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Abstract This paper concerns the orbital stability of solitary waves of the sys-
tem of KdV equation coupling with nonlinear Schrodinger equation. By applying the
abstract results of Grillakis et al. [1-2] and detailed spectral analysis, we obtain the
stability of the solitary waves.
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1. Introduction

In this paper, we consider the following nonlinear Schrodinger-KdV system

{is;:—arx—fw::ﬂ

: . TR (ET)
g + T + F(n°)z + nper = —{|€]°)2

with n a real function and £ a complex function. The problem (1.1) arises in laser and
plasma physics. The local and global existence of initial value’ problem for (1.1) was
considered in [3].

Iir this paper, we consider the stability of solitary waves of (1.1). By applying the
abstract theory of Grillakis et al. [1-2] and detailed spectral analysis, we obtain the
sufficient conditions for the stability of the solitary waves.

For the other types of equations, such as nonlinear Schrddinger equation, K4V
equation and BO equation, the orbital stability of solitary wawves were: considered in
[1-2, 4-8].

This paper is m‘gaﬁized as follows: in Section 2, we state the results of the existence
of solitary waves; in Section 3, we state the assumptions and the stability results; in

Section 4, we obtain the sufficient conditions for the stability.
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2. The Existence of Solitary Waves

Consider the following nonlinear Schrodinger-KdV system

i et Eer—ne=0
: : c (2.1)
T T Tip ‘:‘ﬁ(“']:ﬂ + Ny = _“E| }:l:
Let
elt, z) = eTleitlz=vg (0 ut) (2.2)
e, ) = ny (T — vi) (2.3)

be the solitary waves of (2.1), where w, g, v are real numbers, £, , and n, , are real
functions. Put (2.2)-(2.3) into (2.1), we obtain

& e +i(2g—v)E, , F(wHqgu—q® =nyy)Eu, =0 (2.4)

SR H

— (v = Vg + B, +oml , + 85, =0 (2.5)

(2.4) implies
20 = (2.6)

Lot £ = eysechesr satisfy (2.4) with constants ¢;. ¢s determined later. then we Lave

2
-~ ) ] -1 -~ lil-'l - =
EE!..:L' = {r\.-i STeH E{:ESEEI!-{;E:E:IE*-IH == ( —lel = T _:'_ ?Elh;-;[.l) E;_h"u I:?. i ::'

Suppose e, — 0, a5z — o<, by (2.7), we have

: o ‘
Ny = =2casech®eaz + ¢ + o + ST —2¢2sech’eq (2.8)
2
5 U
05 = —l) — — 2.4
2 1 (2.9)

Fut (2.8), (2.9) into (2.5), we have
2w — l}r:'ﬁscuh?c-g:c + 4ﬁcgseuilchm = 4&'&3{25&(:1121‘3317 — 3sech?coz) — C?Sﬂﬂhzﬂgm (2.10)

It follows from (2.6), (2.9) and (2.10) that
; 1
o = HE,S, g5 0

o U
S
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thus .
f ; R PP
EwnlT) = ‘V'I(E( s ﬂT) (1 = = %ﬁ( T 'j'—f))sr—:{:h(v 13. E .1;)
dy Z T F
| My () = Mmch?( it .L) (2.11)
2 2
u‘?:%a 'T:_E,ﬂ, ]

Finally, we have

Theorem 1 For any real constants w, v, a, 3 satisfy
850 andi =58 — 2l ) < wie *.E (2.12)

there exist solitary waves of (2.1) in the form of (2.2)-(2.3), with n, 4. &, 4, 9, v, ¢ and
8 satisfying (2.11).

3. Main Results

Rewrite (2.1) as

1€ 4+ Exx —NE=10
' reR (3.1}
g+ Tig + (07 )s + oneze = =(|g)*)z
Let @ = (g,n). The function space in which we shall work is X = Hfm,1p]ux|:R}' X

Hl

ol B, with real inner product

(%1, 12) = Re f (myng + TyeTiar + £182 + E1080, AT (3.2)
It

The dual space of X is X* = H&ﬁ;p]w{ﬂ} il FE:L.[R], there is a natural isomorphisim
{: X = X" defined by

(i, ) = (1, 12) (3.3)

where (-, -} denotes the pairing between X and X7,

(f.@ =Re [ (fan+ fif)da (3.4)
L
By (3.2)-(3.4), it is obvious
o2
e
I= g i
)
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Let 71, T5 be one-parameter groups of unitary operator on X defined by

Ti(si)a(-) =d(- —51) for @-)eX, s;eR (3.5)
Tol(se)i(-) = {E(-}E“""‘,‘ra{-]], for. #l-le X, soeR (3.6)
Obviously
50
i dx
T =
1(0) o
dz

It follows from Theorem 1 and (3. 1) that there exist solitary waves (vt )T {wt)
(ewml), ny o(z)) of (3.1), with n, 1 €w » defined by

) e e 4 e Vo —dir — 2
EnlE =T 2] —— s (l—u~-§;ﬁ' —M—E sech( = T)

i | &
dw+v? L — 2
e (e 5 sech ( 5 '1:)
(3.7)
Denote
P {Eu I:.l{ :| Tl :.'[ :':I ':H-S}
.E._,.,L.[rr] = el FEr ) - 13:9)

In this and the following sections, we shall consider the orbital stability of solitary
waves T (vi)Ta(wt) P, ,(z) of (3.1). Note that the equation (3.1} is invariant under
T1(-) and T5(-), we define the orbital stability as follows:

Definition  The solitary wave Ty (vt)To(wt)®,, , () is orbitally stable if for all
£ > 0 there exists § > 0 with the following property. If ||dy — @, .llx < § and w(t) 15 a
solufion of (3.1) in some interval [0, t9) with @(0) = &y, then @(t) can be continued fo
a solution in 0 < ¢ < 400, and

f Inf - T T: G X = E 3.10
0 it 2k 70 T (02020l < o

Otherwise T (vt)To(wt) D, w(z) is called orbitally unstable.

So long as w, v are fixed, we write ¢, &, n for Ewr,uy Ewrys Tha w. Define

E(if) = / (|EI|E + nje|® + 2?1 f 2 gnf._jdx (3.11)
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It is easy to verify that £(if) is invariant under Ty and T3, and formally conserved

under the flow of (3.1). Namely
E(Ty(s1)T(s2)U) = E(t), for any 51,32 € R
and for any ¢t € R, i(f) is a flow of (3.1)

E(u(t)) = E(u(0))

(312

- (3.13)

Note that the equation (3.1) can be written as the following Hamiltonian system

B
E' is the Frechet derivative of E. As in [2] and [1], we define
a

Biz(gﬂﬁ)
1

2
Ba =
o
such that T5(0) = J B2,

Gh (i) = l{ By, i) = 2 f nldz + Im f (£28)dx
2 E B’ R
:

such that T7(0) = J By,

Qa() = 5(Bat @) = [ |efda
As in [2] and [1], by (3.13)-(3.18), we can prove that
Q1T (s1)T2(s2)d) = Qu(T@),  Qa2(Tu(s1)T2(s2)d) = Qa(u)

for any s1,32 € R, \ :
And for any £ € R, i(t) is a flow of (3.1)

Qu(a(t)) = Q(@(0)), Qali(t)) = Q2(u(0))

Furthermore

EF{"I"Q_Irﬂ:I T ‘”Qrﬂ{ Lu'tl}l T WQE .a-"t-'} = (]

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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where E', ()}, ()5 are the Frechet derivatives of E, @y and @3 and defined by

lgl* + n + Bn? + ang.,

_E-EI P 2
Q1 (@) = ( ; ), Qs (1) = ( E)
n 0

Define an operator from X to X*,

E'(i) = (

Heyp = B"($y) — vQi (i) — Q[ ) (3.21)

with o = (1), ¢a) € X, and

Hmu-ﬁ = ( (3-22}_

"'Ei'["[;.'.';r n 27179'!’1 -+ EE?,{?;J_I Tie gi'ﬂ'ﬂ.&]m = Ew‘{.ll,rl
ey + By + v + gy + 20mbs — waho

Observe that A, , is self-adjoint in the sense that H, = H,,. This means that
I='H,_., is a bounded self-adjoint operator on X. The ‘spectrum’ of H,., consists of
the real munbers A such that 'H,, , — AT is not invertible. We claini that A =0 belongs
to the spectrum of H,, .

Gy (3.12). (3.18), (3.20) and (3.21), it is easy to prove that

I£¢'.BT{ED:IEI}+'1ﬂE:E:| =0 : {3233
Ffw.ﬂT.;[D]EI}'_-:.L'IImJ =0 {JE-L':I
Lo, :
Z = (KT} (0) Py () + £z T3(0) Do () /Krs ks € R) (3.25)
By (3.23) and (3.24), Z is contained in the kernel of 18k
Assumption 1 (Spectral decomposition of H,, )
The space X is decomposed as a direct sum
X=N+Z4iP - * (3.26)
where 7 is defined above, N is a finite-dimensional subspace such that
(Huo,id) <0 for 0£TeN (3.27)
and F iz a closed subspace such that
(Hupil, @) = 8|75 for @€ P (3.28)

with some constant § > 0 independent of .
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We define d{w,v) : R xR = R by
d(w,v) = E(®ua) — vQ1(Pu ) — w1 (Puy) (3.29)

We define d'"(w, v) to be the Hessian of function d. It is a symmetric bilinear form.
The global existence of solutions for the initial value problem (3.1) in H'(R) x
H'(R) was obtained in [3]. Let us now state our main results about stability of solitary
wave T (vi)Ta(wt) P, (x). .
Theorem 2 Under the condition of Theorem 1, if
2 T 2

(1= ) f:m{—% (3.30)

1

4 =TTe

[

3, v>0, and

The solitary waves T (vt)To(wt) Py o(z) of (3.1) with the expression (3.7)-(3.9) are
ortetally stable.

4. The Proof of Theorem 2

In virtue of (3.11)-(3.19), we can apply the abstract stability theory of Shatah
[1] to (3.1). It is obvious that d(w,v) is non-degenerate at (w,v). Let p(d") be the
number of positive eigenvalues of its Hessian at (w,v). Let n{H,, ) be the number of
negative eigenvalues of A, ,. To prove Theorem 2, it is sufficient to prove that under
the condition of (2.11) and (3.30), Assumption 1 holds and n(H, ) = p(d"), which will
be proved in the following.

First we prove that Assumption 1 holds and n(Hyp) =1

For any 4 € X, rewrite it as

¥ = (%21, 22) (4.1)
~with 21 =1 +iye, 1 =Rezy, 12 =1Im

then by (3.22) we have

: 1
PRI I u
{Ifw,trTJ'l*': "’.I':'::' = Re fR { -2 [31 =+ (-LL-' + I = T-!-) z1

= T i
+Ref [ee "¢ 7 2y + E€
R

Z1 + 2ez0e T E }::f:z:

1=

Tarize+ (1 — -a;}z% - ezaro iy + Eﬁnz;‘;]{fﬂ:

o
= 4Re fR (£22e7 ' T7Z )dx + (Laza, 22) + (Loy1, m1) + (Lawa, y2)

= {L:azﬂrﬂﬁ L {Llyh“ﬂl} + {Lzyz,yz}
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2
+f ( ol - +\/1—ﬂ+—ﬁ(w+ﬂ—)zg) lix
B \/1—t:+%|{w+“7] 3 4

(4.2)
with
§* y*
B2 ] ey Sl i Ty TR :
Ly e + 3n (4.3)
B i 2
LE:E__E_W“I+H] {'51*'”
o8 43 52
L'}:H“gé?"l‘zﬁﬂ'i‘[l—ﬂj—(l—"E."“Jr‘E‘ IL.|..-'+E )
- (o) =-
N A g\l 4 e (4.5)
L *Ef"+2§ﬂ+|:1—ﬂ]| {4.6)
! 3 0z ;
Note that
L -—zﬂw(— —f)+mr{} (4.7)
b 51t IE) 1 e :
2 22
Y e il ; 4.
Ls 52 +2( W d)+ﬂffgf_ﬂ} (4.8
G & 45( T
Ly = =% = + —| —sl ==l Eh 4.9
TS Ba o 4)'“3'{5} )
with
Milz) =0 as |z|—= +oc (4.10)
Ma(z) =0 as |z| = +oo (4.11)
Ma(z) =0 as |z] = +oo (4.12)
Thus, by Weyl's theorem on the essential spectrum [9], we have
- -I.EIE
Oess( L) = 9( - - ?)?—i-mj (4.13)
A
o) = [2( == 2 ), +o0) (4.14)
43 u?
Toss(Liz) = el i o) ke (4.15)
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'i'.lE

Denote 3 = —w — o (2.12) assures c3 > 0. It follows from (2.2) (2.4), (2.5) and (3.9)
that

LiE. =0 (4.16)
Lag =10 (4.17)
Lany =0 (4.18)

By (3.7}, (3.9) and (4.16), we see that £; has a simple zero at z = 0, then Sturm-
Liouville theorem implies that 0 is the second eigenvalue of L, and L; has exactly one
strictly negative eigenvalue. Note that

e,

thé‘93=—ﬁ(—u—£){fﬂj (4.19)

4

Thus, the first negative eigenvalue of L, is —f'}( -t - ?) . with an eigenvalue of L, is

£, By (3.7) and (4.18), we see that n, has a simple zero at z = 0, then Sturm-Liouville
theorem implies that 0 is the second eigenvalue of Lj, and Li has exactly one strictly
negative cigenvalue. Note that

= 2
Ls(2ng) = —gﬁ( i, i %) (2n8) (4.20)

Thus, the first negative eigenvalue of Ly is —g,ﬁ' ( — & = U{‘) . with an eigenvalue of L
being 2né. Also by (3.7) and (3.9), (4.17) implies 0 is the first simple eigenvalue of L.
In virtue of (4.5)-(4.20), as in [4, 6], we have the following lemmas.
Lemma 1 For any real functions y; € HY(R) satisfying

(11,8 = (y1, &) =0 (4.21)
then
,U'E 2
Lagmn) 2 2( - o= 5 ) Il (4.22)
and there exists ¢ positive number §; > 0 sueh fhat
.UE
(L) 2 & —w— — )l (4.23)
4

Lemma 2 For any real function ya € HY(R) satisfying

(12,8} =0 (4.24)
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there exists o positive number §3 > 0 such thal
'U? 3
(Lava,e) 2 02 =0 = &) ol (4.25)
Lemma 3  For any real functions z; € H'(R) satisfying
{z2, 2nE) = {22, nz) =0 (4.26)
then
UE 3
(sz2,22) 2 B( = w = Yll (4.27)
nnd there exists o positive number 83 > 0 such that
v? :
(L3zp,22) = 038 —w — 1 (B35 (4.28)
For any 4 € X, from (4.1), we can simply denote 1 by
b= (11, y2, 22) (4.20)
Choose X
U = ER e =i et e
et E (4.30)
YT = (. v2,%3)
then .
il g e 5 1-:'? .-*-. ; ILIE L :
{IIM?ET,".:? ,'Il.'.II ::' = —Eﬂ(—w - :1-'— {EHE,EHE} — 6] —w— E) il } <0 {431}
Also notice that the kernel of I, , is spanned by the following two vectors
do,1 = (&, 0, nz) (4.32)
oz = (0,,0) (4.33)
Z = {kitho + kathoo k1, k2 € R} (4.34)
Let
P ={§e X/p= (p1,p2p3), (ps, 2nE) + (p1,E%) = 0
{3, ns) + {p1, &) = 0, (p2, &) = 0} (4.35)
N ={ki~/k € R} (4.36)

Obviously (3.27) holds.
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For any @ € X, @ = (y1,2, 22), choose a1 = ({22, 2n€) + {y1,£°))/({2nE, 2ns) +
(85,8%), b1 = ((ne, z2) + (€2 1))/ ((nana) + (E20Ex))s b2 = ((E y2))/((E,E)), then &

can be uniquely represented by
i =~ +bifps + botioz + 7 ' (4.37)

with ' € P, which implies (3.26).

For subspace P, it remains to prove (3.28).

Lemma 4  For any § € P, defined by (4.35), under the condition of (2.12) and
(3.30), there erists a constant & > 0 such that

{HuwP\ D) 2 6|5l x i (4.38)

with & independent of p.
Froof For any p€ P, by (4.35), define

= 2 InE

iy = NI 4.3

gt ({Eﬁ,gﬂ}- omes Evaé}) (4.39)
= Ep Ty

g = ( — 0, = ) 4.40
2 E:I:.‘:EE::I ':ﬂ:u:-.ﬂ-a:} { }

Choose a = —{p3, 2n&}, b = —(ps, nc}, then § can be uniquely represented by
7= a3y + by + ' (4.41)

with p' = [Py, pa. Fa), P1.p2 and Py satisfying Lemmas 1, 2, 3. Denote

gt g
nCEEEs )
B8, Ex ,
Py = ) = i) (4.43)
such that
G 1 el 1
(P1: 1} = mar et R Ve (4.44)
(61,E%) = {p1,8z) = (1, ¢2) =0 (4.45)
i A 1 S ]
W peb = ~ i i ey &£46)
(¢, 82) = {¢h2,82) = (1, 82) =0 (4.47)

Thus, by (4.2), (4.39)-(4.47) and Lemmas 1-3, we have

(Howg, 1 = {Lat.p1) + {Lopz, p2) + (Laps, pa)
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R E8 )
VT \M T g s S i (orE o)
am( u?) 2( v?) ol
R e L oy N Y A bt
T U 3 ¢1-|-4 -I—5 (o) 1 H{E-_',E‘!}
43 ue) © 16 y? 2( 1 1
1 — w4+ 2o [ w4 — | | S H
+ U 3(Lv“1 4)"‘5( w 4)] {n”?lx}-}_qghﬂxej-l-ﬂﬁ
!

4 ‘UE 2
]]Etlﬂt.ﬂy=1—u+?'ﬁ(w+q) >0,0=-w~— " >0 then

(Howf, ) ={L1p1. 71} + (Lapa, p2) + (Laps, Pa)

: Eé‘"ﬁl i 2 e re
+/R 1; + /ypa | dz — 2a(f1, P}

1"..-"'_
+ %1; s (Eﬁﬁl -+ u(y + aﬁ—gﬂ)tﬁ'i_ + b(y + %g:] q.fr;»)gf;i".rz:
215 25 2 1 32 L
+ %" =i+ (Ey - Eﬁﬁy)cr + Elz:r2 = ﬁ(y = Eaf] B
+ g[%f + 20y + 15—652 - l—i(y + %sz] EI,IEI} (4.49)

- P2 1
Denote fiq:£J9+(2y~§—§ﬁng+ggi_,l_(y+ .3_5;) iy = i E+EUU+T?-EI‘E—

3 7 322 5 28 5 16
ﬁ(y + Fr;r) . (3.30) assures d4 > 0, d5 = 0.
2 1 32 16 2
— _£ b ) 1 Wi S ; -
(1) 1 20(71113: 2 ~[lo(y+ o)1 +b(y + Z0) e, (4.50)
then
1 . 32 16 3 A :
o (Eapl + c;(y + Er:rjl;bl + b(y + FD‘) qfrg) dx E allpillze (4.51)
= it A2 16 2 :
(2) 1If 20|Fl}: < ~[a(y + To) b1 +b(y+ Fo) o, (4.52)
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then

i | +.:55£:'-* i
o <§j1 'EQ::' o {g.l:: E-E,l:'
daa’ 1 8= b° 1
5 A1 | — 1+ deollll3s 4.53
— B {F%E T o o sol|Anll; (4.53)
14
where d; =

— s min{dy, 45} > 0, denote §; = min{l,d} > 0.
(y+ £0)° +6(y + Lo)° il e
Thus, for any pe F, it follows from (4.49)-(4.53), Lemmas 1-3, that

(HuaB. P} 2 (L1, 01) + (Lap2, pa) + (Laps, Fa)

257 il
i :— 20 {f, B
fR(v’@ +VII}P1) d a{p, P1)

SRt T &b 1 i,
R R TR R A i e

o Bt

dpdr gk
= 'E—U”Pliliu + Sy |lpallin + dsBollisllin

G k] |
T e —— 4.54
S e ey 20 (Ep, &) _ (8:52)

Finally, with {4.54) we have

(Hy 7,0 = 8505 (4.55)

where § > 0 is independent of g.

Thus under the condition of (2.12) and (3.30), Assumption 1 holds, and n(H, ) = 1.
In the following, we shall verify that p(d") = 1.
Note that {3.20) and (3.29) imply

tdlw, v) = —C2(Puv)
dw':'-'-f-?:u'i'-';l Pt _Ql{'@w,v}
- Qa(®u) = - | (eB)ds

—(dw + v%)(1 _;_,r_%(w+ %]}f Sﬁmﬂ(mm)dﬂ:
| T4

= =44/ — —1‘1—2(1 u+d'ﬂ( +£))
- o Gk
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]
_Qlt{-ﬁu,ﬂj = _“f {?l?}din—lmf{Erfde
2 /Rm "
__—2(—-@'—-&-) fﬁsech ( 5 m)d:::uw(—w—z)

O ==

4 2
— (- 5o )
= ——| —w=—=] =2y| —w— —
oL 3 :
43 2
'(““?(“*IM
2
e[, ) = - !l-ﬂ—ilﬁ(—w—ﬂ—)
MO ek i 1
Fl
d”u(&:: 'i'_?]' - d:_.__lﬂ{m._. U}
- v y 48 v® 2 v?
= _m_%li[l 1:+T(u+1)]—4(§ﬁv—l) =i

pe 2
Ay, v) = 204 —w — I(‘E - 5,‘5‘?.!)

A | g L 2
Tos ol ‘*:I[l—u+4—'q(m+u—)]

1Y () 3 4
2

4 y?
Denote y=1—v + Eﬁ(w_FE) =0 o= —m—% > 0, then

det I:dﬂ} = d-_..--,;.-iuﬂ -ttt
— l[y(y = gﬁg)(wi — do) -E-Li*uu(y - gﬁﬂ) (? = %ﬁﬂ)]

r
- 2 fow+40 (1= 360)]’
= —4(3;2 - ;,ﬁﬂy +4::r)
= —4[(y-300)" +40(1 - 56%)|
(3.30) assures 1 — %ﬁ% > (), then
det (d") < 0.
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Thus 4" has exactly one positive and one negative eigenvalues, whence, p(d”) = 1.
This completes the proof of Theorem 2.
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