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1. Introduction

The Magnetohydrodynamics equations and the incompressible Navier-Stokes equa-
tions play very important roles in nonlinear partial differential equations with dissipa-
tion. In this work, the author is concerned with stability and regularity of the following
n(> 3)-dimensional Magnetohydrodynamics equations

u+ (u-Vu—(A-V)A—Au+Vp=0, V-u=0, in R" x R, (1)
u(z,0) = up(z), V -up =0, in R", (2)
A+ (u-V)A—(A-V)u—-AA=0, V- -A=0, in R” x RT, (3)
A(z,0) = Ap(x), V-Ay=0, in R", (4)

where u(z,t) = (ui(z,t),ue(x,t),- - -, up(z,t)) and A(z,t) = (A1(z,t), A2(z, 1), - -,
Ay (x,t)) are unknown vector-valued functions; and p = p(z, t) is a real-valued function,
representing pressure. In addition

- Ou; - ou " 9%
7=1 7=1 7j=1 J

Suppose that the weak solutions (u, A, p) of the Cauchy problems (1)-(4) satisfy
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where a7 > 0,a9 > 0,- - -, > 0 are integers. Notice that if Ag = 0, then a simple
argument shows that A = 0, and (1) reduces to the following incompressible Navier-
Stokes equations

ut + (u-V)u — Au+ Vp =0, V-u=0 in R™ x R*. (6)

Let the initial data (ug, Ag) € L?(R™). Then the problem (1)-(4) admit a global weak
solution (u, A) € L*(0,T; L*(R™))( L*(0,T; H'(R™)) and

p € L>®(0,T; LY(R")) N L2(0, T; WHH(R™)), where T > 0 is any constant. This is a
well known result, see [1]. However, the weak solutions are not unique in general.
On the other hand, under the additional restrictions on the weak solutions: (u, A) €
Li(R*; LP(R™)), where n/p +2/q = 1 and p > n > 3, then the global weak solution
is unique. Our calculations in this paper show that if such solutions exist, then they
are actually very strong. They are almost equivalent to smooth solutions for all n > 3.
Let (u, A, p) and (v, B, q) be the solutions of problem (1)-(4) corresponding to the
initial data (ug, Ap) and (vg, By), respectively, such that the above assumptions are
satisfied. Let (w, E, ) = (u —v, A— B, p— q). Then they satisfy the equations

w4 [(w-V)u+ (v-Vw] = [(E-V)A+(B-V)E] - Aw+ V7 =0, in R" xRt (7)
Ei+[(w-V)A+ (v-V)E] - [(E-V)u+ (B-V)w] - AE =0, in R™ x R*, (8)

where V-w =V -E =0 in R® x R, together with the initial conditions

uo(z) — vo(x), V-wy =0, in R", (9)
E(l’, 0) = Eo(l’) = Ao(IL‘) - Bo(l‘), V- Eo = 0, in R". (10)
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Notations Denote by C any positive, time-independent constant, which may be
different from one place to another place, and may depend on the initial data (ug, Ap).
Denote by LP(R™) and H™(R"™) the usual functional spaces, where p € [1, +00] and m >
1. Let f = (fh f27 T fn) S LOO(RJrv Lz(Rn)) and g = (917927 ,gn) € LOO(RJra L2(Rn))
Define

z = (21,22, -, an) ER", j2? = |21 + |2 + - - - + [a ],
IFI2 = AP+l + -+ | ful?, g = |g1l* + lg2l* + - - + lgnl,
(f, 9)IF = 1717+ 19/,

(2 DI =1 9D Zagan, = /R [P + 1G] de,
f-9=figi + faga +---+ fngm
VFVe=Y Vv =YY Y 392, if f,g € I2(0,T; H'(R™).

ox; 0
i=1 i—1 j=1 "

Let o(z) € LY(R™) () L?(R™), define its Fourier transform and inverse Fourier transform
by
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Flol(¢) = p((&) = /n o(x)exp[— iz -¢dr, herei = V-1,

1

P0)= e [ el o€l

F7g](x)

Assumption (H) Let (ug, Ag) € L*(R*)LP(R") and V -up = V- Ag = 0
in R™, such that the global weak solutions of the Cauchy problems (1)-(4) satisfy
(u, A) € LY(R*; LP(R™)), for some p > n > 3 and ¢ > 2, which satisfy n/p +2/q = 1.
Denote by A = [;°||(u, A)(-,t)Hqu(Rn)dt. All analysis and calculations of this paper
are rigorously processed under the Assumption (H). Below are the main results and
their proofs.

2. Local Stability of Global Weak Solutions of Problems (1)-(4)

First, we prove that the solution operator induced by the Cauchy problems for
the Magnetohydrodynamics equations (1)-(4) is locally Lipschitz continuous under the
Assumption (H). Then we show that the subset of the initial data (ug, Ag) such that
Assumption (H) holds is open in the sense of L?(R™)-norm. Often we implicitly make
use of the differential inequalities and the preliminary results in the appendix.

Theorem 1 Let (ug, Ag) € L2(R™) and (vo, By) € L*>(R™). Then the following
estimates hold for the problems (7)-(10)

sup ||(w, E)(-, 1)|]> < C||(wo, Eo)l?, (11)
teR+t
/0 IV (w, B)(-, t)|]*dt < C||(wo, Eo)l?, (12)
sup [|7(+t)[| oo @n) < Cll(wo, Eo)ll, (13)
teR+t

where C depends only on A.

Remark 1 It is very interesting and important that the upper bound of these
norms depend explicitly on (wy, Ep), but independent of time t. Without the As-
sumption (H), it is very difficult to study the uniform stability of the solutions to
the problem (1)-(4), but we can at least establish the estimates in some functional
spaces for n(> 3)-dimensional problem under the Assumption (H). They illustrate
that if (vg, Bo) — (uo, Aop), in some Sobolev space, then the corresponding solutions
(v, B, q) — (u, A, p) in another Sobolev space, for all ¢t > 0.

Proof It is easy to get the following estimate from (7-8)

%H(W,E)(wt)HQ +2|V(w, B)(-, 1)
—9 /Rn{w A(E-V)A=(w- VY +E-[(E-V)u—(w-V)A]}dz

<2 /RH[AHEHVU}’ + |ul|w||Vw| + |[u||E||VE| + |A||w||V E|]dx,
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and

Q/Rn [ANEIVw| <2[AC Ol o) LEC Ol v ey [V (- D)
<CIAC O r@n lEC O IVEC )]V, )]

<19, B)C ) + CIAC OIS lw, B)C, D)

where 1/p+1/v =1/2 and o« =n/p =1—2/q, thus (1 — a)qg = 2. Therefore
2/(1—a)
IAC OIS = 1AC O gy € L RT).

Similarly, we have other estimates. Integrating the inequality in time to give
t
I YOI + [ 19, B)(s) s

< || (wo, Eo)|!2+0/0 1(u, A) ()| T gy | (w0, B) (5)]Pds.

By using Gronwall’s inequality, we obtain

nmE>|ijVwmmH@ﬁwm%mem@Aﬂu AL gyt

Thus

teR+

By taking divergence of the equation (7), one obtains

Z Z 8.73 uzwj + viw; — AiEj — BiEj) + Am = 0.
=1 j=1 v

Applying the Fourier transform gives

DO GEF [wiw; +vawy — AiEj — BiEj) (€,1) + [E°R (6, 1) =

i=1 j=1

Applying triangle inequality and Cauchy-Schwartz inequality gives the estimates

€PN < D0 D 1GME i O s ()1 + i ) lws ()1}

i=1 j=1

D IGHIEG A OIIE; G Ol + 1B llLE; (D1}

i=1 j=1

IN A

P, GO+ 11w, BYCOI}I(w, B)C, 1))

sup || (w, E)(-, t)[| < Cll(wo, Eo)l, /Ooo IV (w, B)(-, t)|*dt < Cll(wo, Eo)|l*.

P Nlul )lllwC OlI+oC Ol OIHIACIIEC OIHIBCBIEC,

oll);
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Therefore, we get

17 Dl oo my < {ll(w, A)C N+ [0, B)C O [[(w, B)C -

The last estimate follows immediately from

sup [[7(-, )| o mny < {l[(uo, Ao)ll + l[(vo, Bo)ll} sup |[(w, E)(-, 2)].
teR* teR+

Theorem 2 If ||(uo — vo, Ao — Bo)llre@ny < 0 and (vo, Bo) € L*(R™) () LP(R™),
for a sufficiently small constant 6 = 6(n, p, ug, Ag) > 0, then a unique strong solution

(v, B) € LY(R"; LP(R™)) of the problem (1)-(4) exists and

sup [[(w, E)(-, )| ze®ny < Cll(wo, Eo)lewn),
teR+

|l 219up + BP9 ER dodt < Cl(wo, Bl
0 Rn

/Ooo/n UV (,w,p/z) ‘2 n ‘V OE,p/z) ‘2] dxdt < C||(wo, Eo)ll7pgn):

where C depends on A.
Proof The starting point is the following equations

d 4(p —2
\w]pd:H-p/ lw|P~2|Vw|*dx + (p)/
dt P n

\% <\w]p/2>‘2dx
S / (- V) P w)dz ~ p /R (v V) [P w)da
+p/n((E V) A, |wP~%w)da —l—p/Rn((B -V)E, |w|P~?w)dx

p / (V. [l 2w)d,
Rn

and

d

dt (’E‘pﬂ) ’2 dx

4(p — 2
|E|pdx—|—p/ |E|p_2]VE\2dx+%)/ v

== [ (DA BB —p [ (0 VBB B
n Rn
s [ (Bl 2B+ [ (B V)w | EP 2B
n Rn
If these equations are combined together, we have

[ (ol + |EP) o —I—p/ o2 Vwl? + |EP?VE?] de

A2 [ o o)+ fo ()

dt

(14)
(15)

(16)
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——p [ (D fup e —p [ ((w-)A|EP 2B
b [ (B A0t [ (B 9F )i
+ p/n((E -V)u,|EP2E)dx —l—p/Rn((B -V)w, |E|P2E)dx
~p [ (V7w uds
where

/n((v - V)w, |wP~?w)dx = 0, /n((v -V)E,|E[P~2E)dx = 0.

Let us control the integrals on the right hand side one by one. First

- 0
—p v, lwP2w)de = p / 77— (JwP~2w;) dx
Ll ie =p3 [ xp (ot

" ow
_ _ ap|P—4
= p(p—2) ;1 /n Tw;|w| (w, (91:i> dz

p(p—2) /R P2 | Vaw|dz

IN

<P [ el Vulds + 20~ 22 [ |nflol e
Rn Rn

Because

Ar =V -{(E-V)A+(B-V)E - (w-V)u—(v-V)w}
= Z Z W (AlE] + BlE] — Ujw; — inj) ,
i=1 =1~

applying the Fourier transform yields

n n

EPR(E ) =) > L& F [AE; + BiEj — ujw; — viwj) (€,1).

i=1 j=1
By Calderon-Zygmund’s inequality, for 1 < v < oo, one has
n n
2
77 (gmy < Clnaw) YD I(AE) + Bilsj — wgwy — viw;) (- )|[70 (g »
i=1 j=1
thus by Gagliardo-Nirenberg and Holder’s inequalities, letting f = \w]p/ 2and g =
|E[P/2, one obtains the estimates
2(p~ 2 [ [Pl 2o
Rn

-2
§2p(p - 2)2 ||7T(', t) |’ip2/2(p—1)(Rn) ||U)(, t) ||§p2/(p_2)(Rn)
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<C [l Doy + 100, O ngem | 10 DI, oy 0 DI 2oy
+ O [IAC oy + 1BC O nign | IEC 12,2002 o 10O oy
<C [l Doy + 10C, O ngany + 1AC ) o)
HIBC D | 1 C D20
+C G, O nqeny + 1BC DI ngn] 196 D202 )
<C [l Doy + 10C, O ncany + 1AC ) o an)
HIBC DI | 17 C DI T F( )27
+C [JAC oy + IBC D0 llgC, 2072 7g (-, 8)| 247
<C [litw, A OIS + 1w, BYCDIE] 17 )H2+p2_pQ\Vf(-,t)|!2
+C{IACOIEET + 1BC 0l ug<-,w||2+2;2||v9<-,t>rz

<0 [ Aoy + 10, B ] [ Tl + 12V

22 [ [ o) )

Secondly, because

[ (@l i =—p YD [t (e

=1 j=1
33 [ Ay () s
=1 j=1
wZZ/mWMf%
i=1 j=1

ow
—4
p 2 ZZ/ \w]p AiwiEj <w, 8%) d:c,

=1 j=1
we obtain

]p [ (DAl w

/2 1/2
"X | Ow; |
2 2 [
/ P (ZZAE) (ZZ o ) da
i=1 j=1 =1 j=1
+p(p—2)/ |w|p_3 En | Ajw;| ” aw‘ dx
R i=1 j=1 O
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<p(p—1) /R AN w]P2| Vol de
<P / w2 Vwl2de + 2p(p — 1)? / AP|EP|wfP-2dz
8 Rn R™
<P / w2 Vwl2de + 2(p — 2)(p — 1) / AP wpPde
8 RTL RTL
+alp-1)7? [ |APIEPds,
RTL

and

2p - 2)(p — 1)? / A w]Pdz

<2(p = 2)(p = DG Dl @ny [0 DI 2o e

)

=2(p = 2)(p = DIAC ) Zocm 1 G O 20/ 0-2) gy

SCIAC 1o L COIPTPIV £ )P
)

n p_2
<CIAG OIS 17O + P SV DI
p—2
=CIACH o 1O + P IV AP
p—2 2

—ClAC O oy 0 Oy + P2 [ |9 ()|

1= 1* [ |APIEPds
Rn

p—2
<CIAC Ol |G oy + 25 [

Similar bounds for other nonlinear terms hold. Now we have the inequality

v <\E\p/2) \2 dz.

G | o+ 1Br1de + 2/ [[w]P2[Vwl? + |EP-2|VE?] do

A +\v (1202 ]

<€ [t Ay + 10 BN O] [ [0l + |

Rewrite this inequality as

d
dt/ [[wP + |E[P)dx + 12’/ [[wP~2|Vw|® + |EP~2|VE|?] dz
Rn

+ T Uv(myl’/?)\ +\v(|E\p/2)(2] dz
}1+2/(p—n)

< C|(u, A)(.,t)H‘,{p(Rn)An [[w|P + |E|P]dz + C {/Rn [|w? + |EP] dx
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This is an inequality of Bernoulli type. It is known that for small initial data, i.e. there
is a constant § > 0, such that if [, [Jwo|? + |Eo|[’]dz < 6, then the solution exists
globally.

Let us go back to the above inequality. Gronwall’s inequality yields the estimate

t
/[|w|p+|E|p]da:—|—g// [|w[P~2|Vw|® + |EP2|VE|?] dzds
Rn 0 Rn

p=2 [ w2 p/2 2} dds
[ LA () [ (=)

< exp {c /0 1, )Ny + 100 B | dt} w0, Eo)I%zny-
3. Regularity of Global Weak Solutions of Problems (1)-(4)

In this section we show that the weak solutions of the problem (1)-(4) are indeed
strong solutions if they satisfy the Assumption (H).
Theorem 3 Suppose that (H) holds. Then

(u, A) ( (N L*/E®y LS(R")))Q( N L°°(R+;LS(R"))). (17)

p<s<oo 2<s<0
Proof Let (vg, By) = (0,0), then (v(z,t), B(z,t)) = (0,0). Therefore

sup [[(u, A)(,t)llrrny < Cll(uo, Ao)llLemny,
teR+

/Ooo/n “v (|u|p/2>‘2 i ('Am)ﬂ dadt < C/|(uo, A0) |2, gny-

where C depends on A. Let
2

n
m=————.:.
n?—2n+4
Then
—2)(2m — )
l<m<-"_  ang (ZACmomnimn_ po2
n—2 dm(p —n) p—n

Let g1 = 2mp/(mp — n), then n/mp + 2/q1 = 1. Let f = |u|P/?, then one obtains the
estimates

ey )l o @y = 1)1 7
< C||f (-, t)||Fmmmntn)/mp | £(. 1) || (mn=m)/mp,

(-t HW ) < CO|f (-t H2(2m—mn+n)/(mp—n)HVf(_,t)H2(mn—n)/(mp—n)

(
(+%)

< Ol pyPemmmntm/me=n) 4 |7 g (-, 1))
(1)

2
2m—mn+n)/m n
= Clu(-,t le(p o +n)/m(p— )+/n v <|u’p/2>’ da,
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by [2]

2m n—+mn TL 2 ntn n

e, ) BB A g B )

< C(l_|_t)—(p—2)(2m—mn+n)n/4m(p n)

Therefore
(2m—mn+n)/m n
lue, B[S e e LY R

and

v (|uyp/2) ‘de e L(RY)

J.

||u(7t)‘ Lmp(R") € Ll(RJr)

implies that

namely
u € LT (RY; L™P(R")) and u € L®(RY; L™ (R")).

Similarly
Ae LT(RT; L"P(R™)) and A € L>®(R*; L™ (R")).

Since mp > n > 3 and n/mp+2/q; = 1, the initial velocity (ug, Ag) € L2(R™) () L™ (R")
and the solution (u, A) € LT (R*; L™P(R™)) () L>°(R*; L™ (R")). Repeating the same
procedure, we obtain
2 2
(u, A) € L2 (Rﬂ L P(R")) Nz (R+; " P(R”)) .
Therefore, if iterate this procedure for infinitely many times, we obtain

(u, A) € Lo (R LP(RY)) (2% (RF; L7 (R"))

for all £k > 1, where n/mkp+2/qk = 1. Notice that m > 1, hence m*F — oo, as k — co.
Proposition 1 Let o, 8 and v be real numbers such that 1 < a < <y < o0 and
o <. Let f € L2/ (e=n)(R+; Lo(R™)) () L2/~ (RT; LY(R™)). Then

(v=8)/(v=)
|

RG]

(B—a)/(y—a)
7T as)

L gy < (1D G

and
o 2
| s
20( a)(B—n e —-n
| s Hmw” N8|G B-mgy
oo 20/(an (v=B8)(a=n)/(y—a)(B—n)
([T o)

00 %y /(y—n (B—a)(y—n)/(v—a)(B—n)
(/0 17COI21Gs dt) -

IN

IN
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Proof. Applying the Holder’s inequality yields the desired estimates.

Let us now apply the above proposition. For all s : mFp < s < mFHlp, let a =
mkp, B=s,v= mka and f = u. Then

(v=8)/(v—a) (B—a)/B(y—a)
o )y =N D gy < [ ey [

mbp(mk+1p—s) /(mk+ip—m¥p)

k+1 ok K+l .k
= 1 Dl oy e, ) ) (=)

LmEFlp(Rn) < o0,

and
| ol

=/0 -, )24/

0 20/ (an (v=8)(a—n)/(y—a)(B—n)
(/ 0122 dt)

00 (B—a)(y—n)/(y—a)(B—n)
(/0 Ju- >\|iz/gn">dt)

B </ooo -, )2 <m’“p—n>dt> (T tp=s) (mp=n) /(m

Lmkp(Rn)

IN

1y mbp) (s—n)

< oQ.

. e N () () () o)
(/O (e )2 P/t )dt>

Lmk+1p(Rn)

Therefore u € L*®°(R*; L"(R")), for all 7 : p < r < co. By Theorem 1, u € L>®(R*;
L?*(R™)). As before, applying the Holder’s inequality yields u € L°(R*; L*(R")), for
all 2 < s < 0o. The same estimates for A hold. This completes the proofs.

4.  Appendix: Elementary Estimates of the Global Solutions

We first present some well-known differential inequalities in partial differential equa-
tions with dissipation.

Lemma A(Generalized Gronwall’s inequality) Let g(t) > 0 and h(t) > 0 satisfy
the inequality

gty < C+ /Dtg(s)h(s)ds,

where C > 0 is a constant, and h(t) € L*(RT). Then we have the estimate

o(t) < Cexp [ /0 h h(t)dt} .
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Lemma B(Gagliardo-Nirenberg’s inequality) For all real numbers p,q,r > 1
and for all integers m,k with m > k, there exist constants o : k/m < a < 1 and
C(m,n,k,p,q,7) > 0 such that for all u(x) € C°(R™),

1D oy < D™ gl
where
n/p—k = an/r—m)+ (1 —a)n/q,

> §B1++ny,
Lp(R™) PRy axll RN axnn

p
|2

LP(R™)

The only exception is that « # 1 if m —n/r =k and 1 < p < oc.
We then prove the basic estimates regarding the global weak solutions of the problem
(1)-(4).

Lemma C Let (u, A, p) be the solutions of the problem (1)-(4) corresponding to
(uo, Ag) € L*(R™). Then

sup [[(u, A)( )] < [I(uo, Ao)ll?, 2/OOOIIV(u, APt < (o, Ao)l?, (19)

teRt

sup [[p(-, )]l L @ny < [[(uo, Ao)l%, 2/ IAD(, )| oo ey dt < || (w0, Ao)[|%, (20)
teRt 0

I(u V)u(€, 1) < [€]lul, )], [(A-V)A(E 1) < [EIIAC 8], (21)

(- VYA )] < ElluCOIAC DI, (A V)u D] < lluC, DIIAC ] (22)

Proof By using the equations (1)-(4), one obtains

2/ u-{ur+ (u-V)u—(A-V)A - Au+ Vpldz

+2 [ A-{A+(u-V)A-(A-V)u—AA}dz =0,
Rn

note that V-u =V - A = 0, equivalently we have
d 2 2
2l ACHIE+2[V(w, A)()]7 =0.

Thus the estimate (19) follows. The following identity follows by taking the divergence
of the equation (1)

Z E axlaxj uluj — AlAJ) + Ap =0. (23)
i=1 j=1
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The Fourier transform yields

So> s (@, t) - LA (1) + [€PB(E 1) = 0.

i=1 j=1

Applying triangle inequality and Cauchy-Schwartz inequality gives the estimates

€15 )] < ZZ\&H&J [l G ) [l G N+ (1A G A 5 £)11]

lel

Zl&ll\uz , ||Z|£J|||u] \+Z\&|I|A IIZI&HIA

15\2 [t )H2+HA(-, BII*] =l H(% AP

Therefore, we obtain

PG, )l oo ey < N, A)C I < I (w0, Ao)|I*.

On the other hand, we have also the relation from the equation (1)

Ouj Ou;  0A;j 0A; B
ZZ <83}Z dzr;  Ox; axj> +op=0,

=1 j=1

IN

which leads to

L& Oou; Ou; 0A; 0
ZZF [(%Z Ox;j 8a:j

i=1 j=1

} (6.1) + Bp(e, t) =

Therefore, we get

- 3u Ou;
[ApG, ) Loe@ny < 7o H‘ n H H
1131 895] zlyl axz 833]
~11/2
< |3 2u t)H >y o]
[ e Oi ™ izlj:l Oy

>y

=1 j=1

(%:J

2:| 1/2

By these estimates, the estimate (20) follow. Furthermore, by V - u = 0 in R", we

obtain . .
(u-V)A = Zu] Z@x ujA

]

= ||VU('7t)H2 Vol HIF = [V(u, A1)
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Applying the Fourier transform gives

—

n
(u-VIAE ) = i ) &uAE, 1),
j=1
If we apply the Cauchy-Schwartz inequality, we get

| VYA D] < lellut, DIAC D

Lemma D For the solutions of the problem (1)-(4), there holds the estimates

(36, A6.0) | < o, A0)lgrery +306] [N AN (24

Proof Applying the Fourier transform to the Magnetohydrodynamics equations

(1)-(4) gives
(6 1) + 1€, 1) + |(u- V)u— (A- V) A+ Vp| (&,8) =0,
A&, 6) + [€PAE 1) + (- V) A = (A V)u) (€,1) = 0.

Multiplying these equations by the integrating factor exp (|§ |2t) yields

% [exp (€]%) (€, )] + exp (&%) |(u- V)u— (A~ V) A+ Vp| (£,) =0,

9 [exp (161) Ale,0)] +exp (1€Pr) [(a-V)A— (A V)] (6.0) = 0

Integrating in time yields

t
exp () 760+ [ exp (165) [0 V)u— (A-9)A + o] (¢, 9)ds = Twle).
t — —
exp () A1) + [ exp (1€5) [(0 V)4 = (A7) (€ 5)ds = (o),
or we have

(&, t) = exp (—[¢ ) T(€) - /0 exp [~ (t = 5)] [(u- V)u— (A-V)A+ V| (& s)ds

g, t) =exp (—I¢[) Ao(&)- /0 exp [—|¢[2(t = 9)] | (u- V)A = (A V)u| (€, 5)ds
Therefore

(.0, Ate.0)) = exp (~IePt) (@(©), Ao(6)

—_—  ~ —

—/0 exp [162(t — 5)] ((a-V)u— (A V)A +Vp, (u- VA~ (A V)u) (&, 8)ds
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and then

(e,

[1]

€0)] <| (@@, W)

/{H Ju—(A- V)A+Vp](§, ‘—i—Hu V)A — (/-V)u}(f,s)‘}ds

< [l(uo; Ao)llLr(mn) +3§\/0 I(u, A)(s)|[*ds

< ||(uo, Ao)llzrny + Il (uo, Ao)*.
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