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Abstract Local W19 estimates for weak solutions to a class of equations in di-
vergence form
Di(a;(z)| DuP~* Dju) = 0

are obtained, where ¢ > p is given. These estimates are very important in obtaining
higher regularity for the weak solutions to elliptic equations.
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1. Introduction

Using compactness method, Avellanda and Lin Fanghua in [1] obtained LP theory
for elliptic systems of periodic structure
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Using the results in [1], they in [2] also obtained C%® C%* and C%! regularity for
homogenization problem:

n 2
N _ D
i]zz:la (8)83;1{1;] f(.'L'), T € )
us(r) = g(z), r € 0D,
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under certain conditions, where ¢ > 0, D is smooth domain in R™. Using Calderén-
Zygmund decompositions theorem [3] and measure theory [4], Caffarelli and Petal in
[5] established a determinant theorem for the weak solutions which have higher inte-
grability to a class of homogenization problems, and using this theorem, the authors
obtained higher integrability for weak solutions to equations

div(a(x, Du)) =0, (1)

then using this result, the authors obtained corresponding results for homogenization
problem with periodic structure in [1] and [2]. By the method different from that in
[1-2] and [5], Kilpeldinen and Koskela [6] obtained global integrability for the weak
solutions to the equation (1). Li Gongbao and Martio [7] obtained local and global
integrability for the gradient of the weak solutions to the equation (1). They also in
[8] obtained that the weak solution to the equation (1) with very weak boundary value
is exclusive. The LP estimates established in [1] played crucial role in obtaining the
results in [2]. But Caffarelli and Petal in [5] didn’t obtain corresponding LP estimates.
In this paper, we discuss the weak solutions in WP to the following equation

Di(aij (x)\Du]p_ZDju) =0. (2)

Using the method in [5], we obtain L? integrability for the gradient of the weak solutions
to the equation (2),where g is given to be bigger than p, then establish the reverse Holder
inequality for the equation (2) by the method in [9] and [10], and obtain local W4
estimate for weak solutions to the equation (2).

2. W4 Estimate

In this section, we discuss the weak solution in WP to the elliptic equation of
divergence structure
Di(aij(x)\DuV*QDju) =0, (3)

where, a;; satisfies:
AEP < aij()&ig; < AJEJ, (4)
where, A\, A > 0 are constants.

We have the following theorem and corollary:
Theorem 2.1 Suppose q is bigger than p; if there exists € > 0,

la(z) = I|| <, ()

where a(z) = (ai;), I is identical matriz and if v € WP is a weak solution to the

equation (3), then VVi)cq(Q), and for VR, Bg C 1,

q

<[f, apu + uryiz g (6)

R

[f (1Duft + Jult)do
B

R

2
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where Bgr is a ball centered in x, with radius R, here, j{ udr = udzx.

Br ’BR’ Br
Corollary 2.2 If a;; is continuous and u € WP is a weak solution to the equation
(3), then ¥gq > 0,u € W52,
3. Some Preliminary Lemmas and Proof of Theorem 2.1

To prove Theorem 2.1, we first discuss the weak solution to p-harmonic function,
i.e. p-Laplacian
~Ayu = —div(|DulP~2Du) = 0. (7)

Lemma 3.1 [5] Suppose u is a p-harmonic function, @Q,2Q are cubes with same
center, while the length is different in Factor two. Then

1
1Dl ) < COn) 5 [ 1Dl ®)

We give a proof different from that in [5] and [11].

Proof Denote the length of @ by l. Let R = %ﬁl. Let Bp denote the ball with
the same center as the cube ), and with radius R.

We consider the following Dirichlet problem:

/ |DulP~?>Du - Dpdx =0, 2 € 2Q,Vp € Wol’p(BR),
2Q

u=0, x € Br\ 2Q.
By [10], V0 < p < R, we have

A

Then by Theorem 1.1 in Chapter 3 in [12], for VO < p < R,u € C%(B,), further-
more, for all x,y € Q,x # vy,

\DufPde < C(2)" / \DulPde. )
R Br

lu(z) — u(y)| < C’(n,p)(% |Du\pdx)%. (10)
lz —yl Br
Let y — x in (10), we obtain
1
P _
DUl ey < Clnp) , 1DuPdz = Olnp) oy [ 1DulPde. (1)

Lemma 3.2 Suppose u € WP is a weak solution to the equation (3), and for

some @,
7
— [ |DuPdz < A. (12)
QI Jo
Let uy, be a solution to Dirichlet Problem
Apuh = —diV(]Duh]”_QDuh) =0, z€Q, (13)

and suppose (5) holds. Then
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1 / 1

— Duy|Pdr < — DulPdzx, 14

Q1 Jo P = 1 Jo 1P (4
1 1
Q|/Q|D(u—uh)]pdx§06aw|/Q\Du|pdx, (15)

whereazil when 2 <p < N;a=p when 1 <p<2.

Proof Using ¢ = u — uj, as a testing function in the definition of weak solution,
we immediately obtain (14).

We now prove (15).

When 2 < p < N, by Proposition 5.1 in [13] and (5), we obtain

/ |D(u — up)|Pdx
Q
< / (|Du|P~2Du — | Duy [P~ 2 Duy, Du — Duy,)dx

Q
= /(|Du|p_2Du,Du— Dup)dx

Q
= C/ (I - a(z))|Du|P~?Du, Du — Duy,)dx

Q
+ C/ (a(z)|Du[P~2Du, Du — Duy,)dx
Q

= C/ (I = a(z))|DulP~2Du, Du — Duy,)dx
Q

< Ce (/Q|Dupdx>p;1(/Q|D(u—uh)|f’dx)’l’, (16)

from which we get (15).
When 1 < p < 2, by Proposition 5.2 in [13] and (5) and (14), calculating as before,
we obtain

/Q |D(u — up)|Pdx

M)

< c/ (|DulP + | Duy|P) =" ((]Du|p_2Du—|Duh|p_2Duh,Du—Duh>) da
Q
< C </ (|Dul? + \Duh\p)daﬁ) (/ (|DulP~2Du — | Dup|P~? Duy,, Du — Duh>dm>
Q Q
2-p p=1 1 %
2
< c(/ ]Du|pd:r> [e (/ mmm) v (/ ]D(u—uh)]pdx)p] , (17)
Q Q Q

from which we obtain

/Q|D(u—uh)pdxgce’5 (/Q|Du]pdm>%(/Q|D(u—uh)|pd:r>é, (18)
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therefore, (15) also holds when 1 < p < 2.
We now prove Theorem 2.1:
By Lemma 3.1, Lemma 3.2 and Theorem A in [5], we obtain that u € W9,
We now prove the estimate (6) holds.
Choose a ball Br C 2,7 a standard cut-off function , choose ¢ = nP(u—up), where

UR = |371R‘/ udz, as a testing function in (3). Using (4) and (5), we obtain
Br

)\/ nP|DulPdx
Br

< C’/ nPa;;| DulP~2DyuDjudx
Br
= —p/ nP " aij(u — ug)|DulP~? DiuDjudx
Br
< (1+e)/ npypu\pdx+(1+e)9*<p*1>/ |Dn|Pu — up|Pd. (19)
Bpr Br

By Choosing 6 sufficiently small, (19) implies

/ \DulPdz < CRP / lu — ug|Pde. (20)
Bpr Br

2

Choosing p’ such that max{1, Lf_)} < p/ < p, from (20) and Holder inequality and
n+p

interpolation theorem, we obtain

j{ | Dul|Pdz
B

2

CRP [(7[213 i — uR|pd:1:> ;r

C <7€3R yDu|P’dx> " (21)

j[ lulPda < 037{ \DulPdz + C (7{ |u|P’dx>” . (22)
Br Br Bgr

2

IN

s

IN

while

s

Adding (22) to (21), we obtain

P
p/

. (23)

§(DuP+ |ur)de <CR $(Dup +|ul)dz +C (7{ (IDul” + \u|p/)dx)
BE BR B
2

R

Letting ¢ = |Dul?’ + |ul?’, and choosing Ry sufficiently small such that § = CR <
CRy < 1, we get

p
p P
Z 7

M40y (9)7 (2) < C (M) (9)(@)) " + OMy(ay(9)7 (), (24)

2

s
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where My, (f)() is local maximum function of f(z),d(x) < Rp, thus by Proposition
1.1 in Chapter 5 in [12], there exists ¢’ such that, for Vt € [p,¢'),u € T/Vlloct and

t 1

jéR(Dult + |ul")dz t <C [éRun‘p +ulP)de| . (25)

The first part of the theorem shows that ¢’ > p, thus the estimate (6) holds.
Acknowledgement: The authors are grateful for their tutor Fang Ainong for his
careful tuition.
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