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Abstract Local W 1,q estimates for weak solutions to a class of equations in di-
vergence form

Di(aij(x)|Du|p−2Dju) = 0

are obtained, where q > p is given. These estimates are very important in obtaining
higher regularity for the weak solutions to elliptic equations.
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1. Introduction

Using compactness method, Avellanda and Lin Fanghua in [1] obtained Lp theory
for elliptic systems of periodic structure

Lε = − ∂

∂xα

[
Aαβ

ij (
x

ε
)

∂

∂xβ

]
= f.

Using the results in [1], they in [2] also obtained C0,α, C1,α and C0,1 regularity for
homogenization problem:





n∑

i,j=1

aij(
x

ε
)

∂2uε

∂xixj
= f(x), x ∈ D,

uε(x) = g(x), x ∈ ∂D,
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under certain conditions, where ε > 0, D is smooth domain in Rn. Using Calderón-
Zygmund decompositions theorem [3] and measure theory [4], Caffarelli and Petal in
[5] established a determinant theorem for the weak solutions which have higher inte-
grability to a class of homogenization problems, and using this theorem, the authors
obtained higher integrability for weak solutions to equations

div(a(x,Du)) = 0, (1)

then using this result, the authors obtained corresponding results for homogenization
problem with periodic structure in [1] and [2]. By the method different from that in
[1-2] and [5], Kilpeläinen and Koskela [6] obtained global integrability for the weak
solutions to the equation (1). Li Gongbao and Martio [7] obtained local and global
integrability for the gradient of the weak solutions to the equation (1). They also in
[8] obtained that the weak solution to the equation (1) with very weak boundary value
is exclusive. The Lp estimates established in [1] played crucial role in obtaining the
results in [2]. But Caffarelli and Petal in [5] didn’t obtain corresponding Lp estimates.

In this paper, we discuss the weak solutions in W 1,p to the following equation

Di(aij(x)|Du|p−2Dju) = 0. (2)

Using the method in [5], we obtain Lq integrability for the gradient of the weak solutions
to the equation (2),where q is given to be bigger than p, then establish the reverse Hölder
inequality for the equation (2) by the method in [9] and [10], and obtain local W 1,q

estimate for weak solutions to the equation (2).

2. W 1,q Estimate

In this section, we discuss the weak solution in W 1,p to the elliptic equation of
divergence structure

Di(aij(x)|Du|p−2Dju) = 0, (3)

where, aij satisfies:
λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, (4)

where, λ, Λ > 0 are constants.
We have the following theorem and corollary:
Theorem 2.1 Suppose q is bigger than p; if there exists ε > 0,

||a(x)− I|| ≤ ε, (5)

where a(x) = (aij), I is identical matrix and if u ∈ W 1,p is a weak solution to the
equation (3), then W 1,q

loc (Ω), and for ∀R, BR ⊂ Ω,




∮

B R
2

(|Du|q + |u|q)dx




1
q

≤
[∮

BR

(|Du|p + |u|p)dx

] 1
p

, (6)
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where BR is a ball centered in x, with radius R, here,
∮

BR

udx =
1

|BR|
∫

BR

udx.

Corollary 2.2 If aij is continuous and u ∈ W 1,p is a weak solution to the equation
(3), then ∀q > 0, u ∈ W 1,q

loc .

3. Some Preliminary Lemmas and Proof of Theorem 2.1

To prove Theorem 2.1, we first discuss the weak solution to p-harmonic function,
i.e. p-Laplacian

−∆pu ≡ −div(|Du|p−2Du) = 0. (7)

Lemma 3.1 [5] Suppose u is a p-harmonic function, Q, 2Q are cubes with same
center, while the length is different in Factor two. Then

||Du||pL∞(Q) ≤ C(n, p)
1
|2Q|

∫

2Q
|Du|pdx. (8)

We give a proof different from that in [5] and [11].
Proof Denote the length of Q by l. Let R = 5

√
2

2 l. Let BR denote the ball with
the same center as the cube Q, and with radius R.

We consider the following Dirichlet problem:



∫

2Q
|Du|p−2Du ·Dϕdx = 0, x ∈ 2Q,∀ϕ ∈ W 1,p

0 (BR),

u = 0, x ∈ BR \ 2Q.

By [10], ∀0 < ρ < R, we have
∫

Bρ

|Du|pdx ≤ C(
ρ

R
)n

∫

BR

|Du|pdx. (9)

Then by Theorem 1.1 in Chapter 3 in [12], for ∀0 < ρ < R, u ∈ C0,1(Bρ), further-
more, for all x, y ∈ Q, x 6= y,

|u(x)− u(y)|
|x− y| ≤ C(n, p)(

∮

BR

|Du|pdx)
1
p . (10)

Let y → x in (10), we obtain

||Du||pL∞(Ω) ≤ C(n, p)
∮

BR

|Du|pdx = C(n, p)
1
|2Q|

∫

2Q
|Du|pdx. (11)

Lemma 3.2 Suppose u ∈ W 1,p is a weak solution to the equation (3), and for
some Q,

1
|Q|

∫

Q
|Du|pdx ≤ λ. (12)

Let uh be a solution to Dirichlet Problem
{

∆puh ≡ −div(|Duh|p−2Duh) = 0, x ∈ Q,

uh = u, x ∈ ∂Q
(13)

and suppose (5) holds. Then
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1
|Q|

∫

Q
|Duh|pdx ≤ 1

|Q|
∫

Q
|Du|pdx, (14)

1
|Q|

∫

Q
|D(u− uh)|pdx ≤ Cεα 1

|Q|
∫

Q
|Du|pdx, (15)

where α =
p

p− 1
when 2 ≤ p ≤ N ;α = p when 1 < p < 2.

Proof Using ϕ = u − uh as a testing function in the definition of weak solution,
we immediately obtain (14).

We now prove (15).
When 2 ≤ p ≤ N , by Proposition 5.1 in [13] and (5), we obtain

∫

Q
|D(u− uh)|pdx

≤
∫

Q
〈|Du|p−2Du− |Duh|p−2Duh, Du−Duh〉dx

=
∫

Q
〈|Du|p−2Du, Du−Duh〉dx

= C

∫

Q
〈(I − a(x))|Du|p−2Du, Du−Duh〉dx

+ C

∫

Q
〈a(x)|Du|p−2Du, Du−Duh〉dx

= C

∫

Q
〈(I − a(x))|Du|p−2Du, Du−Duh〉dx

≤ Cε

(∫

Q
|Du|pdx

) p−1
p

(∫

Q
|D(u− uh)|pdx

) 1
p

, (16)

from which we get (15).
When 1 < p < 2, by Proposition 5.2 in [13] and (5) and (14), calculating as before,

we obtain∫

Q
|D(u− uh)|pdx

≤ C

∫

Q
(|Du|p + |Duh|p)

2−p
2

(
〈|Du|p−2Du− |Duh|p−2Duh, Du−Duh〉

) p
2 dx

≤ C

(∫

Q
(|Du|p + |Duh|p)dx

) 2−p
2

(∫

Q
〈|Du|p−2Du− |Duh|p−2Duh, Du−Duh〉dx

) p
2

≤ C

(∫

Q
|Du|pdx

) 2−p
2

[
ε

(∫

Q
|Du|pdx

) p−1
p

(∫

Q
|D(u− uh)|pdx

) 1
p

] p
2

, (17)

from which we obtain
∫

Q
|D(u− uh)|pdx ≤ Cε

p
2

(∫

Q
|Du|pdx

) 1
2

(∫

Q
|D(u− uh)|pdx

) 1
2

, (18)
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therefore, (15) also holds when 1 < p < 2.
We now prove Theorem 2.1:
By Lemma 3.1, Lemma 3.2 and Theorem A in [5], we obtain that u ∈ W 1,q

loc .
We now prove the estimate (6) holds.
Choose a ball BR ⊂ Ω, η a standard cut-off function , choose ϕ = ηp(u−uR), where

uR = 1
|BR|

∫

BR

udx, as a testing function in (3). Using (4) and (5), we obtain

λ

∫

BR

ηp|Du|pdx

≤ C

∫

BR

ηpaij |Du|p−2DiuDjudx

= −p

∫

BR

ηp−1aij(u− uR)|Du|p−2DiuDjudx

≤ (1 + ε)
∫

BR

ηp|Du|pdx + (1 + ε)θ−(p−1)
∫

BR

|Dη|p|u− uh|pdx. (19)

By Choosing θ sufficiently small, (19) implies
∫

B R
2

|Du|pdx ≤ CR−p
∫

BR

|u− uR|pdx. (20)

Choosing p′ such that max{1,
np

n + p
} < p′ < p, from (20) and Hölder inequality and

interpolation theorem, we obtain
∮

B R
2

|Du|pdx

≤ CR−p

[(∮

BR

|u− uR|pdx

) 1
p

]p

≤ C

(∮

BR

|Du|p′dx

) p
p′

, (21)

while ∮

B R
2

|u|pdx ≤ CR

∮

BR

|Du|pdx + C

(∮

BR

|u|p′dx

) p
p′

. (22)

Adding (22) to (21), we obtain
∮

B R
2

(|Du|p + |u|p)dx ≤ CR

∮

BR

(|Du|p + |u|p)dx + C

(∮

BR

(|Du|p′ + |u|p′)dx

) p
p′

. (23)

Letting g = |Du|p′ + |u|p′ , and choosing R0 sufficiently small such that θ = CR <

CR0 < 1, we get

M 1
2
d(x)(g)

p
p′ (x) ≤ C

(
Md(x)(g)(x)

) p
p′ + θMd(x)(g)

p
p′ (x), (24)
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where Md(x)(f)(x) is local maximum function of f(x), d(x) ≤ R0, thus by Proposition
1.1 in Chapter 5 in [12], there exists q′ such that, for ∀t ∈ [p, q′), u ∈ W 1,t

loc and




∮

B R
2

(|Du|t + |u|t)dx




1
t

≤ C

[∮

BR

(|Du|p + |u|p)dx

] 1
p

. (25)

The first part of the theorem shows that q′ > p, thus the estimate (6) holds.
Acknowledgement: The authors are grateful for their tutor Fang Ainong for his

careful tuition.
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