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Abstract Let u be a harmonic map from a rotational symmetric manifold M and
B a unit ball in M , let E(u|B) be the energy of the map u|B and E(u|∂B) the energy of
the map u|∂B , then we obtain the relationship which is called the isoenergy inequality
between E(u|B) and E(u|∂B).
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1. Introduction

Suppose that M and N are two Riemannian manifolds of dimmensions m and n

respectively, and that u : M → N is a harmonic map which is a solution of the Euler-
Langrange equation of the Dirichlet integral

E(u) =
∫

M
|∇u|2dv.

Let M = Rm, and B a unit ball in Rm. We define E(u|B) and E(u|∂B) to be the
energy of the map u and the energy of the restriction of u to ∂B respectively. Choe([1])
obtained the relationship between E(u|B) and E(u|∂B) which is called the isoenergy
inequality.

If N is nonpositively curved, then

(m− 1)E(u|B) ≤ E(u|∂B)
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and the equality holds when N = Rn, u is a linear map. If N is any Riemann manifold
of dimension ≥ 3 and u is a stationary harmonic map, then

(m− 2)E(u|B) ≤ E(u|∂B)

and the equality holds if N = Sm−1 ⊂ Rm, u(x) = x/|x|.
In this paper, we consider the relationship between E(u|B) and E(u|∂B) when M is

a rotational symmetric manifold (see [1]). We first derive several monotonicity formulas
for harmonic maps from rotational symmetric manifolds by the method used in [1] and
[2]. Using these formulas we get several isoenergy inequalities which generalize Choe’s
result in [3]. Let M(m ≥ 3) be a rotational symmetric manifold, i.e., M = (Rm, ds2),
where ds2 = dr2+f2(r)dθ2, f(r) > 0 for r > 0, f ′(0) = 1 and dθ2 is the standard metric
on Sm−1. Let u : M → N be a stationary harmonic map. We prove the following results

(1) If M has the nonpositive radical sectional curvature, then

(m− 2)E(u|B) ≤ f(1)E(u|∂B).

In particular, If f(r) = sinh r, i.e., M is a space form with the constant curvature
−1, then

(m− 2)E(u|B) ≤
(

e2 − 1
2e

)
E(u|∂B).

If M has the nonnegative radical sectional curvature and f ′(1) > 0, then

f ′(1)(m− 2)E(u|B) ≤ f(1)E(u|∂B).

In particular, If f(r) = sin r, i.e., M is a space form with the constant curvature 1,
then

(m− 2)E(u|B) ≤ (tan 1)E(u|∂B).

(2) If M has the nonpositive radical sectional curvature, then

fm−3(1)E(u|B) ≤ E(u|∂B)
∫ 1

0
fm−3(r)dr.

In the case that f(r) = r, i.e., M = Rm, we reprove Choe’s results in [3].

2. Monotonicity Formulas

Let u : M → N be a weakly harmonic map, u is called stationary, if for any smooth
vector field X with compact support in M, {Φs} is the 1-parameter family of transforms
of M generated by X, then its energy is critical with respect to the domain variations

u ◦ Φs, i.e.,
d

ds
E(u ◦ Φs)|s=0 = 0. It is proved in [2] (also see [4]) that

d

ds
E(u ◦ Φs)|s=0 = −

∫

M
[|∇u|2div(X)− 2

m∑

i=1

〈du(∇iX), du

(
∂

∂xi

)
〉]dV, (2.1)
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where ∇iX = X,i is the covariant derivative of X along
∂

∂xi
, and div(X) =

m∑

i=1

Xi
,i is

the divergence of X. In local coordinates Xk
,i =

∂Xk

∂xi
+Γk

ijX
j ,∇i

∂

∂xj
=

m∑

k=1

Γk
ij

∂

∂xk
, and

Γk
ij =

1
2
gkl

(
∂gli

∂xj
+

∂glj

∂xi
− ∂gij

∂xl

)
. We say that M0 is a rotational symmetric manifold if

M0 = (Rm, ds2
0), and ds2

0 = dr2+f2(r)dθ2 where f(r) > 0 for r > 0, f(0) = 0, f ′(0) = 1,
and dθ2 is the standard metric on Sm−1. We choose normal coordinates of Sm−1 at θ,

then dθ2 =
m∑

i=2

(dθi)2. For simplicity we write r as θ1, then ds2
0 = dθ2

1 +f2(θ1)
m∑

i=2

(dθi)2.

Calculating directly we have

(Γ0)k
ij =





0, i, j, k 6= 1,
f ′(r)
f(r)

, i = 1, j = k 6= 1,

−f ′(r)f(r), k = 1, i = j 6= 1,

0, i = 1, j 6= k,

0, k = 1, i 6= j,

0, i = j = k = 1.

(2.2)

Suppose that M is a Riemannian manifold, if there exists a smooth function ϕ > 0
so that ds2

M = ϕ2ds2
0, then we say that (M, ds2

M ) is conformal to M0. As we know that

Γk
ij = (Γ0)k

ij +
1
2

(
δki

∂ log ϕ2

∂θj
+ δkj

∂ log ϕ2

∂θi
− gijg

kk ∂ log ϕ2

∂θk

)
. (2.3)

We set X = η(r)g(r)
∂

∂r
, where

η(r) =





1 if r ≤ t′,
t− r

t− t′
if t′ < r < t,

0 if r ≥ t.

(2.4)

then we have

Xj
,i =

∂Xj

∂θi
+ Γi

i1X
1, (2.5)

Xj
,i =





η′(r)g(r) + η(r)g′(r) + η(r)g(r)
∂ log ϕ

∂r
, i = j = 1,

η(r)g(r)
f ′(r)
f(r)

+ η(r)g(r)
∂ log ϕ

∂r
, i = j 6= 1,

η(r)g(r)
∂ log ϕ

∂θi
, i 6= j = 1,

− 1
f2(r)

η(r)g(r)
∂ log ϕ

∂θj
, i = 1 6= j,

0, i 6= j , i 6= k, j 6= 1.

(2.6)
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∇iX =
(

η(r)g(r)
f ′(r)
f(r)

+ η(r)g(r)
∂ log ϕ

∂r

)
∂

∂θi
+ η(r)g(r)

∂ log ϕ

∂θi

∂

∂r
, i 6= 1,

∇1X =
(

η′(r)g(r) + η(r)g′(r) + η(r)g(r)
∂ log ϕ

∂r

)
∂

∂r
−

m∑

k=2

η(r)g(r)
f2(r)

∂ log ϕ

∂θk

∂

∂θk
.

So, we have

divMX = (η′(r)g(r) + η(r)g′(r)) + (m− 1)η(r)g(r)
f ′(r)
f(r)

+ mη(r)g(r)
∂ log ϕ

∂r
, (2.7)

m∑

i=1

〈du(∇iX), du

(
∂

∂θi

)
〉

=η(r)g(r)
(

f ′(r)
f(r)

+
∂ log ϕ

∂r

)
|∇u|2

+ ϕ−2
(

η′(r)g(r) + η(r)g′(r)− η(r)g(r)
f ′(r)
f(r)

) (
∂u

∂r

)2

+ η(r)g(r)
(

1− 1
f2(r)

) m∑

k=2

∂ log ϕ

∂θk
〈du

(
∂

∂θk

)
, du

(
∂

∂r

)
〉. (2.8)

Substituting (2.7) and (2.8) into (2.1), we obtain
∫

M
|∇u|2

[
η(r)

(
g′(r) + (m− 3)g(r)

f ′(r)
f(r)

+ (m− 2)g(r)
∂ log ϕ

∂r

)
+ η′(r)g(r)

]
dv

− 2
∫

M

[
η′(r)g(r)− η(r)

(
g(r)

f ′(r)
f(r)

− g′(r)
)]

ϕ−2
(

∂u

∂r

)2

dv

+ 2
∫

M
η(r)g(r)

(
1

f2(r)
− 1

) m∑

i=2

∂ log ϕ

∂θi
〈du

(
∂

∂θi

)
, du

(
∂

∂r

)
〉dv = 0. (2.9)

Let Bt = {x ∈ M |r(x) < t} and B = Bt|t=1.

(i) Choosing g(r) = f(r), using (2.4) and letting t′ → t, we have (2.9) becomes

(m− 2)
∫

Bt

|∇u|2ϕ−1 ∂(f(r)ϕ)
∂r

dv −
∫

∂Bt

|∇u|2f(t)dσ + 2
∫

∂Bt

ϕ−2f(t)
(

∂u

∂r

)2

dσ

+ 2
∫

Bt

(
1

f(r)
− f(r)

) m∑

i=2

∂ log ϕ

∂θi
〈du

(
∂

∂θi

)
, du

(
∂

∂r

)
〉dv = 0. (2.10)

(ii) Choosing g(r) = f3−m(r)
∫ r

0
fm−3(t)dt in (2.9), using (2.4) and letting t′ → t

we have
∫

Bt

|∇u|2
(

1 + (m− 2)g(r)
∂ log ϕ

∂r

)
dv −

∫

∂Bt

|∇u|2g(t)dσ

+ 2
∫

∂Bt

(
∂u

∂r

)2

ϕ−2g(t)dσ + 2
∫

Bt

(
∂u

∂r

)2

ϕ−2f2−m(r)s(r)dv

+ 2
∫

Bt

g(r)
(

1
f2(r)

− 1
) m∑

i=2

∂ log ϕ

∂θi
〈du

(
∂

∂θi

)
, du

(
∂

∂r

)
〉dv = 0, (2.11)
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where s(r) = (m− 2)
∫ r

0
fm−3(t)(f ′(r)− f ′(t))dt.

Lemma 1 Let M be an m-dimensional conformal rotational symmetric manifold
(m ≥ 3), if u : M → N is a stationary harmonic map, then we have the formulas
(2.10) and (2.11).

3. Isoenergy Inequalities

In the monotonicity formulas (2.10) and (2.11), choosing ϕ = 1 and t = 1, we have
Proposition 2 If u : M0 → N is a stationary harmonic map, we have the follow-

ing formulas

(m− 2)
∫

B
|∇u|2f ′(r)dv = f(1)

∫

∂B

(
|∇u|2 − 2

∣∣∣∣
∂u

∂r

∣∣∣∣
2
)

dσ (3.1)

and

F (1)
∫

∂B
|∇u|2dσ =F ′(1)

∫

B

(
|∇u|2 + 2f2−m(r)s(r)

∣∣∣∣
∂u

∂r

∣∣∣∣
2
)

dv

+ 2F (1)
∫

∂B

∣∣∣∣
∂u

∂r

∣∣∣∣
2

dσ, (3.2)

where F (t) =
∫ t

0
fm−3(r)dr.

Using (3.1) we obtain
Theorem 3 Let m ≥ 3 and let u : M0 → N be a stationary harmonic map.
(1) If M0 has the nonpositive radical sectional curvature, then

(m− 2)E(u|B) ≤ f(1)E(u|∂B). (3.3)

(2) If M0 has the nonnegative radical sectional curvature and f ′(1) > 0, then

f ′(1)(m− 2)E(u|B) ≤ f(1)E(u|∂B). (3.4)

Proof (1) Because of the radical sectional curvature K(r) = −f ′′(r)
f(r)

≤ 0, we have

f ′(r) ≥ f ′(0) = 1. Let ∇̄u denote the gradient of u on ∂B, then

E(u|∂B) =
∫

∂B

∣∣∇̄u
∣∣2 dσ =

∫

∂B

(
|∇u|2 −

∣∣∣∣
∂u

∂r

∣∣∣∣
2
)

dσ.

Hence by (3.1) we have

(m− 2)
∫

B
|∇u|2dv ≤(m− 2)

∫

B
|∇u|2f ′(r)dv = f(1)

∫

∂B

(
∣∣∇̄u

∣∣2 −
∣∣∣∣
∂u

∂r

∣∣∣∣
2
)

dσ

≤f(1)
∫

∂B

∣∣∇̄u
∣∣2 dσ.
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(2) Since K(r) = −f ′′(r)
f(r)

≥ 0, f ′(1) > 0, we have f ′(r) ≥ f ′(1) > 0 (r ≤ 1). By

(3.1) we obtain

(m− 2)f ′(1)
∫

B
|∇u|2dv ≤ (m− 2)

∫

B
|∇u|2f ′(r)dv ≤ f(1)

∫

∂B

∣∣∇̄u
∣∣2 dσ.

Using (3.2) we have
Theorem 4 Let m ≥ 3 and let u : M0 → N be a stationary harmonic map. If

M0 has nonpositive radical sectional curvature, then

fm−3(1)E(u|B) ≤ E(u|∂B)
∫ 1

0
fm−3(r)dr. (3.5)

Proof Since K(r) = −f ′′(r)
f(r)

≤ 0, we have f ′(r) ≥ f ′(t)(r ≥ t), s(r) ≥ 0. By (3.2)

we have
F ′(1)

∫

B
|∇u|2dv ≤ F (1)

∫

∂B

∣∣∇̄u
∣∣2 dσ.

By Theorem 3 we have
Corollary 5 (1) If f(r) = r, i.e., M0 = Rm, then

(m− 2)E(u|B) ≤ E(u|∂B).

(2) If f(r) = sinhr, i.e., M0 is a space form with the constant curvature −1, then

(m− 2)E(u|B) ≤
(

e2 − 1
2e

)
E(u|∂B).

(3) If f(r) = sin r, i.e., M0 is a space form with the constant curvature 1, then

(m− 2)E(u|B) ≤ (tan 1)E(u|∂B).
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