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Abstract In this paper, we concern the fully nonlinear parabelic equations w, +
F(x, t,n, Du, D*u) = 0. Under the natural structure conditions as that in [1], we obtain
the €V estimates of the viseosity solutions.
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In [1], Chen Yazhe established the interior C'® regularity of viscosity solutions to
fully nonlinear elliptic equations under natural structure conditions. We shall extend
this result to parabolic equations.

Cousider the Dirichlet problem of fully nonlinear parabolic equations

w + Fxt,u, Dw, D*u) =0 in Qr = 2% (0,7 (1)
w=(x,;1t) on & Qp = (98 = (0,T]) U (2 x {0}) (2)

F(x,t,7,p, X) is a continuous function on 0x (0, T] x Rx RY x MY, where M ¥ denotes
the space of N x N symmetric matrices equipped with usual order, and satisfies

AT (YY) £ Flz i, r,p, X) = Elzit, .0, X £ 1Y) < A Tr {Y) (3}
YWeMY Y0
F(z,t,r,p,X) - Flz,t,5,0,X) =0
Vr > 5. (4)
Let's give the definition of viscosity solutions.
Definition Let u be an upper (resp. lower) semi-continuous function in Q. 1w is

suid to be o viscosity subsolution (resp. supersolution) of (1) if for all w(z, 1) € O Q)

at each local mazimum (resp. minimum) point (zo,f0) € Qr of u — v, we have

e (o, to) + Fxo, ﬁu:H':-’Iiﬂrfﬂ}.-ﬂfﬁfél‘mfn)rﬂgﬁﬂ'(fﬂu,h]” <0



gt}
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w e C{Qp) 15 satd to be a viscosity solution of (1) if it is both o viscosily subsolution
and a tiscosity supersolution of (1).

Under natural structure conditions and some property of the boundary, the author
m (1] used Perron’s method and obtained the existence of viscosity solution for the
Dirichlet problem of elliptic equations based on the comparison principle. He also
proved the Lipschitz continuity of the wviscosity solution. We can obtain these for
parabolic equations. The details are described in [2]. In this paper, we shall derive the
C'l® estimates for the viscosity solution u of (1)~(2) with v € C' under the following
additional conditions

[F{:Ert:ﬂp:ff}_F[y:ﬁ*.'r:'?:x:ll :
< (7l [pD{L + (ullz — vl) + [p — ol 2up — aDIIXN}  (5)
|F(z,t, 7,0, 0)] = palirls pl) (6)

where () is nondecreasing, pl(s) = 0 as ¢ = 0, plo)fo = 1 in (0,400) and
plo)fode < oo, p(s,t) is nondecreasing with respect to s and (s = 1, 2).
+The=:rrem 1  Assume that F satisfies (3)-(6). Let u be a Lipschitz condinuous
viscosity solution of (1). Then Du is Hélder continuous.
We require the parabolic analogue of Proposition J. 1 in [1]. It ta.l{es the following

form ([2]):

Lemma 2 Let v and v be, respectively,a viscosity subsolution and o viscosify
supersolution of (1). ¥z, y,t) € C2H O =x Q x (0, 7). If u(z,t) = v(y,t) — ¥(z, v, t)
attains its mazimum n 2 X @ x (0,7, then there esists (Z,4,1) € 0 x Q x (0,T] and
X. ¥V e M¥ such that

TE{L W= t’ ﬂ 1];r{:§]§] f_} = H]E.:-:{?LI:I,]F.:I g l”{?.l'l!lr:l S5 "Ir(:r”ﬂ} (T}
.'IIT -T::H:.ﬂ'!‘F m1£}u{ilﬂ1 ‘DI\II['E:T_':-E}!X:I _F{g}bt:vl:ﬂ:ﬂ:_ﬂylﬂ{fiﬁiﬂz_}f:l l::ﬂ
(8)
(il G
(5 y)<P@aD (9)

Before proving Theorem 1, we need some results in [3].
Let’s introduce the Pucci’s extremal operators:

=lZef+1'iZE{

e; >0 ;<0

;A+{DETL == Z e;+ A Z e;

e; =0 gl
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where e; are the eigenvalues of Hessian matrix Dy,
For any continuous function £, we denote by S{f) (resp. S(f)) the class of viscosity
subsolutions (resp. super-solutions) of u, — ™ (D°u) = f (resp. w — p=(D%u) = f).
Let
S*(f) = S(=1f) nS(£1)

We call u(x,f) has tangent paraboloid from below of aperture f at (zq,tg), if for
£ < .
1 3
ulx, t) = ulzo, b} + (B2 — 20} + {:'( = il’.r — op|“ -ty = ﬁ]

where [u{xp, )|+ [p|+C < h, C > 0.
Denote

D(w) = {{x.t) : u has tangent paraboloid from below of aperture h at (z.2)}

ﬂ.‘z“"'j = Dh[_u‘}

Lemma 3(Theorem 4.11 in [3]) Let u € 5°(1) and |u| £ 1 in Q" = B, #(0) x
(0,10], K = (=1, 1)¥ x (0,1], then

where 1 depends only on ALA, N,

Corollary 4 Let u € 5%(A4) in B, mrplzo) % (to — R2%.ty + 9R?], where A is u
positive constant, Then for h > 1 there exists a point [z, 1) with |zg—x,| € h~WP2R,
0<ty—t < h~ 20 F2RE such that for t < t; and for some & with |d| < Lip u

g a f 2 > 7
1,8) = ul(ey,t) — (6,5 — 31)] € = ' ut AR+ R (- P+ 4 —
[z, t) = w(zy, 1) — (6,7 5@ | S HE[QE{EE&]H 1R° + R )l.ll.L z|* 4+t —£) (10)

Proof Let

vy, 7) = '?.I[:l:.g + Ry, to = R? + RET} — wlxg, o)
A A 0SC ut(l+ARe

O rizg.to)

Then ¢ € 5*(1) and |v| £ 1 in @*. By Lemma 3, if | B-(0) x (1 = r?,1]| = 2h~7, then
there exists a point (1, 71) € By (0) x (L —r?, 1] N Dy(u) N Dy (u). Scaling back, we can
easily conclude the corollary.

In the following, we assume that w« is a viscosity solution of (1) and F satisfies
(3)=(6). Moreover, |u| < M. For Qpr(xg,ts) = Brlzs) x (fg — R, tg] C Qp, we
denote by K the Lipschitz constant in @ r(zo,fo), and we always assume that B < 1,
RY? < K < M;, where M, is a positive constant.

Lemma 5 wuwe S*(A), where A = oM, My).
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Proof For any ¢ € C5YQr), suppose u — ¢ has local minimum at (g, tg) and
wi g, tn) = p= ( D%z, o)) < —A. Then by local minimum property

u(z, to) — ulzo, to) = (Di(zo, to), x — zo) + of|z — zg|)
and the above inequality implies

| Dip(zg, to)] < M)
Hence, at (xq, tg) we have
oy + Flz, t,u, Do, D) <@y + Flz, tu, De,0) — A Tr (D)t
=i, — p” (D%) + Flz,t.u, Dip,0) < 0
This contradicts u being a viscosity solution of (1). Therefore
u € S(—A)

Similarly, we can prove u € S(A).

By Corollary 4 and Lemma 5, there exists a point (), #;) with |zg—z,| < A=/ R},

0 <ty — & < ™22 F2 52 guch that (10} holds.
Let

Be(z) = {(z,9) : |z =z * + [y — 1 * < r*}

Qr(z1,t1) = Belz)) % (8 — v, 1]

Lemma 6 There erisis a constant 8 and icl unif vector @ € BY such that for any
D<d<landl e RY with|l| = K. {a.l) > _EH‘ we have

e, 8) = uly ) — (ho — )| < (2= 1) Klz — ]
o '[{'Tr'E :-ﬂ L~ {jﬁﬂﬂimh t'lj . |:E = 1-"' = ﬁzﬂﬂ}

A+1

Proof - For any (z,4,.1t) € Qaorlz1,t) and |z — y| = §%0R, if RY? <
Corollary 4,

Ly

e uli o) (e a—y) E%(QQE&H AR + R2)(|x — o1
tly— o + 20t = 1)
WK
e T+ |y — 3 |? + 20t — 8))

<BOKS2PR = 40CK |z — o
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Let a = a/lal, then

(6 — Lz — )] < 1a—Hlz -yl = (18 + 1 - 2]al(e, 1)) 2|z = y| < V3K]|z -y

By taking 8 = (2 — 3 = i) f de¢, the lemma is proved.

Lemma T Let @ be E’ae constant and I the vector in Lemma 6. Then there erist
constanis ¢, 8 such that

1 .
u(a,t) - u(w.) — Lz =)l < (2= 1) Kls = o] in Quyasalar,t)
Proof Without loss of generality, we can assume (z;,%;)} = (0,0). In the domain
S={{x,y.t) @ﬁ(ﬂh 0): |z —ul < JI_E'.}1 we consider the function
K
T,y t) = ﬁlfﬂ —yl(lzl* + |yl* = &) + (= — o) + Lz — )

wlle ~yl) = (2= 5)Klz — vl -

RK |z —1y
M]{l} ( LJRH)

o ¥ o Tt
where {[a) = f ds [ p(n) fndn, R = 86R. With the help of Lemma 6, it is easy to
s / e
w(z,t) — u(y,£) < ¥ on &8, the parabolic boundary of 5.

We want fo prove

w(r, t) —uly,t) < ¥ in S (11)
If not. there exists (T.4.1) € S5, with T # ¢, and X,V € MY such that (7)-(9) hold.
(9] implics

K
X — | = |1 O Lo
Y .4.{3{(3 B) (12)
0 o K Tk B
Sfa:

where

(=

7 (lr —vl:®z+ 2@ |z — vl (zgy=(2.45): 2= (Z,0);

K . g
il {Dzﬁfl'{i" —y) + ﬁﬂﬂ:ﬁ + |y)* — )|z — 1*1::9:}

|:$1I|':-t}=[i:-ﬁlp.l

A simple calculation shows

IQll € CK/R, Bl < CK/|z -

Multiplying (12) by (i II) from right and left, we get
K
X+Y—ﬁ|f—ﬂ|f X=Y

P
K =
s X+~ =iz gl e ek
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which implies
T Er T e S R S e (R | S i
.T*f-l—}”——_—-ﬁ-k.:—y]f—!—ﬂ}l:[], }LT'?—Fl-E-_le_.{;;}Q:-]:B

where [|Qu]], |Q2]| < CK/R. Let

K 1
H=—|z-§{-Q;, P= (2 —§) ® (T — ).
Fal =Y =Gn, .!i_ﬂlg{r— 7) ® (T - 7)
Then
Tr (X +Y — H) <Tc P(X +Y — H) < Tt P(4B — Qo + Q1)
K |z — g o
S : K
S e G
Hence

T (X +Y = H)| = —~ CK/R (13)

_ 1z =yl
R
Frowm (3); (4], (5), (&), we zet

W
AT (X +Y = H)| = AN+ (5,5,
< C{1 + [p(|& = g]) + | D2Y + Dy U2 u(| D + Dy B)I(1X)| + V1) }

It is easy to calculate that

ID:%(2,5,0 + Dy 0@ 5.0 = =l —gl 25 +20 < =la -3 (15)

e

As in [4], we have
IX1+ 1Y S GO+ IBIVA[TE (X + ¥ — V2 4+ [Tx (X +Y - H)}  (16)

So from (14)-(16)

= M
ITr (X +Y — H)| <C + CK/R + cﬁ(iﬁ-wf: — 71 (IBI"2|Tx (X + Y ~ H)|Y/*?

+ |Tr (X + Y = H)|}

Using Cauchy. inequality and picking 6 small, we can get a contradiction with (13).
Thus we have proved (11). The lemma follows at once if we take #; small.

[n the following, we denote v = ~ & 84
Lemma 8 Letl be the vector in Lemma 6. Then there exists a constant 1, such
that if A is small enough, we have

lu(z, t) —uly,t) = (e —y) < (2-m)Klz —y| in Bgrpalzo) x (8 — (vR)%, 1]




No.l C'he Regularity of Viscosity Solutions of Fully Nonlinear ... T

Proof Let (z1,%) = 0. Consider the function

m Tl
T =itz -y} +2K|z —y[ + Ef‘fr;({zzj - W=z )
|z —yl =
.(|.—::_y|+£,{1}( = j]+ “Kn(2v)™ s —y|

1 - ;
where W = (|:|5'|2 + ty’z — —t) and the domain

1
(117)2 1612

5= {Ifxﬂ B )t + |Iﬁ'|? = 151r;2ﬁ < (%)? (”HJE < |E|E +[yl? < {g)g}

Obviously

1 B2
wlr, t) —ufy,t) ¥ on {(m Y, t sz + |ul* - ].'Eb"?lt = (E) }

'-'ﬁ:-’_y

For (x,y,t) € 81 {| | < r;R} ifz.y € Bua—yﬁ{ﬂ} by Lemma 7, we have

(2, 8) = wly ) = Gz — )] < (2 - -%)EL?: B

if z € B g,.0)0ry ¢ Bﬁuﬂ{{}l]l, let T M By r(0) = z2 and TF N B, ,z(0) = 23, then
|z2 — 35| = [v"ﬁ - 1R = I{\.-"'E — 1)e|& — y|, hence . :

peir
fulz, 8) — uy, t) — (L x — y)| S2K |z = zs| + 2Ky — 23] + (2 - E)Hh:g — 23
V2 =1
<(2-
<( 16

u)ﬂ'lx - 1]

]

$+y|
16

1, on the parabolic boundary of S and in 5 ﬁ{{-;:__ s t) : i—i g

<

By taking i =

HR} we have
“‘{Eatj = u{y,f] < o

We want to prove the above inequality holds in & = 51N {($1y,f] : }
If not, there exists (%,4,1) € A, with £ # 4, and X, ¥ € MY such that (7)-(9) hold.
From (9) we get

(F{+}" X—}’){({Ql Q‘) (17)

Yoy v oV el

where

Q2 = Dz + Dy ¥ ++ Dy U + Dy Ul =2 51
Q2 = Dzr;’ — Dgy¥ — Dy ¥ + Dvyﬁ'|[$1yﬁ={i=?ﬂ
(= Dy + Dﬂty"ﬁ R Dﬂiw i Dh‘l-"lfl{i-y}ﬂﬂﬂ
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A calculation shows

m(m + 2)
2(vR)*

Qi =K-ﬁ-{ w2l —

BT W2 [ +9) @ @ +1)

e -5 -1 m(m + 2) —.—2
sz-fff.r{{ VR)? Tl f = WW 27 flz-p) @ (z — )
2m =10 = (2v)™ _m
bW 27l 7P +2( G e P)
2 (2™ my clF—glhl . (2™ 1
+-f’(1]( = Woe U (E P s )}
8K
e
2 2 L = =
Q =Kn{ o 2 IpE TN e E )
W e+ ) (2 - )
ete f = || J(li_m) ccliyri zf("’f_’*_’?) Pe it nhe(2 =)
P e S S P R e et IS,

(17) implies
X+Y -0 <0, X4Y -0 02—

S0
T4 (X + 7 Q) STreP(Qs = Q1) = ekn{ i (200 = F)im(12=01)
i RI'(1) i It
2 =
il 1 P P e | P
F R MRSl
m{m+2) __m_, T —1 T — i
oy 5 =5 = =
(v R)* LTy f<l |z — ><T "z — >}
Let { 2
= mim + m
= —Kn——s s I SR e by F 4
Then £ 2)
= mlm + NS T
Tr = K V72 5 |x—
Iz = CRE |z — 3l
By taking e sufficiently small, we get
i eKn o 2, |T — 7l m(m + 2) S
Tr (X +Y - = : o ———— T —-
| Tr (X + )| +|Tr Q4 = H!{I}W 2] ( )-l-gf‘f ) W= |} .:r‘,r|
: (18)
From (3). (4), (5), (8), we have
- : G
AT (X + Y = Q)]+ [Tr Qul) = AN[Q1 = G + 5
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<C{1 + [pllz — )
+ | D W + DUV (| D + Dy NI+ (Y1)}
(19)

Noting that :
|ﬂ {Ta?:ﬂ| HQI I|::r,.:ll.” ‘:GI{T?TI‘EH’F 1|':r‘—q;|
By taking m large, we get from (18), (19)

A : S 3
S(Tx (X +Y = Q)| +Tr Qul) < Clulz - 31
+ D + Dy¥| V2D T + Dy (X + 1Y)

Using the same argument as the proof of Lemma IV. 1 in [4], we have
IX] + Y] < CVLIQN + |Te (X +Y = Q)| + 1Q2 = Q' Te(X + Y - Qu)I'*}

Direct caleulation shows
I
3

0.r i I‘{' W
|10, ¥ + DT = "’7’{ H}‘?

m[n - 2] T Sk
le':-n_l."“_-: I'IIIH‘- ”{22 TR ':21” < ':'I{J!fl“]‘ - yl

Using Cauchy inequality and taking m large, [? small, we can get a contradiction with
(18], Thus

R /T
[

Ty (' R‘”))H‘-I-?ﬂ < Gm,-"'.-‘!r"?

e -gl)i+

1]l = CKn

lefw. 1) — wly.t) =Lz —y} £ (E=m) K|z -yl m ngwﬁ{:m] x [t — (wR)?. 1]

= INE 3
wlere 1) = ;1 ly [(_i) e E] AT

The lemma 15 proved.
Lemma 9 Let I be the veclor in Lemma 6. Then there exist constants 1 and o,

suech that
(. £) — u(y. ) — (L —y}| < (2 - DKz =yl in Qp(zo, to)

Proof Assume zp = 0. Consider the function

e ALK BBl R ezl 9
1I'={I,;E—jr,r}+2H[$—y-,—‘.-§f{ﬁ(a—ﬁ l){|rr:—-y|+m:lji(] = ))+Iff.r;ra|:c—y|

1 - "
where W = —(||? + |u|* + o{f — £1)), and the domain

R

Ik
g "
5= {(e..0) o+ IR +ott- 1) < (B) 0<ott-t0 = (3))
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: 2
It we take n < g then on the parabolic boundary of §
“':3:.'?:} —ufy,t) < ¥

Now we want to prove the above inequality holds in S by the same way in previous

lemma. At this time,

ATe (X +Y = Qu)l - ANTQul + 5 2 Zlw=1(Bzdly - gy

8t = RI'(1)

- provided o large, while

il e
AT (X + ¥ — Q)] — AN|Q + o < C{1+4 [plz - 7|)
+ | D% + Dy 0| 2 (| DY + DT

QN +1Tr (X + ¥ “ Q)| + [[Q2 = @I Tr (X + Y — Q1)|V2))
(21)

Noting that

|De¥ + D, ¥| < CKn
IQll £ CKn/R, Q2 - @]l < CK/fz -

we find (20) contradicts (21) by taking n small, B small.

(to — 1)

: _ e _ .
Taking & large such that B small, and 7 small again, we get the lemma

nnmediately.
L

The proof of Theorem 1 is included in [1-2], [4-5]. So we have u € C H“‘T{QT},
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