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Abstract We study initial boundary value (IBV) problem for a class of gencralized
Navier-Stokes equations in L2([0,T); L#(f2)). Our main tools are regularity of analytic
semigroup by Stokes operator and space-time estimates. As an application we can
ohtain some classical results of the Navier-Stokes equations such as global classical
solution of 2-dimensional Navier-Stokes equation ete.
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1. Introduction and Main Results

In this paper we consider the following IBV problem for a class of generalized
Navier-Stokes equations

. 0
a—t; —Au+VE = f(u,Vu), (z,t)eflx [0,T7)
J divt. =0, (2.0 €2 x 0.T) )
ulan =0
L u(z,0) = w(x), x €
where 4 = (uq,-+,un) is a vector value function, P(z.t) is a scalar value function,

@ = (1, . ) is an initial data. Let f EtwRB™ — B be nonlinear vector functions,
(1 — B™ is a bounded smooth domain. For 1 £ p £ o0, L = LP(§1) denote the standard
Lebesgue space with norm || - ||, EP($2) = {u = (ug,, un)| s € LP(Q) and divu = 0
in the sense of distribution }. L7([0,T'); LP(£1)) denotes space-time Lebesgue space,
L29 = ([0, T); EP()) is the subspace of LI([0, T); (LP(22))™) with norm

. T 1{q
|| ! ||;|'-':'1.|'|r-‘l-II = (_[} “ , ”gdi.)

* The project supported by Mational Natural Science Foundation of China, No.19601005 and the NSF
of China Academy of Engineering Fhysics.
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Let r > 1 and o, p satisfy 0 < o = (— — —j & < 1, we define
[ bt
vz = {ulu € Gy([0,7); B7), |lullx:, = sup llu(t)lly < oo} (1.2)

where ||lull, = Z fluiflp- When T = oo, we usually denote X=X
i=1
According to Helmholtz decomposition (See [1]) we have

(LP)* = E? @ P (direct sum) (1.3)

where GP = {Vg;9 € WP}, Let P, be the continuous projection from (L*)" to
EP associated with this decomposition, and let B, be the Laplace operator with zero
boundary condition. Now we define 4, = —P, A with domain D{A,) = EF N D{B,).
It is easy to verify that when 1 < p < 00, A, generates an analytic semigroup e™**! in
E,. and A4, has a bounded inverse, where D{4,) = {u.|u € W;? N E,}. Hence we can
define the fractional power Ag(e € R) and

||A;EE_AFE|| <At foraZl; B0 (1.4)

(For detail see [1-4]). Usually we drop the subscript p attached to 4 and P.

This paper is devoted to establish well-posedness theory of (1.1) in L5* and X7 ;.
As an application we can obtain well known classical results of the classical Navier-
Stokes equations. In this problem the function P is automatically determined {up to a
function of t) if w is a known vector function, indeed, 3P = (I — P) f{u, Vu), where 7
15 the orthogonal projection of (LP)™ into E*. For this reason it suffices to consider w

only when we talk about the solution of (1.1).
)
ﬁj:‘l1 k] a:_r“ 1

) N ; . ;
Vi= S (-,-) denctes usual L? inner product with respective to space variable,
T;

For the sake of convenience we first introduce some notations. ¥V = (

Definition 1.1 Leftg>r > 1, p > r, we call (p,g.7v) as admissible triple if

1:E(l_1)

e T U
As is a standard practice, applying P to (1.1}, we have
d
é‘- + Apu = F(u, V), t>0; u(0) = p(3) (1.5)

where Flu, Vu) = Pf(u, Vu). Hence we study (1.1) via the corresponding integral
equation :

u(t) = e Atp(z) +EE—J““—3]F[H,?HMS (1.6)

in L% and X




|
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Definition 1.2 A vector function u(t) = u(t.z) = (wi(t,z),- -, ua(t, x)) is said
to be LR -solution and XJ p-solution of (1.1) if it is the solution of (1.6) in LE? and
X respectively,

(Qur main results can be stated as follows

Theorem A Lef f{u, Vu) satisfy

ff[—sﬁ}_%iﬂﬂﬁui — (e, Volllp € MI(lu|® + [v*Nu = v)ll, 1<p<os (L7)

where ¢ > 0, we have

: : ¥arc] [ g | . ,
(i) Letr 2 na>1, plz) e ET(R), 0 <o = l(— — —) < ———, then there erists
A R e+ 1

==

at least a solution u of (1.1) such u(t) € X 1.

(ii) If p > @+ 1, then the solution u(t) which is constructed in (1} i85 unique.

(iii) If r = ne > 1, then the solution u(t) which is constructed in (1) can be extended
te the infinity (u(t) € X] ) provided that |lp(x)ll, is sufficiently srall,

(iv) Let v > na > 1. [0,7%) can be the mazimal intervel such that u(t) solves (1.1)

: fal
RT ;_.I-.: > max (T-ﬁ* + ljJ then

, C
laptlsge e (1.8)
(T* — )% 2

(v) Ifn=2,p>r =2. Further assume that
(flu, Vu),u) =0, forue EF (1.9)

then the solution u(t) which is constructed in (1) can be extended o infinity (1(2) €
X )

Theorem B (i) Let f(u, Vu) satisfy (1.7), r = na > 1, (p, q.7) is any admassible
triple with g > 1+ o, p(x) € E7(Q). Then there exists T > 0 and at least a solution
u(t) € LN Cu{[0,T), E") of (1.1).

(ii) If p.g = e + 1, the solution u(t) € LF¥ which was obtained in (i) 15 unique.

(i) If r = na > 1, then the solution u(t) which is obtained in (1) can be extended
to the infinity provided that |le(x)||. is sufficiently small

(iv) If n = 2,0 = 1,p > r = 2. Purther assume that flu, Vu) satisfies (1.9}, then
the solution w(t) which is construcied in (1) can be extended to the infinity (ult) € X7 o)

Remarks (i) The main idea comes from [3], but I give a simple way to deal with
(1.1} which is different with [3] in some sense. Similar to the wave and dispersive wave
equations [5, 6], we introduce the concept of the admissible triple and obtain the space-
time estimates of linear problem with respect to (1.1), see (2.2), (2.3) and Lamma 2.3 or
[7]. By devoting to space-time estimates we easily establish the nonlinear estimates and
obtain the proof of Theorem A and Theorem B by some classical iterative technology.
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(ii) There are many vector functions f{u, Vu) = (fi(u, Vu),- - -, fulu, Vu)) satisfy-
ing (1.7) and (1.9). For example

filu, Vu) = ¥ Vi(ufu;), i=1,2,--,n (1.10)
i=1
or
fi(u, V) =NVglu), i=1,2..--,n (1.11)
where scalar function g(u) satisfies
g} = glw)| < Aalfu]® + [v]*)|u — v] (1.12)

It is easy to verify that f(u, Vu) which is defined by (1.10) or (1.11) satisfies (1.7} and
(1.9). So this paper generalizes the results in [3], [8].

This paper consists of four sections. In Section 2 we give some preliminary lemmas
and some basic nonlinear estimates. Section 3 is devoted to the proof of our main
results. In Section 4 we shall discuss some applications to the classical Navier-Stokes
equations.

2. Nonlinear Estimates

It is well known [3, 9] that for w(z) € E” we have e~4p & EP and

1t - e
HE™Vellp = Cl| 277 2l (2.1)
. . : £y nelo 1
by Sobolev embedding theorem and the regularity of e=*%, where 0 < — (— — —) < 1
r p
(1 <7 < p). As the direct result of (2.1) we have
—Al it A1l e
le™ ellxr . < Cllells (2.2)

On the other hand, generalized Marcinkiewicz interpolation theorem implics
le*0llzze < Cliell, 0<T oo (2.3

where (p, g,v) is any admissible triple. Now we pive some nonlinear estimates.

itrl ]
Lemma 2.1  Letu,v g Xormp>atl,r2ne>1, 0L —(———) <1, Flu, Vu)

2ke | n
!
satisfy (1.7). Then Ju = f e Mt=3) F(u, Vu)ds € X Jv € X7 and
. .
Yoo driny RLalO ;
||[ e Plu,Vuds| < OT2 % ullgt! (2.4)
1l o T 1,

” f;e—ﬂ'ﬁ“—ﬂ[ﬁ[«u, Vi) — F{u,?u}}ds”xr
' : g, T
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1 _no
S CT27 2 (Jlu

| X2 + ol Dlw = vl (2.5)

where C 15 independent of T

Proof We only prove (2.4) and (2.5). In view of (1.7) and (2.1) we have

[ Jullxr . <A sup ||
F'- {T

: 1 B9 ~50-9) 3!
1[( AYZe~ U9 =2 =) (_ A uF{u,vu}ds”p

_1 no ,
<A sup |t“’j It — s 2727 ||u||ST ds
0T

1 _mix
<X sup |t / 6= 8727 2 s~ o sl 5
ﬂ-it-:’f' il

_L_ne :
{;"n 1P |f|E P}J [ |]_ = .;l I S—[H-I‘”sds”u”E{_-Ir-j-
BT o7

{CT.E P ||n||“.+1 (2.6)

by Holder inequality. So we obtain the estimate (2.4}
Noting that

o™ 3 (A) 3 (P, Vu) = F(v, To)dsllp < At =72 (July + o)l =21l (27)

similar to the proof of (2.6) we easily obtain the estimate (2.5).
Le 22 letp>re2na>»l,0<o (i l)n l <1l Ifp<a+l
ITi1NTL A ¥ L T e o e = T T - . 8 o
B - i i o R R e
then there erists p; > o + 1 such that when u,v € X ;_T N X5 T Ju and Jv belong fo

X such that

=

_ho
||.fu||;.;;_1, e O T ||-r,-.||":f:r lllxer . A leellxer

1.7 I By T (23]
|| Ju — J-UH;-.;:L AT Er ||1A|lc{r ™ i || f{;] J_}I:”u. — 'TJ”_:-;;]‘T_ + flu — ?.J”;.;;l_rjl
(2.9)
1 1+m 1 i :
where 0 < o) = (— — —) e and O is constantly independent of T.
ropms 2 a4l
Proof Inviewof l <ne<r <p<a+l, wesolve
Lo Mo 2 (2.10)
2 2m  a+l
when o <2 1, that is
Tecel o + 1
pL = HM}&-I-I (2.11})
Lty
hich implies that there | | such that 0 < (I 1)“: -
whlC €3 % ere 18 = + 1 5uc T [ e e :
1uch mmplies L 12T Ly SR O 1. ey i 8 = 0 = " 9 Gl

When o = 1, the above fact is also valid by (2.10). Now we divide that into two cases
to prove this Lemma.
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(i) p1 < p(a + 1). Noting that (2.7)

: = t {1+-|‘.'-'r 1}
[,fJ';'f.||;.-;;1T{H,lD::1E1p ] f it — 5|2 EiJu||=:r_1.:;gs
=T

P oL i r:r-.—l _1yn
<A sup |ti2 (5 plz-(1s ﬂ}ﬂ]_wf 1 — 3| 2- :I?s_{“'l'l}md.ﬁ”un,i.n+1
0<t<T AT
1
<CT? 2 uuu‘*“T (2.12)

by Holder inequality.
(1) ; = plee + 1). In view of (1.5), similar to the conduction of (2.12) we obtain

||Ju]];;;l <A qup |f|”/ |t —s| 3- m a5 fleellpds

Juce g

.-:' ,-3 g, TG 2p0 -3 T3, L —
Da;:gi lt}2 2Zm |[ 5 Pt g ds|ul5 i ||u|| e
1 na
LT 2T Ay ||u||:"f;l_-r||i-'!'||‘1"-;_'r {2.13)

by Holder inequality. Collecting (2.11)-(2.13) we obtain (2.8). Using (2.7) and Holder
inequality we can conclude (2.9) by the exactly same way as leading to (2.8). So we
complete the proof of Lemma 2.2.

Lemma 2.3 (i) Let v = n{l = 1) > 1, (p,q.7) be any admissible triple with
pog = 1> 1, f € LYY[0,T); LPY)., Then GAY2f(x,t) € L([0,T); L?) and

nfl—-1}

. 1_nfl-1}
IGAY2f(z, )lpgr < CTZ ™ % IIfIIHIT (2.14)

where ' i5 independent of f(z,t) and T, and

F t -
GAM f(z, 1) =f e~ U= 420 var
]

(1) Let (p'.q',7) be any admissible triple with ' > I, p' < 1. Then there is an
admissible triple (p,q,r) with p,q > | such that GAY2f(z,t) € L9([0,T); L*) and

nil=1]

/ L oali—l)
IGAY2 f (2, ) |pr g e < CT2™ "7 Ifllp gz p<pl fe L ([0, 7); L) (2.15)

ar

e 1_n(-y)
IGAY2f(z, )|y g7 < CT2 (1112 ¢ YTy g

p2pl, feLt(o,TxLY), |fT € L7(j0,T); L7) (2.16)

where C 15 independent of f(z,t) and T in (2.15) and (2.16).
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Proof

=

1 t cikomp L L
GAL @, Oy <C| [ 16 = o725 s g

n{i—1)

1_n{l-1
g &1 iR ||f[-’f::ﬂ||if:? (2.17)

by zeneralized Young inequality or Hardy-Littlewood-Sobolev inequality (when r =
(1 = 1)m) [10]. This implies (i).

We now come to the proof of (i), In view of 1 < n{l —1) <+ < p £ 1 and Lenuna

. 1 1ym 1 i}
2.2 we know that there is a p > [ such that 0 £ o = (— - j-rj)i = 7 < 1. Let g = —,
T T

we easily obtain the estimate when p < Iy

1 t _l_E[.f__,L}
1GA fiz, Dllyx <C| [ 18- 7272 P NS llgds ]

. Lt §]
<Cl2~ 7 Il tligg s (2.18)
[T

by the generalized Young inequality or the Hardy-Littlewond-Sobolev inequality [10].
Therefore we obtain (ii).
When p = Ip/, it is easy to verify that

L=1 . 1 - =1kl nel 1 -1 1
— - = - —— —_—| - — — ] & — —_ = 21
i q' 2 (r p} - 2 (?' p“) ! ) | l (213
i —if
Lo gt ae i (2.20)
q i g q

S,
S0 wo gef

1 i _L_nii-1) =1 1
IGA2 flx, t)llprg 1 <C| [3 t—sl"2 % | f(zs)llg" IIflm)Tlpds|,
: [
L nil-1) =1 1 '

<Cl2™ 7 It Myly IS ) lyr (2:21)

by peneralized Young nequality or Hardy-Littlewood-Sobolev inequality. This com-
pletes the proof of Lemma 2.3.

As a direct consequence of Lemma 2.3, we have the following nonlinear estimates.

Lemma 2.4 (i) Let r > na > 1, and let (p,q,r] be any admissible triple such
that p,q » max{a + 1,7}, u,v € LE9, then Ju, Ju € LE" and

1_3c - ;
”J'HH:DJ]',T E CTE ar ||T_.|:-”p;llfr {Ergzj
l_no :
1 Ju = Jollpgr < CT2™ 2 (lullggq + Il gm)lle = vlipar (2.23)

where & is constantly independent of T
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o : 1 1 1 1 .
(i) Lefg>a+l, p<a+] salisfy — = (I— - ;)g < =T < 1., Then there exist
p1 > o+ 1 such thal when w,v € LET N LY, Ju and Jv belong to LYY, such that
I | f_pa e )
1 ullpar < CTZ5 [ule, o (lullpaz + lullor ) 2.24)

z-_oe
|Ju = Jv|per € CTEZ (|lullg, o 1 + 15, 612

X (Il = vllpy g1 + e = llp 07 (2.25)

1 L o
whend: = = ( == —)— and C is constantly independent of T\
q gkl

3. The Proof of Main Results

Before proving our main results we first prove the following iterative result.,
Lemma 3.1  Lef o > 0 and {bn} be o nonnegative sequence such that

b S by +METL, m=1,2,--. (3.1)
fhen :
D i
bn < RO B R b 2
= T AlZbg)™" i L
provded that
2 20 )] [3.3)

Proof We use an-induction method to prove (3.2). When m = 1, by direct
computation we easily find

b
by + At < T AF]EE;-HJ'“ (3.4)

Collecting (3.1) and (3.4) vields (3.2).
Now we assume that (3.2) is valid when m = L. We come to the proof of (3.2) when
mo=k+ 1. In fact, from (3.3] we only need to prove

'E"'I:I re-+1 E,Iﬂ .
) PRI . SR o — & 3.5
(1. = :-a(z:;c.jm) R T TR Lo:)
that is :
1] ct ; ,
IO e 5%, OO B < [ 3.6

which is equivalent to (3.3). 5o we conclude that (4.2) is valid when m = & + 1.
Therefore we-mmplete the proof of Lemma 3.1 by the induction method.

The Proof of Theorem A (a] We first consider the following iterative function
SEQUENCEs

up(z, 1) = eo(z) (3.7)
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! Vi
Um = uolz, t) —I—f e A Ry N S [3.8)
0
When p > 1 + a, it is easy to see
i = l—ﬁ et 1
lumllxg » < Collglls + CTZ™ % 111 (3.9)
by Lemma 2.1. From Lemma 3.1 it follows
. Chlle|l .
[l Xor = 1 na - <C(T), m=12.- (3.10)
1 - CT27 % (2C)||ell-)®
provided that
1_noa - ;
20727 o (2Cq]l¢ll¢ )= < 1 (3.11)
(i the other hand. it is easy to see
o l_no e
”um—!-l = 1"*Trz”.":.';_,‘,. E 2072 2r ”“m'—] - u:rrtll.-’{J'::_T [.jifjl
Henee, there exist T > 0 and function w{z,?) such that
im thy =uw., in X5 (3.13)
m—+l :
and ﬂ
u=e e +[ e~ =Sl Ply Tu)ds (3.14)
0

Now we prove that the solution u is unique. Let u. v € X be solutions of (1.1) with

same initial data @(z) € E7, then
.t
@=1 = ] e M=) F(u, Vu) — F(u, Vv))ds
0
For any 0 < g < T, we have

1 no

< Gig 7 (||

|| — xr

CE u
S Il T

e g
s %)l =]

Let 5 be so small such that
1 _no
2..

.-fﬁ_ " ﬂ.-.- = H'ﬂ':' 1
G {“H”ip.:u ! ||1’Il,hr.m:' e

We obtain
S " T
w=1u In Xr,tu

by using (3.16) and (3.17). By a repeat of the above argument we also have

u=wn in [tg, 28] x 0

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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By continuing the same way we easily complete the proof of (ii).
(b) Now we consider the case p < @ + 1. From Lemma 2.2 it follows that there

i sl 1t 1
exists a g = « + 1 such that oy = = (; = p_) £5 T From the above discussion we
1

know that there exists a T and the solutions u(t,z) of (1.1) such that u € X] 4. In
view of Lemma 3.1 we have for iterative sequence in (3.7) and (3.8)

1 ne
Remerllxr,, < CTF 7 % | (lumllyy o+ llemllxg ) om=1,2,--
(3.20)
lemsr = wmllxg o = CTF % (lumaallyy . +llumllyy )
X [ ||tma1 = tm A |l ttrne1 — um;:!l.;]ﬂ} (3.21)
m .
Note that 1E — e || & IS 4 CONVerFenoe seric d || -r <A
,E] ot 1 .uT;.,||;L;]IT1 i CONVErgence series an ||“m”‘1"p|ﬂ'] < Cf[Ty)

.

(m =1,2,.-+,), therefore there exists 0 <« T < T, such that u Z Ntmer = wm
=il

Is a convergence series. This implies that there exists at least uw € X[ such that u

satisfies (1.6). This completes the proof of ().
(¢) When r = na, (3.9) implies

Xpp

[l = Callelle + Cllum- %, p>a+l, m=12 .. (3.22)
: £

In view of Lemma 3.1, if Jl|, is sufficiently small. then the solution w which was
obtained in (a) can be extended to the infinity, more explicitly uw € X} . By the same
reason we know that when |||, is sufficiently small. the solution u which was obtained
m {h) can be extended to the infinity by (3.20) and (3.21). S0 (iii) is valid.

() Now we come to prove (iv) of Theorem A. Let [0,7*) be the maximal interval
such that w solves (1.6} in space C([0,7T*); L¥F), then |[w(T*)||; = oo, otherwise. if
| (T )||r < oo, similar to the above discussion there is T > T*, such that u solves {1.1)
i X7 . g

i - L A
w =M=y (1) +/ e By, Vu)ds (3.23)

-

by iterative method, where

Xp -z ={ulu € G((T*,T); B), |lullx: . ,

= sup (t—T7)"||ull; < oc} (3.24)
TR St

This is contradiction with that [0,7") is a maximal interval. On the other hand,
W0 < s < T, we have ||u{s)]l; < co. Hence u always solves in X (=T,

;
w = ety (s) +f e =T Py, Vu)dr (3.25)

&
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by iterative method. So if we take s sufficient close to T such that
SR O
4CCT* = 5) 2" T lufs)||? < 1 (3.26)

then w(t) solves (3.25) in [s, 7). Naturally there exists constant C such that

A 1_no 2
(T7 —s)27 2 fluls)|l} 2 C (3.27)
which implies
&
[uls}|l- = - 7%
(T* — 8)2a"2r

Therefore we complete the proof of (iv) of Theorem A.
(e} In view of (1.9) and (1.1) we have

f
]2 + fn I Full2ds = [lp(z)]3 (3.28)

which implies ||u(t)||z < lle|l2. Noting that p > r = n = 2, we have

lumllsy, < sup )l + Cllum-1lI 5 (3.29)
D<f<T o

Because (For detail see [3])
lim t%||letp)l, = 0 (3.30)

there exist fp = 0 and =, such that

sup t7||e*wll, < o (3.31)
D<tdty
4Chen < 1 (3.32)

5o Lemma 4.1 implies that there exists a mild solution of {1.1) u(t) € X1 such that

!
u(t) =E"-*“c,a(g:]+f ANy Valds, 0<E<t (3.33)
0
Noting (3.28) we have
lultolllz = llell2,  divulty) =0 (3.34)
S0 we can continue to solve
t :
u(t) = e MWty () + f e~ M5 Py, Tu)ds (3.35)
Loy

in space X7, 5. Similar to the proof of (3.9) we have

Sinly (3.36)

F
J{P.EQ.T

el < sup (¢~ t0)° A=l + Cllum-

Q=T



36 Miao Changxing Vol.13

MNote that
lim {t — )% le*t "ty (t)||, = O (3.37)
T—ip

there exist #; = 0 and £; such that

sup (t — )| ulto)|ls < &1 (3.38)
fgt=iy
4Coep < 1 (3.39)

So Lemma 4.1 implies that there exists a mild solution of (1.1) u(#) € X7, ,; . According
to the same way we also can solve (1.6) in X7, , .---. To obtain global solution. it is
sufficient to prove t»'—t; = & —#p. For this purpose we f:.-nly need to prove the following
lemina. I

Lemma 3.2 Let o° € E4(Q2) and ||f|]2 < ||glle, o = (E - EJJ then

£”||e‘rut,::""||p = 0 untformily for st = ()

where E2(§1) = {iplg € EP and p|an = 0}.

Proof Let : .
T =
e _ { Hrahd - (3.40)
0, zeBR™\4
then % € E*(R") such that
|@°ll2 = [lll2 (3.41)
We now take 19
o L=z S
e A e (3.42)
{3, x>
e s e :
such that [1?” jlz)dz = 1. Let j5(z) = 672 (E) @5 = jg + @°, we consider
f]g”t‘t‘igﬂﬁ!{p =ﬁE||EL"1'ﬁ3”ﬂ < .I,-;-:-'“ Iffi.-{':?a.i s .E”p 4+ 7 ﬁA
<[8° = @illz + 7 lleds) » &l
] - o ?5 : b
<Clljs ¢ = @'lla + 17 (| o |, + sl - ¥l
<Clgs = &° — @°llz + Ct7[|9°ll2 (3.43)
S0 ¥e > 0, noting that
lim 45+ 3° = &°, uniformly for s in L (3.44)
S=0
wiz take & > 0 sufficient small such that
: i d & L
75+ 9% = ¢°llz < 5 (3.45)
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On the other hand, in view of o = () there is a ¢ > 0 such that

Ct7||ollz < (3.46)

bl | 1

when ¢ < f. Collecting (3.43)-(3.46) yields Lemma 3.2, By Lemma 3.2 and continuing
the above process in the same way we conclude u € Cy([0, 0c); LP) 1 &y ((0, 02); EF).
Therefore we complete the proof of Theorem A,

The Proof of Theorem B

In the exactly same way as leading to the proof of Theorem A we easily prove
Theorem B by Lemma 2.4.

4. An Application to the Classical Navier-Stokes Equations

In this section we discuss and give an application of Theorem A and Theorem B
to the classical Navier-Stokes equation. Now we consider the IBY problem for classical
Navier-Stokes equations

i % ~Au+ (u, V)u+ VP =0, (z,1)eQx[0,T)
dival-, 1) =0, (z.t) € 2 % [0,T) (4.1)
ulan =0

L 0) =als), x € §}

Similar to Definition 2.2 we can introduce the concept of the weak solution for the IBV
problem (4.1],
Definition 4.1 4 wrrmr_ﬁmf*tmn wlt) = ult,z) = (it x), - uall 2)) te sl
he @ weak solution of (4.1) if for any CFF () vector functionvit, z) = (v (tx), - vt x))
defined on B x 0, such thot divu = CI v(t,5) =0, 2T, we have
(a) w(t) € LE? with p,q = 2.

_'!' ,
) [ f < u, v+ Av + (Vo)u > dzdt = —] <, v(0, 1) > dz.
J00 S0 ol
(c) divu(t, ) = 0 in the distributions sense for almost every t € [0,T). Where (Vu)

_ Ty
denotes nox n matriz ( 1':] k
Fali j/nxn
According to the discussion in Section 2, we can study the following integral equa-
tion

i—u + Agu = =Plu, Viu, t>0; u(0) = p(z) (4.2}
el .

to replace the study of the problem {4.1). It is well known that X p-solution and LEA-
solution of (4.1) must be the weak solution of (4.1) [3, 8]. Let Flu, Vu) = Plu, V)u,

then the corresponding integral equation of (4.1} or (4.2) is

£
ulf) = & “o(a) f e~ A=) [ (3, V) dis (4.3)
0
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e ca—

'?1

Since div i = (), we easily get (u, Vu = z ‘?j[u}-uj: therefore
j=1
! e
Fi(u, Vu) =P E Vilwu') (4.4)
=3

It is easy to see that F' satisfies the conditions of Theorem A and Theorem B, Hence

we obtain the same results for Naiver-Stokes initial boundary value problem (4.1). In

particular according to regularity results of MNaiver-Stokes equation [11, 12] any weak
; . . a2 |

solution u is regular if w € L7 ([0, T); LP(f1)) with - = ﬂ(— - —), p > n. Hence we

q noop
have

Theorem C  Letn =2, @ € E?, then forp > 2 there s a unigue global smooth
solution w of (1.1} such that

u € CU[0, oc), (W2P())2) N CH{[0, o), (L2(12))?) (4.5)
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