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SCATTERING FOR SEMILINEAR WAVE EQUATION WITH
SMALL DATA IN HIGH SPACE DIMENSIONS
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Abstract In this paper we study the scattering theory for the semilinear wawve
equation ay = A = Flult, ), Dult, z)) in R* (n = 4) with smootirand small data. We
show that the scattering operator exists for the nonlinear term F = F(A) = O(|A|"*),

where o is an integer and satisfies e 2 2, n=4;a =21, n = 3.
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1. Introduction

We consider the scattering problem for the semilinear wave equation
‘L!H[t,.'t-'] e ilu.{L:::} = f'_'li'!r,[?f,:l!],_ﬂt.!.{f,_,f:l:l I:]..].:|

Here Du(t, z) = (1, Vu)(t,z). Let A =(Ag, (A),i = 1,---,n + 1), suppose that in a
neighbourhood of A = 0, say, for the nonlinear term in (1.1) is a sufficiently smooth

function satisfies

F(A) = O(]AI") (1.2)

where ¢ is an integer = 1. From Li and Yu [1], we know that if there is a relation
between ¢ and n as follows

a>2 n=4 az=l n=5i (1.3)

then when initial data is sufficiently small, the Cauchy problem of (1.1} admits a unigue
olobal solution to ¢ > 0. In this paper we establish the scattering theory for (1.1) under

the same assumptions on @ and n.
In the scattering theory the asymptotic behavior of the solution to (1.1) is compared

with that of the solution to the free wave equation

'Ugﬂ:f,. $:] = ﬁ.ul,r_i, = (1.4)
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in the energy norm. More precisely, let E{R")} be the energy space
E(R") = {(f.9); f € L*(R™),V{,g € L*(R")}

with the norm ||[(f,g)lle = IV fllzz + llgllrz. We show that there exists a suitable
normed space T dense in BE({R") and a neighbourhood A of the origin in ¥ such that
for any (f~,g7) € N, there exists a unique solution u(f,x) to (1.1} in R x R", which
behaves asymptotically like the solution wy (t, ) of the Cauch;.r problem (1.4) with data
(f~.g7) at £ =0 in the sense that

|u(t, ) —ug (& -)le =0 as &= =00

and moreover, we also find a unique solution u (¢, ) to {1.4) with corresponding data
(fF,gT) at ¢ =0 such that

Nu(t, ) —ug (8, )], =0 as &—+oo

Therefore, the scattering operator S : (f~,97) = (f7,97) can be defined in the
set A, provided that the conditions concerning o and n as in (1.3) are satisfied.

For the case that the nonlinear term F doesn’t depend on Du : F(u) = Clu|” with
smooth and small data most of the results were known. One can see Reed [2], Strauss
[3]. Pecher [4, 5], Mochizuki and Motai [6], Morawetz and Strauss [7] and Tsutaya [8].
For the case of large data, we refer the reader to the results by Ginibre and Velo [9].
Recently Kubo and Kubota [10] have considered the asymptotic behavior of the radial
solution to (1.1). But for the generalized case as in (1.2), there are few results as the
author knows.

In order to establish the scattering theory for (1.1), as usually, we start with con-
sidering the following Yang-Feldman equation [11]

=)
w

: t sinw -
u(t) = uglt) + fm Flulr), Du(r))dr (1.5)
in a suitable invariable Sobolev space, here w = {-,ﬁ]%, However, (1.5) is not use-
ful directly to our problem, because we employ the generalized Sobolev space with
weights related to the generators of Lorentz group. More precisely, since we apply a
sef of partial differential operators which have the weights z and (or ) £, it is not clear
whether the operators commute with the integral sign in (1.5). Thus one of our main
tasks is to investigate the commutation relations between the partial operators and

b sinw(t — 7) : : :
[ F(u(r), Du(7)) d=. For that purpose we investigate the approximated
1158 w

solution

(G TP f ol LSkl e T (1.6)

{et
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instead of analyzing (1.5) directly. Giving some assumptions of F, making an effective
use of another L? estimate for the fundamental solution (See (3.4)) together with LP — L9
inequality due to Hérmander (See (3.2)), we show that there are useful commutation re-

Smwfj—*r]l F(u(r), Du(r))d

Therefore we find that we can establish the scattering Lhec:r}r for (1.1} in the generalized
Sobolev space. Also we notice that these complicated steps are inevitable to study the
scatfering problem, while they are not inguired in studying the Cauchy problem.

Finally, we remark that the estimates on composite functions are important to solve
onr problem.

lations between the partial differential operators and f

This paper is organized as follows: In Section 2, we introduce some notations and
state our main results. In Section 3. we prepare several lemmas and propositions
frequently used in Section 4. Finally, in Section 4, we give out the proof of the main
theorem. Throughout this paper we denote different constants by the same C from line
to line.

2. Notations and Main Results

We first introduce the space LPI(R™), for any f(z) € D'(R™), we say that [ ¢
LPS(R™). if
9(ré) = (rE)r"5" € LP(0, +00; L(S™ 1))

where r = |x] and £ = (&, -, &) with |§] =1, 1 < p, g < +oc, §*! is the unit sphere
m R". equipped with the norm

”.-'I.l:'::'“L.‘-'-f?{R'i} = ﬂftr&]r?“Lf"[D1+WiL‘?[S““1]}

L#4[R") is a Banach space. It is easy to see that if p = g, then L¥9(R™} becomes the
usual space LP[R").
Following 5. Klainerman [12], we introduce a set of partial differential operators

I' = {Lﬂ;{ﬂu]!ﬂ =] D;. l,'.'fl, {ﬂt_.':]:i'::l' = 1:21"':-?1;- [:L_-;.:l,_j' T 152:"'1ﬂ'}

wliere
. 5} .
Lo=18, + 210 + -+ 2,00, do = &4, E}i:"é? (i=1,2,...,n)

Qij =230 — 2,8 (i,5=1,2,---,n), Li =10 + ;8 (j=1,2,---,n)
and for any integer N > 0 we define

It Miewvpg = Y T, Ol poare

|k|=N
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for any function u = u(f, r) such that all norms appearing on the right-hand side are
bounded, where 1 < p.g < oo, k = (k1, ko, -+, k) is a multi-index, |k| = k + ko +
o=+ Ky, o 18 the number of the partial differential operators in T : T = (', Ty, - - - )
and I'* = I‘jflfﬁz e Fﬁ“, any permutation that in (I'y, Iy, -+, T');) only corresponds to
an equivalent is uniform. In the special case that p = ¢, we write

Hu[t:- ';'I[l"..""l",p,rr — ”'”*[f:u ‘:'”1".1"-".3-'

and denote

Nt -Hievpgx = E “XFRH(E':'”LF-?{HN}
k| =N

where v is the characteristic function of the set

{te): 1ol < 211

We also introduce the space for some integer § = 2n + 3
L ={(f;9) € CFR") x CF(R") : |(f.g)ll < oc}

here

G<s+1

I(f0)lle = 30 |IG/1+|z2)Pae 5|

[ex]| <542

LY{R")

B

+ > G+ |$|E}ﬁ+lﬂ§9”ﬂ(m}

lal <s+1

Now we can state our main results.

Main Theorem  Lei (f~,97) € £ be given with |[(f~, g7 )|z < 8, where § s
suffictently small, and let ug (t) denote the solution with (uy (0),ug,(0)) = (f~,97) of
the linear wave eguation

ugy — Auy =10

The nonlinear term F satisfies (1.2) and (1.3), under these assumptions we have
(i} there exists o unigue solution u(t) of the perturbed equation (1.1}, which is asYTIL-
tolically equivalent to uy (t) in the sense of energy norm

lu(t) —ug())le =0 as = —co

(ii) there also exists o unique solution ug (£) of the free equation (1.4) with (ug (0),
uﬁ:[ﬂﬂ = (fT,¢%), which is asymptotically equivalent to u(t) in the sense of energy
norm

[[(2) — Uﬁl-{f}nﬁ =0 as t—= +co
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—

Thus we can define the seattering operator S: (f=,97) = (f*,¢%) in a whole neigh-
hourhood N of the origin in 2.

3. Preliminary Results

In this section we prepare several lemmas and propositions frequently used in Sec-
tion 4.

Lemma 3.1  For any function u = u(t,z) for which the norm appearing on the
right-hand side below is finite for every t € R we have

i fke gt )
et M zagrny < O+ )™= D (e, ire, (3.1)
B=lil ol
I +1- BTl Meemey €€ 3 1020% My (3.2)
||+10] <5
D{E{E: lEP!QEW: lgl_i
i o Py 412

o

Here v and § are multi-index v = (71,---, 1), # = (f12,- - Bnmin) with |y = v +

Y [0 =iz G ond DY =00y, Q0= ] Q¥
1=j<hk<n
Proof The proofof (3.1) can be found in Zhou [13]. The inequality (3.2} is proved

in Section 3 of Hérmander [14].

Lemma 3.2 Forn > 4, denote w = {—&}%: for any function F = F(t,z) for
which the norm appearing on the right-hand side below is finite for every 7 € R we
e

sinw(t — 7) =1 -~
¥ = CllFllgax + CL+ 7)) 7 || Fl12 13.3)
et LI[Rn)
|| sinew(t — ) A :
25 F) < Clla;Fllgax +CA+ )~ F|Fliz  (3.4)
L LE(R")
sin wi
12, = C||Fllq.z (3.5]
F LE[RRm}
1 I 2oz €l : - - ] T ;
fiere — = = + 5 and x is as in Section 2, C is a positive constant independent of ¢, F
q
anid 7.

Proof The proof of (3.3) and (3.5) can be found in Li and Yu [1]. Here we only
give out the proof of (3.4). Making the change of variables = = (t = 7)y, & = 7 i .
and then proceeding as in the proof for (3.3) due to Li and Yu, we abtain without any

difficulty that

sinw(t — )

et
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—gsinfél{t —7) ==
= (2m x,F(r,-
S I
i) N : a
: 5 (o T|'—2'f-+1 sup [”X{T: )z (T, )lg2llvllp. It — TI—;]
ve HL 0 o]l g2
+ G[t i TI%-H [”F{T Hl E”{l e %"J}(i = T}I_;I [y}”m‘il Ti_n
t.lEH',tJ?H:I || g
=C|t—‘r|%+1{f1—|—fg} [Eﬁ}
where S W7, y) = x(r,x) is a characteristic function of the set
1+ || }
{520
By the Sobolev imbedding theorem and the compactness of §*!, we have
lellz2 £ Cllvllp = l[vla
. il ondh -
Also recalling that — = — 4+ -, we obtain
g e
Ii £ Clt = 71777 |23 F(r, Mgz (3.7)
On the other hand, taking account of the inequality
2 2 . 2Ty
f P2 (r€)de = — f f L N202 () |dNde (3.8)
T ] gn—1 J& d_,};

=D f . f = Av®(rE)dAde

22 [ [T P [Volrldr
we get .
(1 = $(r, ) (¢ = Tgso( ooz

<oli-rl_ s {(js [~ ot eN i)’

1+r
El—f 35

([ [ soonvaogne-ra)
= C|t — 7|(I3 + I3) (3.9)
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Therefore, we obtain in view of the assumption n > 4

e rl)—“? .
< e |
Iy < G(l e el g (3.10)
. {G(H_T[)ﬂ?ﬂ' 1F; (3.11)
: 1_{_47_' vl D

Combining (3.6)-(3.11) we have completed the proof of (3.4).
Lemma 3.3  For any multi-index k = (k,- - - i), we have
O = 3 Aplis
] < [k]-1
(Gl 1E] = SN0 S BERE
H < |k[-1
where [,] stands for the Possion’s bracket and Ay, Bi; are some constants and O denotes
the wave aperator.

Lemma 3.4 Suppose that F(w) is a sufficiently smooth function of w = (wy, -,
war) and F(0) = 0. Let ui(t.z) (i = 1,---, ) be functions with compact support in the
vartable . For any given integer 8 > 2n + 3 and any real number r with 1 3 T D
a vector function w = w(t. ) = (wy, -, wy) satisfies

[z, e, 5,00 = w0 (3.12)

where | | stands for the integral part of a real number and vy 45 a positive constant, and
such that all the norms appearing on the right-hand side below are bounded, we have

|t -}}}j uilt, )

!",5.:'12
—aslfe g - :
< O+ ) T8 (e, Yirow T it e (3.13)
1=l
oy
[Pt ) [Tt
1==1 ["J.g__;rhﬁlx

< C(L+ )23 fau(t, Ylssn [T st lirs2 (3.14)
f=1

1

; , 125 %=l
where o 48 an integer > 1 and = = = — 5
T

Yy
Lemma 3.5  Suppese that F(w) is a sufficiently smooth function of w = (g, - -,
wyr) satisfying if
lw| < vy
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then
Flw) = O(Jw|*™")

where e is an integer = 1. For any integer 5 > 2n + 3, if the vector funclion w™ =
(wy, - wyy) and w™ = (wT,---,wiy) satisfy (3.12) and have compact support in =,
 and if all norms appearing on the right-hand side below are bounded, we have

[ F(w™) = F(wT)llrsr2

L=y 2 41 .5
< O+ )7 F T8 w™ |8, ollw®|lr,sn (3.15)
l#(w™) = F(w™)|lrss-2.x.
1y ol - ‘
< CL+ )72 w8 Sllw e (3.16)

where 1 < v < 2, r and p satisfies % = %-— %, i

W =AanT =T
|lw™llre2 = lw” |lrsz + lw™lles2

Proof The proof of Lemma 3.3, Lemma 3.4 and Lemma 3.5 can be found in Li
and Yu [1].

Now we shall prove that L;, Lg, {};; commute with the integral sign in (1.5). Put

© fUsinw(ti—1) -
() = [ ZEEE=TF (ul(r), Du(r))dr

we have

Proposition 3.1 The following equalities hold if F is assumed as in the main

theorem |
L) = 22 D i) / el ) bRy (3.17)
Q0 = [ T o,rer)dr (3.13)

inw(t— b sinw(t —
A H}F{U}-sz LGl S0l
s & t

3 f Si““’fj o T]_LBF{T]dT | (3.19)

tsinw(t — )

L6y I,(t) = cos(t — o)[z;F(o)] = f

e}

8, F(r)dr

t
-l—[ cosw(t — 7)L; F(r)dr (3.20)
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Qi1 (t) = ftcns w(t = )0 Fr)dr (3.21)
Lot I, (t) =ccosw(t — o) Fla) + f! cosw(t — 7)F(r)dr
¢
+f cosw(t — T) Lo F(r)dr (3.22)

L5 0() — sinw(f — a)

Bilz; F ()] + dj f o T ECrldr

L ol o
+fg Sm“"i ") (0L F(r))dr (3.23)

E-a L o =
Q01 (t) = 6 f 5”””5": AR s f EHWS ") o, Fir)dr
7 &

tein e w—
+ f Em“‘E ") 56 P (r)dr (3:24)

. 1 FiL s ki
STy e B ”}aﬁcF{aHf IO et o PRy
'y = W

£ ot "
+ f HODiE T]ﬁkLuF{T]dr (3.95)
i W

Proof The proof of this proposition can be easily obtained by applying Fourier
transform and carryving out integrations by part a few times with respect to v. Here
we omit it. For details one also can see Hidano [15].

Proposition 3.2 Assume that u € X; g, we hove

IF(u(r), Du(r))Irsgzx € C(1+ |r)~H1-amle pot (3.26)
[P
[althes Du[r}}nm,m < C(1 + |r|)"F(1-3lagatl (3.27)
IF(u(r), Du(r))Ir,s2 < C(1 + |7[)~ "5 *EoH! (3.28)
1L+ 220 F(u(r), Du(r)llxey
< C(1 4 7))~ VG le gt (3.29)

where X; g = {v: Dy(v) = B} and D,(v) = EEUP 1.0 '~'-’“1‘ 8,2+

i=0 teR
Proof The proof of (3.26)-(3.28) can be easily obtained by using Lemma 3.2 and
Lemima 3.4. Here we only prove (3.29), in fact it only needs to prove

101+ |- )2 (Je]°T* e + [Duf T~ D) || g2 gy
< C(1 + 7))~ -m=5le patl (3.30)
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[cx| s

39
;__:-:i'sjt, following the Holder inequality and Lemma 3.1, we have
L+ |« D * T uf] 2 gy
SO+ Tl sl s
< C{ + o)~ Va-mmla pett (3.31)
-.Tmceeding as above, we also have the following estima-te
1 Py LN
1L+ |- %)7 | Duef T~ Dus|| o
< C(1 + ||y~ =z mmEs)e gatl (3.32)
Thus we have finished the proof of Proposition 3.2.
Then combining Propesition 3.1 with Proposition 3.2, we have
e
Lilolthm f S‘H‘”L. T]LjF{T}aTT (3.33)
b gt
Ol oo(t) = f el T:'ﬂl-jF{T}dr (3.34)
e o ¢ b
s E/ sinw(t ﬂFI[T}r:ET +]‘ sinw(f T]LﬂF{T}dT
- et — Led v a
(3.35)
We still set
L -1 f Az
(L;D)o(t) = f Sl TJLJ-F[TMT (3.36)
—a
bosinw(t — 7)
(Qi )0 () = f Qi F(r)dr (3.37)
e 2 Lt 2
(Lod),(t) = 2 f Sm“"fj ™) riryaris [ 3‘““’5: i E
1 2 (3.38)
~ In the same manner we can prove for 5 = 2
§
DAL oS f Snwl T:‘ruﬁmm (3.39)
i
x| <35
BISL e s
PAD]_ ool o - iRl sl oh A S
PR e
+ Z f cosw(t — T)I*F(r)dr (3.40)
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‘ 1g)=1
PeparE N

lo]<s ™ ™

bosinw(t — 1)

DST*DF(7)dr

oo (!

+ Z f cosw(t — 7) " DF(7)dr

[EEsEss

Therefore by induction we have the Proposition 3.3
Proposition 3.3 Ifu e X, g, we have the following equalities:

B = S {:*uf BN = T o B D et

lal<s ~ER v;
5 pide ¢ osinw(E—1) _g .
N o= Z G’agf DT Fulr), Dulr))dr
e g
;
A Z Cu-[ cosw(t — T)I*Fu(r), Du(r))dr
[afze: Ui
i fideel * sinw(t-71) g
| B o E G&.ﬁf = DETC DR (ulr), Du(r))dr
el <5 i

_t cosw(t — T)DDF (w(r), Dulr))dr

+Z£’nf

x| <s g8

here Cy, Capg are constants.

4. The Proof of the Main Theorem

(3.41)

(3.42)

(3.43)

(3.44)

I this section we shall complete the proof of the main theorem by using Lemma

4.1 and Lemma 4.2.

Lemma 4.1 Assume that (f,g) € & and s = 2n + 3, then the solution of the

Canchy problem
Lo — .ﬁuu —{}
t=0:iw=f up=g

fulfills the estimate
Ds{ug) < Cll(f, 9)llz

(4.1)
(4.2)

Lemma 4.2  Let (f7,¢7), uy () and F be assumed as in the main theorem, then

there exisis a unigue solution u(t) of the integral eguation

u(t) = ug (t) + f_! sinufj = TjFI{u[T}, Dulr))dr
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with u(t) € X, g. Furthermore, u(t) is the solution of (1.1) with Couchy dota given at

i = —oo, and also has the property
|lu(t) — ug (t)lle =0 as & — —co

Proof of the main theorem In fact, following Lemma 4.2 we have shown the
part (i) of the main theorem. Hence we only need to prove the part (ii). Define now

ug (£) = ult) + j:xl Einwt ) F{u(r), Du(7))dr

and
uy (0) = f*, ug(0)=g"
Then we show in exactly the same manner as above gy (t) is a unique solution to (1.4)

with the property
lu(t) —ug (8]l =0 as t— +co

So that we can define the scattering operator S : (f7,97) — (f +,g7 ], it exists in a
whole neighbourhood N of the origin in . Thus we have finished the proof of the
main theorem. ' '

Now we turn to prove Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1 By Lemma 3.3, we have

OL;ug = ] (4.3)

e=_{= .Ljﬂ.n = T;q. I[Lju[.]l = E_Tf -|—.I'j1i_f [4-’-1}

D0 pug = 0 ~ (4.5)

Tl ﬂjkun = .I.'_Tﬂkf = :::;;5‘_.,_;’ [ﬂj;ﬁ-ﬂﬂj; = :t:jrﬂrg o mkﬂjg (-lﬁ}

OLgug =0 (4.7)
n n

t=0:Loug = »_z:0if, (Louo)e =g+ > g (4.8)
i=1 =1

Following (4.3)-(4.8), we have

; i i
Liuo(t) = coswt(z;g) + E“L“ (0:f +z;Af) _ (4.9)
ﬂjkuu{'{:} — C':}Btn.rﬂ_i-‘jﬁ'kf - :E;;ﬁjflj + SHLWt f_:njﬂ'kg - :Ek-ajgjl I:El.lf]}
= sin wt 1 sinwt
Loug(t) = Zﬂﬂﬁwt[:ﬂ:f_aff} + Ty + Z m{:.l (zi0;g) (4.11)

1

i=1 i

Therefore, by (3.5) know that

luo(t)lraz < ClHLf.9)llz
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In a completely similar way we can get the estimates for llwo (&)l 5,2, HDun(t)|Ir 5.0 and
|D%ug(t)||r 5.2. Here we omit the details.
Proof of Lemma 4.2 Put

wolt) = valt) + [

sinw(t —7)

7 Flu(r), D{u(r))dr

for any o € (—cc,0). In view of Lemma 3.3, Lemma 3.4 and Lemma 4.1, it is easily
verified that u,(¢) is a unique solution to (1.1) with (wu, (o), ws(0)) = (ug (o), ug, ().
By virtue of Pmpu:ualtmn 3.3, clearly, we have u, — u as ¢ — —cc which is the solution
of (1.5) and u € J:ﬁ C*(R, H**~¥(R™)). We want to apply the contraction mapping

principle and first remark that ug (t) € X, g. Now we consider w™, w™ & Xk and

estimate
| sin w(t — m}Iﬂ{F{w_ij_} ~ F(w=, Dw=))
tﬂ L} (R"™)
< ||IF{w™, Dw™) — F(w™, Dw™)||r. #9.2%
+ C(L+|t))~F |(F(w™, Dw~ ) = Flw™, Dw))lr 0.2
<C(1+ |f|r%“-%}“5“||w- ~ w7 lx, 5
+C(1 + |¢))~ (1 + [t U= R)e gy, o w |y .
<SCO+ [T Bu ~ wlx, | (4.12)
andd

1E ™, Dw™) = F(w=, Dw=)||ps2

(=1l o
SC+ )77 E%w —w|x, . (4.13)
| DF(w™, Dw™) — DF(w™, Dw™)||p 5.2
< CQ+1H)™"F Blw~ —w™|x, (4.14)

Here we have already used Lemma 3.2, Lemma 3.4 and o = 1, hence, we obtain

t : e
f LA T]I"*{F{mﬂﬂw‘j — Flfwz,Dw::IjV dr
-y Lt | L2{R™)
= Gf (14 |7))=25 E&Hw —w™||x, pdT
< CE®|lw™ = w|x, , - (4.15)

i
f | F(w™, Dw™) = P(w=, Dw=)||r.s sdr
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<C f (1 + 7))~ " B ™ - w=lx, pdr

< CE*||lw™ —w™||x, ¢ (4.16)

f_ _IDF(w™, Dw™) = DF(w, Du™)lr "

< G_[ 1+ |T|}" fmopet E‘:‘Hw —w™||x, Ed‘]"
< CE% w7 =T |jpe R isesis (4.17)

If we denote the transformation which maps w™ into the right-hand side of the consid-
ered intepral equation by T we have shown '

IT(w™) = T(w™)llx, s € CE®lw™ —w™llx, , (4.18)

as well as

IT(w)lx, s < Cé+CET! (4.19)

Assumie now that o
Céd < E.:'J"l, 20907 £

boulr | 2=

if D,(w™), Dg(w=) < 8, we conclude that
i b
ITw) = T()lx, - < Glo” = w7l
and
T (w)llx, s = < Ch

The contraction mapping principle shows the existence of the unique solution in X5, .
Now we begin to compare with the asymptotic behavior between u(t) and ug (f) as
t = —oo. In fact, we have

et
() - w5 Ol < | 1P (@ Du)lgaeydr

t _ {n—la—1
< [ @+ 1) i, o
—co
: _ln=ta=i g
< Ll ) 2 lleell x, g (4.20)

by the assumption of o we can see

= la=1

1 <0
5 o
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Thus, we obtain
lu(@) —ug (E)fle = 0 (t = —o0)

S0 we have completed the proof of Lemma 4.2,
Acknowledgements The author would like to thank his advisors Professor Li
Ta-tsien and Professor Zhou Yi for their encouragements and valuable advice.
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