthonormal base in L2(Ω) composed of the eigenvalue problem

y′′ + λy = 0, x ∈ Ω,

y(0) = y(1) = 0

corresponding to eigenvalue λi(i = 1, 2, · · ·), where ”′” denotes the derivative. Let

uN (x, t) =
N∑

i=1

αNi(t)yi(x) (2.1)

be Galerkin approximate solution of the problem (1.1)-(1.3), where αNi(t) (i = 1, 2, · · · ,
N) are the undetermined functions, N is a natural number. Suppose that the initial
value functions ϕ(x) and ψ(x) may be expressed
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ϕ(x) =
∞∑
i=1

aiyi(x), ψ(x) =
∞∑
i=1

biyi(x),

where ai, bi(i = 1, 2, · · ·) are constants. Substituting the approximate solution uN (x, t)
into (1.1), multiplying both sides by ys(x) and integrating on Ω, we obtain

(uNtt + k1uNx4 + k2uNx4t + g(uNxx)xx, ys) = (f, ys), s = 1, 2, · · · , N, (2.2)

where (·, ·) denotes the inner product of L2(Ω). Substituting the approximate solution
uN (x, t) and the approximations

ϕN (x) =
N∑

i=1

aiyi(x), ψN (x) =
N∑

i=1

biyi(x)

of the initial value functions into (1.3), we have

αNs(0) = as, αNst(0) = bs, s = 1, 2, · · · , N. (2.3)

Lemma 2.1 Suppose that g ∈ C2(R), G(s) =
∫ s
0 g(y)dy ≥ 0, ∀s ∈ R, g(0) = 0;

f ∈ L2(QT ); ϕ ∈ H3(Ω) and ψ ∈ L2(Ω). Then for every N , the Cauchy problem
(2.2), (2.3) for the system of the ordinary differential equations has a classical solution
αNs ∈ C2[0, T ](s = 1, 2, · · · , N) and the following estimation holds

‖uN‖2
2(Ω) + ‖uNt‖2 + ‖uNx2t‖2

Qt
+

∫
Ω

∫ uNx2

0
g(y)dydx ≤ C1(T ), t ∈ [0, T ], (2.4)

where and in the sequel C1(T ) and Ci(T )(i = 2, 3, · · ·) are constants which depend on
T , but do not depend on N .

Proof Multiplying both sides of (2.2) by 2αNst, summing up the products for
s = 1, 2, · · · , N , adding 2(uN , uNt) to the above both sides and integrating by parts
with respect to x, we get

d

dt
(‖uN‖2 + ‖uNt‖2 + k1‖uNx2‖2 + 2

∫
Ω

∫ uNx2

0
g(y)dydx)

+ 2k2‖uNx2t‖2 ≤ ‖f‖2 + 2‖uNt‖2 + ‖uN‖2. (2.5)

Observe that the following properties of the orthonormal base {yi(x)} on the boundary
points of Ω have been used in (2.5):

y
(2m)
i (0) = y

(2m)
i (1),m = 0, 1, 2, · · · ; i = 1, 2, · · · ,

where (2m) denotes the order of the derivatives of the function yi(x). Gronwall in-
equality yields from (2.5)

‖uN‖2 + ‖uNt‖2 + k1‖uNx2‖2 + 2k2‖uNx2t‖2
Qt

+ 2
∫
Ω

∫ uNx2

0
g(y)dydx

≤e2T {(1 + k1)‖ϕ‖2
2(Ω) + ‖ψ‖2 + 2

∫
Ω

∫ ϕx2

0
g(y)dy

+ ‖f‖2
Qt

+ 1}, t ∈ [0, T ]. (2.6)
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It follows from (2.6) that the estimation (2.4) holds.
Similarly in [7], we can prove from (2.6) by Leray-Schauder fixed point theorem

that the Cauchy problem (2.2),(2.3) has a solution αNs ∈ C2[0, T ](s = 1, 2, · · · , N).
The lemma is proved.

Lemma 2.2 Suppose that the conditions of Lemma 2.1 and the following con-
ditions hold: g ∈ C3(R), ∀s ∈ R, g′(s) ≥ 0, g′′(0) = 0; ϕ ∈ H5(Ω); ψ ∈ H3(Ω);
fx ∈ L2(QT ) and f(0, t) = f(1, t) = 0. Then the approximate solution uN (x, t) has the
estimation

‖uNt2‖2
Qt

+ ‖uN‖2
5(Ω) + ‖uNt‖2

3(Ω) + ‖uNt‖2
5(Qt)

≤ C2(T ), t ∈ [0, T ]. (2.7)

Proof Multiplying both sides of (2.2) by λsαNs(t), summing up the products for
s = 1, 2, · · · , N , integrating with respect to t and integrating by parts with respect to
x, we have

−2
∫ t

0

∫
Ω
uNt2uNx2dxdτ + 2k1

∫ t

0

∫
Ω
u2

Nx3dxdτ + k2

∫ t

0

d

dτ
‖uNx3‖2dτ

+ 2
∫ t

0

∫
Ω
g′(uNx2)u2

Nx3dxdτ = −2
∫ t

0

∫
Ω
fuNx2dxdτ. (2.8)

Integrating by parts with respect to t, we get

−2
∫ t

0

∫
Ω
uNx2uNt2dxdτ =− 2

∫
Ω
uNtuNx2dx+ 2

∫
Ω
ψNϕNx2dx

+ 2
∫
Ω

∫ t

0
uNtuNx2tdxdτ. (2.9)

Substituting (2.9) into (2.8), using Hölder inequality, assumptions and (2.4), we obtain

‖uNx3‖2 + ‖uNx3‖2
Qt
≤ C3(T ), t ∈ [0, T ]. (2.10)

Multiplying both sides of (2.2) by 2λ2
sαNst(t), summing up the products for s =

1, 2, · · · , N , we have

d

dt
(‖uNx2t‖2 + k1‖uNx4‖2) + 2k2‖uNx4t‖2 = −2

∫
Ω
(g′′(uNx2)u2

Nx3uNx4t

+ g′(uNx2)uNx4uNx4t)dx+ 2
∫
Ω
fuNx4tdx. (2.11)

It follows from (2.4), (2.10) and Sobolev embedding theorem, that

‖uN‖C2(Ω) ≤ C4(T ), t ∈ [0, T ]. (2.12)

Using Gagliardo-Nirenberg interpolation theorem, we have

‖uNx3‖L4(Ω) ≤ C5‖uNx3‖
3
4 ‖uNx3‖

1
4

1(Ω). (2.13)
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By use of Young inequality, (2.4), (2.10), (2.12) and (2.13), it follows from (2.11) that

d

dt
(‖uNx2t‖2 + k1‖uNx4‖2) + k2‖uNx4t‖2

≤C6(T )‖uNx4‖2 + C7‖f‖2 + C8(T ), t ∈ [0, T ]. (2.14)

Gronwall inequality yields from (2.14)

‖uNx2t‖2 + ‖uNx4‖2 + ‖uNx4t‖2
Qt
≤ C9(T ), t ∈ [0, T ]. (2.15)

Multiplying both sides of (2.2) by αNst2(t), summing up the products for s = 1, 2, · · · , N ,
integrating over (0, t) with respect to t, observing (2.4), (2.15) and Sobolev embedding
theorem, we obtain

‖uNtt‖Qt ≤ C10(T ), t ∈ [0, T ]. (2.16)

Multiplying both sides of (2.2) by −2λ3
sαNst(t), summing up the products for s =

1, 2, · · · , N and integrating by parts with respect to x, we have

d

dt
(‖uNx3t‖2 + k1‖uNx5‖2) + 2k2‖uNx5t‖2 + 2

∫
Ω
g(uNx2)x3uNx5tdx

= 2(fx, uNx5t). (2.17)

By use of Hölder inequality, (2.4), (2.15) and Sobolev embedding theorem, it follows
from (2.17) that

‖uNx3t‖2 + ‖uNx5‖2 + ‖uNx5t‖Qt ≤ C11(T ), t ∈ [0, T ]. (2.18)

From (2.4), (2.16) and (2.18) we see that (2.7) holds. This completes the proof of the
lemma.

Theorem 2.1 Under the conditions of Lemma 2.2, the problem (1.1)-(1.3) has a
unique generalized global solution u(x, t), i.e. u(x, t) satisfies the identity∫ T

0

∫
Ω
{utt + k1ux4 + k2ux4t + g(uxx)xx − f(x, t)}h(x, t)dxdt = 0, ∀h ∈ L2(QT )

and the initial boundary value conditions (1.2), (1.3) in the classical sense. The solution
u(x, t) has the continuous derivatives uxi(x, t)(i = 1, 2) and the generalized derivatives
uxi(x, t), uxit(x, t)(i = 3, 4, 5) and utt(x, t).

Proof From Lemma 2.2 and Sobolev embedding theorem we know that

‖uN‖C4,λ(Ω) ≤ C12(T ), ‖uNt‖C2,λ(Ω) ≤ C13(T ), t ∈ [0, T ], (2.19)

where 0 < λ ≤ 1
2 . It follows from (2.19) and Ascoli-Arzelá theorem that there exist a

function u(x, t) and a subsequence of {uN (x, t)} still denoted by {uN (x, t)} such that
when N → ∞, {uN (x, t)}, {uNx(x, t)} and {uNx2(x, t)} uniformly converge to u(x, t),
ux(x, t) and ux2(x, t) on QT respectively. We also know from the estimation (2.7)
that subsequences {uNxi(x, t)}, {uNxit(x, t)}(i = 3, 4, 5), {u2

Nx3(x, t)} and {uNt2(x, t)}
weakly converge to uxi(x, t), uxit(x, t) (i = 3, 4, 5), u2

x3(x, t) and ux2(x, t) in L2(QT )



54 Chen Guowang Vol.16

respectively. Thus we can prove by weakly compact theorem of the space L2(QT ) that
the problem (1.1)-(1.3) has a generalized global solution.

Now, we prove the uniqueness of the generalized solution u(x, t). Suppose that
u1(x, t) and u2(x, t) are two generalized solutions of the problem (1.1)-(1.3). Let
w(x, t) = u1(x, t) − u2(x, t). Then w(x, t) satisfies the initial boundary value prob-
lem

wtt + k1wx4 + k2wx4t + g(u1xx)xx − g(u2xx)xx = 0, x ∈ Ω, t > 0, (2.20)

w(0, t) = w(1, t) = 0, wxx(0, t) = wxx(1, t) = 0, t > 0, (2.21)

w(x, 0) = 0, wt(x, 0) = 0, x ∈ Ω. (2.22)

Multiplying both sides of the equation (2.20) by 2wt(x, t), adding 2wwt to the both
sides and integrating over Ω, we get by calculation

d

dt
(‖w‖2 + ‖wt‖2 + k1‖wx2‖) + 2k2‖wx2t‖2

= −2
∫
Ω
g′(u1xx + θ(u2xx − u1xx)wxxwtdx+ 2

∫
Ω
wwtdx, (2.23)

where 0 < θ < 1. Since g′(u1xx + θ(u2xx − u1xx)) is bounded, it follows from (2.23)
that

‖w‖2 + ‖wt‖2 + ‖wxx‖2 + ‖wxxt‖2
Qt
≤ C

∫ t

o
(‖w‖2 + ‖wt‖2 + ‖wxx‖2)dτ,

where C is a constant, Gronwall inequality yields

‖w‖2 + ‖wt‖2 + ‖wxx‖2 = 0.

Therefore, u1(x, t) = u2(x, t).
The theorem is proved.
In order to prove that the problem (1.1)-(1.3) has a classical global solution, we

make further estimations for the approximate solution uN (x, t).
Lemma 2.3 Suppose that the conditions of Lemma 2.2 and the following con-

ditions hold: g ∈ C7(R), g(2m)(0) = 0(m = 2, 3); ϕ ∈ H9(Ω); ψ ∈ H9(Ω); f ∈
H1((0, T );H3(Ω)) ∩ C1([0, T ];H1(Ω)), f(x, 0) ∈ H5(Ω) and fx2m(0, t) = fx2m(1, t) =
0(m = 1, 2). Then the approximate solution uN (x, t) has the estimation

‖uN‖2
7(Ω) + ‖uNt‖2

7(Ω) + ‖uNt2‖2
5(Ω) + ‖uNt3‖2

1(Ω) ≤ C14(T ), t ∈ [0, T ]. (2.24)

Proof Multiplying both sides of (2.2) by −2λ5
sαNst(t), summing up the products

for s = 1, 2, · · · , N and integrating by parts with respect to x, we obtain

d

dt
(‖uNx5t‖2 + k1‖uNx7‖2) + 2k2‖uNx7t‖2 + 2

∫
Ω
g(uNx2)x5uNx7tdx

= 2
∫
Ω
fx3uNx7tdx. (2.25)
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By use of straightforward calculation, it follows from (2.25) that
d

dt
(‖uNx5t‖2 + k1‖uNx7‖2) + k2‖uNx7t‖2

≤ C15(T )‖uNx7‖2 + C16‖fx3‖2 + C17(T ). (2.26)

Gronwalll inequality from (2.26) yields

‖uNx5t‖2 + ‖uNx7‖2 + ‖uNx7t‖2
Qt
≤ C18(T ), t ∈ [0, T ]. (2.27)

Differentiating (2.2) with respect to t, we have

(uNt3 + k1uNx4t + k2uNx4t2 + g(uNx2)x2t, ys) = (ft, ys). (2.28)

Multiplying both sides of (2.28) by −λ5
sαNst2(t), summing up the products for s =

1, 2, · · · , N , integrating by parts with respect to x, using (2.27) and Sobolev embedding
theorem, we obtain

d

dt
(‖uNx5t2‖2 + k1‖uNx7t‖2) + 2k2‖uNx7t2‖2

≤ C19(T )‖uNx7t‖2 + ‖fx3t‖2 + C20(T ). (2.29)

Multiplying both sides of (2.2) by −λ5
s αNst2 (t), summing up the products for

s = 1, 2, · · · , N , integrating by parts with respect to x and taking t = 0, we have
‖uNx5t2(·, 0)‖2 ≤ C21. By use of Gronwall inequality, it follows from (2.29) that

‖uNx5t2‖2 + ‖uNx7t‖2 + ‖uNx7t2‖2
Qt
≤ C22(T ), t ∈ [0, T ]. (2.30)

Multiplying both sides of (2.28) by αNst3(t) and summing up the products for s =
1, 2, · · · , N , we obtain

‖uNt3‖2 ≤ C23, t ∈ [0, T ]. (2.31)

Multiplying both sides of (2.28) by −λsαNst3(t), summing up the products for s =
1, 2, · · · , N and integrating by parts with respect to x, we have

‖uNxt3‖2 ≤ C24(T ), t ∈ [0, T ]. (2.32)

It follows from (2.7), (2.27), (2.30), (2.31) and (2.32) that (2.24) holds. The lemma is
proved.

Theorem 2.2 Under the conditions of Lemma 2.3, the problem (1.1)-(1.3) has a
unique classical global solution u(x, t).

Proof We know from (2.24) and Sobolev embedding theorem that

‖uN‖C6(Ω) ≤ C25(T ), ‖uNt‖C6(Ω) ≤ C26(T ),

‖uNt2‖C4(Ω) ≤ C27(T ), ‖uNt3‖C(Ω) ≤ C28(T ), t ∈ [0, T ]. (2.33)

Using the estimation (2.33) and Ascoli-Arzelá theorem, we can prove that the problem
(1.1)-(1.3) has a unique classical global solution u(x, t). Since the generalized solution
is unique, the classical solution also is unique. The theorem is proved.
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Similarly, we can prove the following theorem.
Theorem 2.3 Suppose that g ∈ C3(R), ∀s ∈ R, G(s) =

∫ s
0 g(y)dy ≥ 0, g′(s) ≥ 0;

ϕ ∈ H5(Ω); ψ ∈ H3(Ω) and fx ∈ L2(QT ). Then the problem (1.1), (1.4), (1.5) has a
unique generalized global solution u(x, t), i.e. u(x, t) satisfies the identity∫ T

0

∫
Ω
{utt + k1ux4 + k2ux4t + g(uxx)xx − f(x, t)}h(x, t)dxdt = 0, ∀h ∈ L2(QT )

and the initial boundary value conditions (1.4), (1.5) in the classical sense. The solution
u(x, t) has the continuous derivatives uxi(x, t) (i = 1, 2) and the generalized derivatives
uxi(x, t), uxit(x, t) (i = 3, 4, 5) and utt(x, t).

Except the above assumptions if g ∈ C7(R); ϕ ∈ H9(Ω); ψ ∈ H9(Ω); f ∈ H1((0, T );
H3(Ω)) ∩ C1([0, T ];H1(Ω)), f(x, 0) ∈ H5(Ω) and fx(0, t) = fx(1, t) = 0, then the
problem (1.1), (1.4), (1.5) has a unique classical global solution u(x, t).

3. Blow-up of solution

In this section we are going to consider the blow-up of solution. First of all, we can
prove the existence and uniqueness of the generalized local solution for the equation
(1.1) (f(x, t) = 0) with (1.6), (1.7) by the contraction mapping principle as in [8]. Thus
we obtain the following theorem.

Theorem 3.1 Suppose that ϕ ∈ H4(Ω), ψ ∈ H2(Ω) and g ∈ C3(R). Then the
problem (1.1), (1.6), (1.7) has a unique generalized local solution u ∈ C([0, T0);H4(Ω)),
ut ∈ C([0, T0);H2(Ω)) ∩ L2([0, T0);H4(Ω)), utt ∈ L2(QT0), where [0, T0) is a maximal
time interval.

In order to give the sufficient conditions of blow-up of the solution, we introduce
the following lemma.

Lemma 3.1[9] Suppose that u̇ = F (t, u), v̇ ≥ F (t, v), F ∈ C, t0 ≤ t < ∞,
−∞ < u <∞ and u(t0) = v(t0), then when t ≥ t0, v(t) ≥ u(t).

Theorem 3.2 Suppose that (1) sg(s) ≤ KG(s), G(s) ≤ −α|s|p+1, where G(s) =∫ s
0 g(τ)dτ , K > 2, α > 0 and p > 1 are constants,

(2) k2 = 1, ϕ ∈ H2(Ω), ψ ∈ L2(Ω),

E(0) = ‖ψ‖2 + k1‖ϕxx‖2 + 2
∫
Ω
G(ϕxx)dx

≤ −4

[(K − 2)α/(p+ 3)]
2

p−1 (1− e−
p−1
4 )

4
p−1

< 0,

then the generalized solution of the problem (1.1) (f(x, t) = 0), (1.6), (1.7) blows-up
in finite time T̃ , i.e.

‖u(·, t)‖2 +
∫ t

0

∫
Ω
u2

xx(x, τ)dxdτ +
∫ t

0

∫ τ

0

∫
Ω
u2

xx(x, s)dxdsdτ →∞, as t→
∼
T− .
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Proof Multiplying both sides of the equation (1.1) by 2ut, integrating the product
over Ω, we obtain

Ė(t) = 0, t > 0, (3.1)

where · = d
dt ,

E(t) = ‖ut(·, t)‖2 + k1‖uxx(·, t)‖2 + 2
∫
Ω
G(uxx(x, t))dx+ 2k2

∫ t

0
‖uxxt‖2dτ.

Hence
E(t) = E(0), t > 0. (3.2)

Let

M(t) = ‖u(·, t)‖2 +
∫ t

0

∫
Ω
u2

xx(x, τ)dxdτ +
∫ t

0

∫ τ

0

∫
Ω
u2

xx(x, s)dxdsdτ. (3.3)

We have

Ṁ(t) = 2
∫
Ω
u(x, t)ut(x, t)dx+

∫
Ω
u2

xx(x, t)dx+
∫ t

0

∫
Ω
u2

xx(x, τ)dxdτ. (3.4)

Using the condition (1) of Theorem 3.2 and observing

K

∫
Ω
G(uxx)dx =E(0)− ‖ut(·, t)‖2 − 2k2

∫ t

0
‖uxxt(·, τ)‖2dτ − k1‖uxx(·, t)‖2

+ (K − 2)
∫
Ω
G(uxx(x, t))dx, (3.5)

we get

M̈(t) =2
∫
Ω
{u2

t (x, t) + u(x, t)utt(x, t) + uxx(x, t)uxxt(x, t) +
1
2
u2

xx(x, t)}dx

=2
∫
Ω
{u2

t (x, t)− k1u
2
xx(x, t)− k2uxx(x, t)uxxt(x, t)− uxx(x, t)g(uxx(x, t))

+ uxx(x, t)uxxt(x, t) +
1
2
u2

xx(x, t)}dx

≥2
∫
Ω
{u2

t (x, t)− k1u
2
xx(x, t)−KG(uxx(x, t)) +

1
2
u2

xx(x, t)}dx

≥4‖ut(·, t)‖2 − 2E(0) + 2(K − 2)α
∫
Ω
|uxx(x, t)|p+1dx

+ ‖uxx(·, t)‖2 > 0, t > 0. (3.6)

It follows from (3.6) that

Ṁ(t) ≥ −2E(0)t+ 2(K − 2)α
∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ + Ṁ(0), (3.7)

M(t) ≥ −E(0)t2 + 2(K − 2)α
∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ + Ṁ(0)t+M(0), (3.8)
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where
Ṁ(0) = 2

∫
Ω
ϕ(x)ψ(x)dx+

∫
Ω
ψ2

xx(x)dx, M(0) = ‖ϕ‖2.

From (3.6)-(3.8) we have

M̈(t) + Ṁ(t) +M(t) ≥4‖ut(·, t)‖2 + 2(K − 2)α{
∫
Ω
|uxx(x, t)|p+1dx

+
∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ +

∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ}

+ ‖uxx(·, t)‖2 − 2E(0)(
t2

2
+ t+ 1)

+ Ṁ(0)(t+ 1) +M(0). (3.9)

Substituting (3.4) into the left side of (3.9) we obtain

M̈(t) + 2
∫
Ω
u(x, t)ut(x, t)dt+

∫
Ω
u2

xx(x, t)dx+
∫ t

0

∫
Ω
u2

xx(x, τ)dxdτ +M(t)

≥4‖ut(·, t)‖2 + 2(K − 2)α{
∫
Ω
|uxx(x, t)|p+1dx

+
∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ +

∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ}

+ ‖uxx(·, t)‖2 − 2E(0)(
t2

2
+ t+ 1) + Ṁ(0)(t+ 1) +M(0). (3.10)

Since M̈(t) > 0, M(t) ≥ 0 and

2
∫
Ω
u(x, t)ut(x, t)dx ≤ ‖u(·, t‖2 + ‖ut(·, t)‖2,

from (3.10) we have

M̈(t) +M(t) ≥(K − 2)α{
∫
Ω
|uxx(x, t)|p+1dx+

∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ

+
∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ} − 2E(0)(

t2

2
+ t+ 1)

+
1
2
Ṁ(0)(t+ 1) +

1
2
M(0). (3.11)

Using Hölder inequality and Poincaré inequality, we can obtain∫
Ω
|uxx(x, t)|p+1dx ≥ ‖uxx‖p+1 ≥ ‖ux‖p+1 ≥ ‖u‖p+1, (3.12)∫ t

0

∫
Ω
|uxx(x, τ)|2dxdτ ≤ t

p−1
p+1 (

∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ)

2
p+1 , (3.13)∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|2dxdsdτ ≤ (

∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ)

2
p+2 (

t2

2
)

p−1
p+1 . (3.14)

It follows from (3.13) and (3.14) respectively that
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∫ t

0

∫
Ω
|uxx(x, τ)|p+1dxdτ ≥ t

1−p
2 {

∫ t

0

∫
Ω
|uxx(x, τ)|2dxdτ}

p+1
2 , (3.15)∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|p+1dxdsdτ ≥ 2

p−1
2 t1−p{

∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|2dxdsdτ}

p+1
2 . (3.16)

Substituting (3.12), (3.15) and (3.16) into (3.11) and using the inequality

(a+ b+ c)n ≤ 22(n−1)(an + bn + cn), a, b, c, > 0, n > 1

we obtain

M̈(t) +M(t) ≥(K − 2)α{‖u‖p+1 + t
1−p
2 [

∫ t

0

∫
Ω
|uxx(x, τ)|2dxdτ ]

p+1
2

+ 2
p−1
2 t1−p[

∫ t

0

∫ τ

0

∫
Ω
|uxx(x, s)|2dxdsdτ ]

p+1
2 }

− E(0)(
t2

2
+ t+ 1) +

1
2
Ṁ(0)(t+ 1) +

1
2
M(0)

≥21−p(K − 2)αt1−pM
p+1
2 (t)− E(0)(

t2

2
+ t+ 1)

+
1
2
Ṁ(0)(t+ 1) +

1
2
M(0), t ≥ 1. (3.17)

We see from (3.7) and (3.8) that Ṁ(t) → ∞ and M(t) → ∞ as t → ∞. Therefore,
there is a t0 ≥ 1 such that when t ≥ t0, Ṁ(t) > 0 and M(t) > 0. Multiplying both
sides of (3.17) by 2Ṁ(t) and using (3.7), we obtain

d

dt
[Ṁ2(t) +M2(t)] ≥ C4t

1−p d

dt
M

p+3
2 (t) +Q(t), t ≥ t0, (3.18)

where C4 = 2(K−2)α
2p−2(p+3)

, Q(t) = [−4E(0)t+ 2Ṁ(0)][−E(0)( t2

2 + t+ 1) + 1
2Ṁ(0)(t+ 1) +

1
2M(0)].

From (3.18) we get

d

dt
[tp−1(Ṁ2(t) +M2(t)− C4M

p+3
2 (t)] ≥ tp−1Q(t), t ≥ t0. (3.19)

Integrating (3.19) over (t0, t), we have

tp−1(Ṁ2(t) +M2(t)− C4M
p+3
2 (t)) ≥

∫ t

t0
τp−1Q(τ)dτ + tp−1

0 (Ṁ2(0) +M2(0))

− C4M
p+3
2 (t0), t ≥ t0. (3.20)

Observe that when t→∞, the right-hand side of (3.20) approaches to positive infinity,
hence there is a t1 ≥ t0 such that when t ≥ t1, the right side of (3.20) is larger than or
equal to zero. We thus have

tp−1(Ṁ(t) +M(t))2 ≥ tp−1(Ṁ2(t) +M2(t)) ≥ C4M
p+3
2 (t), t ≥ t1. (3.21)

Extracting the square root of both sides of (3.21), we obtain



60 Chen Guowang Vol.16

Ṁ(t) +M(t) ≥ t
1−p
2 C

1
2
4 M

p+3
4 (t), t ≥ t1. (3.22)

We consider the following initial value problem of the Bernoulli equation

Ż + Z = C
1
2
4 t

1−p
2 Z

p+3
4 , t > t1

Z(t1) = M(t1).
(3.23)

Solving the problem (3.23), we obtain the solution

Z(t) = e−(t−t1)

M 1−p
4 (t1)−

C
1
2
4 (p− 1)

4

∫ t

t1
τ

1−p
2 e−

p−1
4

(τ−t1)dτ


4

1−p

= e−(t−t1)M(t1)H
4

1−p (t), t ≥ t1, (3.24)

where H(t) = 1− p−1
4 C

1
2
4 M

p−1
4 (t1)

∫ t
t1
τ

1−p
2 e−

p−1
4

(τ−t1)dτ . Obviously, H(t1) = 1 and

σ(t) =
p− 1

4
M

p−1
4 (t1)C

1
2
4

∫ t

t1
τ

1−p
2 e−

p−1
4

(τ−t1)dτ

≥ p− 1
4

M
p−1
4 (t1)C

1
2
4 (t1 + 1)

1−p
2

∫ t1+1

t1
e−

p−1
4

(τ−t1)dτ

= M
p−1
4 (t1)C

1
2
4 (t1 + 1)

1−p
2 (1− e−

p−1
4 ), t ≥ t1 + 1. (3.25)

From (3.8) we see that

M
p−1
4 (t)(t+ 1)

1−p
2 ≥

[
−E(0)t2 + Ṁ(0)t+M(0)

(t+ 1)2

] p−1
4

→ (−E(0))
p−1
4

as t→∞. Take t1 sufficiently large such that M
p−1
4 (t1)(t1 +1)

p−1
2 ≥ 1

2(−E(0))
p−1
4 . It

follows from (3.25) and the condition of Theorem 3.2 that

σ(t) ≥ C
1
2
4

2
(−E(0))

p−1
4 (1− e−

p−1
4 ) ≥ 1, t ≥ t1 + 1. (3.26)

Therefore
H(t) = 1− σ(t) ≤ 0, t ≥ t1 + 1.

By virtue of the continuity of H(t) and the theorem of intermediate values there is a
constant t1 <

∼
T≤ t1 + 1 such that H(

∼
T ) = 0. Hence Z(t) → ∞ as t →

∼
T−. It follows

from Lemma 3.1 that when t ≥ t1, M(t) ≥ Z(t). Thus M(t) →∞ as t→
∼
T−. Theorem

3.2 is proved.
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[8] Chen Guowang and Lü Shengguan, Initial boundary value problem for three dimensional
Ginzburg-Landau model equation in population problems (in Chinese) Acta Mathemat-
icae Applicatae Sinica, 23(4)(2000), 507-517.

[9] Li Yuesheng, Basic inequality and uniqueness of the solution for differential equations(I),
Acta Sci. Natur. Univ. Jilin, 1(1960), 7-22.


