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1. Introduction and the Main Results

In this note we are concerned with the following Cauchy problem in Rn × (0, T )

∂tv −4v + (v · ∇)v +∇P = 0, (1.1)

div v = 0, (1.2)

v(0) = v0(x), (1.3)

where v(t) = v(t, x) = (v1(t, x), v2(t, x), · · · , vn(t, x)), is the velocity field, P is the
pressure.

Definition 1.1 A vector field v ∈ L∞((0, T );L2(Rn))∩L2((0, T ); Ḣ1(Rn)) is called
the Leray–Hopf weak solution if

∫ T

0

∫
Rn

[v · ϕt + (v · ∇)ϕ · v + v · 4ϕ]dxdt = 0,

for ∀ϕ ∈ [C∞0 (Rn × (0, T )]n , with div ϕ = 0, (1.4)
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and
div v = 0, (1.5)

in the distributional sense.
For v0 ∈ L2(Rn) with div v0 = 0, the global existence of weak solution was estab-

lished by Leray and Hopf in [2] and [3]. It is still unknown whether the Leray–Hopf
weak solution to the Navier–Stokes equations is unique. As for the strong solution or
Lq(I;Lp)–solutions, it is well known that for v0 ∈ H1(Rn) (n ≤ 4) with div v0 = 0
or v0 ∈ Lr(Rn) (r ≥ n) with div v0 = 0 in distributional sense, then there exists a
local unique strong solution v ∈ C([0, T );H1(Rn)) (n ≤ 4) or Lq(I;Lp)–solution for any
space dimensions, where the maximal time existence T∗ depends on the initial data
‖v0 : H1(Rn)‖ (n ≤ 4) or ‖v0‖r in the subcritical case r > n and depends on v0 itself
in the critical case r = n, for details see [ 4–13] and [14]. As an immediate conse-
quence of regularity of analytic semigroup which is generated by the Stokes operator,
one easily sees that the strong solution (n ≤ 4) and the Lq(I;Lp)–solution belong to
the C((0, T ); C∞(Rn)), see [9] and [13]. The global in time existence of strong solution
or Lq(I;Lp)–solution is an outstanding open problem. Many authors have deduced the
sufficient conditions under which the Leray–Hopf weak solution agrees with the smooth
solution. In this direction, there is a classical result due to Serrin [12], which states that
if a Leray–Hopf weak solution belongs to Lq(I;Lp(R3)), 2

q + 3
p < 1 and q < ∞, then v

becomes the smooth solution. Later, Fabes, Jone and Riviere in [4] extend the above
criterion to the case 2

q + 3
p = 1. The case q = ∞, p = 3 in Serrin’s conditions, regularity

and uniqueness of the solution to the Navier–Stokes equations was established in [13].
For general space dimension case (2

q + n
p ≤ 1) has been studied by many authors, see

[8,9] and [13] and references therein.
Recently, Beirão da Veiga [1] obtained a sufficient condition for regularity using the

vorticity w = curl v, rather than the velocity v, his results can be stated as follows:
Theorem 1.1 Let v0 ∈ L2(R3) with div v0=0 and w0 = curl v0 ∈ L2(R3). If

the Leray–Hopf weak solution v satisfies w = curl v ∈ Lq(I;Lp(R3)) with 2
q + 3

p ≤ 2,
1 < q < ∞, then v becomes the classical solution on I = (0, T ).

In [15] Dongho Chae & Hi–Jun Choe extended the results of [1] as:
Theorem 1.2 Let v0 ∈ L2(R3) with div v0=0 and ω0 = curl v0 ∈ L2(R3). Let v

be the Leray–Hopf weak solution to (1.1), w = curl v. Assume that ω̃ ∈ Lq(I;Lp(R3))
with 2

q + 3
p ≤ 2, 1 < q < ∞, where

ω̃ = ω1e1 + ω2e2, e1 = (1, 0, 0), e2 = (0, 1, 0). (1.6)

Then v becomes the classical solution on I = (0, T ).
In (1.6) ω1e1 or ω2e2 can be replaced by ω3e3, which means that the regularity of

the solution of (1.1) depends on two components of the vorticity field.
In this note, we shall give a simple proof of Theorem 1.1 and its generalization in

higher dimensions.
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Theorem 1.3 Let r ≥ n, v0 ∈ L2(Rn)∩Lr(Rn) with div v0=0 and ω0 = curl v0 ∈
L2(Rn). If the Leray–Hopf weak solution v satisfies ω = curlv ∈ Lq̃(I;Lp̃(Rn)) with
2
q̃ + n

p̃ ≤ 2, 1 < q̃ < ∞, then v becomes the classical solution on I = (0, T ).
Remark 1.1 When n ≤ 4, v0 ∈ L2(Rn) and curl v0 ∈ L2(Rn) imply ∇v0(x) ∈

L2(Rn). In fact, ∫
Rn

|∇v0|2dx =
∫

Rn

|dvi v0|2dx +
∫

Rn

|curl v0|2dx

=
∫

Rn

|curl v0|2dx, (1.7)

by div v0(x) = 0. One finds that v0 ∈ H1(Rn), so we have that v0 ∈ Ln(Rn) if
2 ≤ n ≤ 4.

2. The Proof of Theorem 1.3

The IVP (1.1) can be written as the following abstract Cauchy problem [7]{
∂tv + Av + P∂ · (v ⊗ v) = 0, x ∈ Rn, n ≥ 2, t > 0

v(0) = v0(x),
(2.1)

where v = v(t): Rn → Rn is the velocity field, A = P4, P is the projection operator
into divergence-free vectors along gradients, v ⊗ v is the tensor with jk- components
vjvk and ∂ · (v ⊗ v) is the vector with j-component ∂k(vjvk). Of course, A generates
an analytic operator semigroup in Lp with divergence-free vectors, where 1 < p < ∞.

For convenience, we introduce the admissible triplet and generalized admissible
triplet before we prove our main results.

Definition 2.1 We call (p, q, r) an admissible triplet if

1
q

=
n

2
(
1
r
− 1

p
), (2.2)

where

1 < r ≤ p <

{ nr

n− 2
, n > 2,

∞, n ≤ 2.
(2.3)

Definition 2.2 We call (p, q, r) a generalized admissible triplet if

1
q

=
n

2
(
1
r
− 1

p
), (2.4)

where

1 < r ≤ p <

{ nr

n− 2r
, n > 2r,

∞, n ≤ 2r.
(2.5)
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Remark 2.1 (i) The admissible triplet was introduced in [10, 16], for its generalied
form can be founded in [11].

(ii) It is easy to see that r < q ≤ ∞ if (p, q, r) is an admissible triplet. Also one
has that 1 < q ≤ ∞ if (p, q, r) is a generalized admissible triplet.

(iii) One can deal with the well posedness of the nonlinear parabolic equations and
Navier–Stokes equations in the working space Lq(I;Lp) with initial data v0 ∈ Lr (with
div v0(x) = 0 for Navier– Stokes equations and r ≥ n), where (p, q, r) is an admissible
triplet. For details see [5–7, 10, 11, 16].

(iv) We observe that 2
q + n

p ≤ 1 is equivalent to: there is a r ≥ n such that

2
q

= n(
1
r
− 1

p
).

Proposition 2.1 Let (p, q, r) be any admissible triplet with r ≥ n. Assume that
v be a Leray–Hopf weak solution with v ∈ Lq(I;Lp), then v becomes smooth solution.

Remark 2.2 (i) Let v = v(t, x) be the solution to the Navier–Stokes equations,
then vλ = λv(λ2t, λx) should be the solution of the Navier–Stokes equations by the
scaling technique. It is easily seen that

‖vλ‖Lq(R;Lp(Rn)) = λ
1−n

p
− 2

q ‖v(·, ·)‖Lq(R;Lp(Rn)). (2.6)

Hence for 1− n
p −

2
q = 0, i.e. 2

q = n( 1
n −

1
p), one gets that the initial critical functional

space Ln(Rn). Also it follows by homogeneity that v ∈ Lq(R;Lp(Rn)) provided that
‖ϕ‖n is sufficently small.

When 1 − n
p −

2
q ≥ 0, there exists a r ≥ n such that 2

q = n(1
r −

1
p), which is the

definition of an admissible triplet. In Proposition 2.1, r ≥ n implies that 1− n
p −

2
q ≥ 0.

(ii) Let ω = curl v = (
∂vk

∂xj
− ∂vj

∂xk
)1≤j,k≤n, where v is the solution of the Navier–

Stokes equations, then ωλ = curl vλ satisfies

ωλt + (vλ · ∇)ωλ = F (∇vλ) +4ωλ (2.7)

by the scalling method, where

F (∇v) = (
n∑

i=1

∂vi

∂xj

∂vk

∂xi
−

n∑
i=1

∂vi

∂xk

∂vj

∂xi
)1≤j,k≤n.

Notice that

‖ωλ‖Lq̃(R;Lp̃(Rn)) = λ
2−n

p̃
− 2

q̃ ‖v‖Lq̃(R;Lp̃(Rn)). (2.8)

It follows that
2− n

p̃
− 2

q̃
≤ 0

is an admissible triplet (p̃, q̃, r̃) with r̃ ≥ n
2 .
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We now consider the following abstract linear parabolic Cauchy problem{
ut + Au = f(x, t), t ∈ [0, T ), 0 < T ≤ ∞
u(0) = ϕ(x), ϕ ∈ D(A),

(2.9)

where D(A) = W 2,p ∩W 1,p
0 . It is well known that

u(t) = e−Atϕ +
∫ t

0
e−(t−s)Af(x, t)ds

4
= e−Atϕ + Gf(x, t) (2.10)

solves (2.1). By interpolation one gets that

‖e−Atϕ‖p ≤ Ct
−n

2
( 1

r
− 1

p
)‖ϕ‖r, t > 0,

p ≥ r, ϕ ∈ D(A), (2.11)

see [5, 16, 18, 19] for details. From Marcinkiewicz’s interpolation theorem in [19] and
(2.11), one obtains the following estimate:

Proposition 2.2 Let (p, q, r) be any admissible triplet. If ϕ(x) ∈ Lr, then e−Atϕ

∈ Lq([0,∞);Lp) ∩ Cb([0,∞);Lr) with

‖e−Atϕ‖Lq(I;Lp) ≤ C‖ϕ‖r, I = [0,∞) or I ⊂ [0,∞). (2.12)

where C is constant independent of ϕ(x).
For proof we refer to [5, 10].
The proof of Theorem 1.3 By using Fourier transformation, ∇v can be written

in terms of w as
∂vj

∂xl
= −

n∑
k=1

RlRkωj,k, 1 ≤ j, l ≤ n, (2.13)

by div v = 0, where Rl and Rk are classical Riesz transformation.
Case 1 Let (q̃, p̃, n

2 ) be any admissible triplet.
Notice that w ∈ Lq̃((0, T );Lp̃) and

‖Rkf‖r ≤ ‖f‖r, 1 < r < ∞, 1 ≤ k ≤ n, f ∈ Lr, (2.14)

one obtains ∇v ∈ Lq̃((0, T );Lp̃) (n ≥ 3) due to ∞ > p̃ ≥ n
2 > 1. We rewrite (2.1) as

v(x, t) = e−Atv0 +
∫ t

0
e−(t−τ)A∇(v ⊗ v)dτ. (2.15)

For any admissible triplet (p, q, n), one sees by using (2.10) and (2.12) that

‖v‖Lq((0,T );Lp) ≤ ‖e−Atv0‖Lq((0,T );Lp)

+
∥∥∥∥∫ t

0
e−A(t−τ)P∇(v ⊗ v)dτ

∥∥∥∥
Lq((0,T );Lp)

≤ ‖v0‖Ln +
∥∥∥∥∫ t

0
|t− τ |−

n
2
( 1

p̄
− 1

p
)‖∇u⊗ u‖p̄ dτ

∥∥∥∥
q

≤ ‖v0‖Ln + C‖∇v ⊗ v‖Lq̄((0,T );Lp̄)

≤ ‖v0‖Ln + C‖∇v‖Lq̃((0,T );Lp̃)‖v‖Lq((0,T );Lp), (2.16)
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with
1
p̄

=
1
p

+
1
p̃
,

1
q̄

=
1
q

+
1
q̃
, (2.17)

and
1
q

=
1
q̄
− 1 +

n

2
(
1
p̄
− 1

p
). (2.18)

In fact, for any admissible triplet (p, q, n), it follows that

1
q

=
1
q̄
− 1

q̃
=

1
q̄
− n

2
(
2
n
− 1

p̃
)

=
1
q̄
− 1 +

n

2p̃
=

1
q̄
− 1− n

2
(
1
p̄
− 1

p
). (2.19)

Notice that since ‖∇v‖Lq̃((0,T );Lp̃) < ∞, there exists a δ > 0 such that for any T0 < T−δ

C‖∇v : Lq̃((T0, T0 + δ);Lp̃)‖ <
1
2
. (2.20)

From (2.16) one gets that v ∈ Lq(0, T );Lp) by the finite number steps.
Case 2 Let (q̃, p̃, r̃) be any admissible triplet with r̃ ≥ n

2 .
Since w ∈ Lq̃((0, T );Lp̃) and (2.14), it follows that ∇v ∈ Lq̃((0, T );Lp̃) (n ≥ 3) by

the boundedness of the Calderón-Zygmund singular operator in Lp̃ and∞ > p̃ ≥ n
2 > 1.

For any admissible triplet (p, q, r) with r ≥ n, one has using (2.10) and (2.12)

‖v‖Lq((0,T );Lp) ≤‖e−Atv0‖Lq((0,T );Lp) +
∥∥∥∥∫ t

0
e−A(t−τ)P∇(v ⊗ v)dτ

∥∥∥∥
Lq((0,T );Lp)

≤‖v0‖r +
∥∥∥∥∫ t

0
|t− τ |−

n
2p̃ ‖∇u‖p̃‖u‖p dτ

∥∥∥∥
q

≤‖v0‖Lr + CT 1− n
2r̃ ‖∇v‖Lq̃((0,T );Lp̃) · ‖v‖Lq((0,T );Lp), (2.21)

with
1
p̄

=
1
p

+
1
p̃
, (2.22)

and
1
q

+ 1 =
1
q̃

+
1
q

+ (1− 1
q̃
). (2.23)

Notice that ‖∇v‖Lq̃((0,T );Lp̃) < ∞, there exists a fixed T̃ > 0 suitable small such that

CT̃ 1− n
2r̃ ‖∇v : Lq̃((0, T );Lp̃)‖ <

1
2
, (2.24)

using (2.16) one gets that v ∈ Lq(0, T );Lp) by the finite number steps. Therefore we
complete the proof of Theorem 1.2 by Proposition 2.1.
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