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Abstract In this paper, we are concerned with the existence and stability of the
- positive solutions of a semilinear elliptic system

— Aufz) = a(z)v(z) + e(x)
— Av(z) = b{zhuP(z) +m(z) o0
= nr=0 ' ' on ot
~ where £} € RY is a bounded domain with smooth boundary 0. It is shown that under
the suitable conditions on 8, u, there exist a stable and an unstable ,I,JDEII:I".'P solutions
for this system if e and m are sufﬁuentlv small in L2,
Key Words  Positive solutions: multiple solutions; stability; semilinear differen-

tial systemns.
Classification 25.J35, 35B32.

1. Introduction

Let ©2 be a bounded domain in RY (N > 2) with smooth boundary 9Q and e, m €
L¥=(€2), e,;n > 0 in 22 and e,7n # 0 in Q. In this paper we are concerned with the
existence and stability for positive solutions of a semilinear differential system

i &ﬁ[;j = a{z)v’(z) + e(z) . ' . (131}
— Au(z) = blz)u(z) + m(z) in 0 e (1.2)
s=v=0 on a0 (1.3)

where a, b € C*(Q) with

&:=mina(z) >0, b:=minb(z)>0
o o0} : 72 ;
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By a positive solution (u,v) of the pmhlem'(l.l)n{l.ﬂ} we mean that (u,v) €
C2(0) x C?(N) and u > 0, v > 0 in .

When e = m = 0 in £, the existence of at least one positive solution of (1.1}
{1.3) has bEEIl studled recently by the author [1] under the suitable assumptions on
d and p. In this paper, we shall show that under the same assumptions on ¢ and p
as in [1] and that [|e|| g, ||m|lr= are sufficiently small, the problem (1.1)-{1.3) has at
least two positive solutions. Moreover, we also study the stability of such solutions.
The existence of positive solutions of such kind of problems has been studied by many
authors, see, for example, [2-6]. In all of these papers, the solutions were obtained by
means of variational l:;rinciples. The advantage of such methods is that the systems
with some kinds of peneral nonlinearities can be handled. The shortcomings of such
approaches are that they can not be easily used to discuss the systems with more
than two equations; and to discuss the stability of solutions, meanwhile can not be
easily used to discuss the existence and stability of the solutions of the corresponding
parabolic systems. In this paper, we use the degree theory to study the existence of
positive solutions of (1.1)-(1.3). Meanwhile, we also deal with the stability of such
solutions. We should mention that our methods in this paper can be used to deal with
the existence and stability of positive periodic solutions of the corresponding parabolic
cdifferential system

% — Au = alt, z)v® +elt.z)
du :
E—&u—btm}u”+mtz} in Ri x§

y=v=0 on Ry xdQ
) =u(t+T), v(t)=v(f+T) in' &
u>0, >0 on Rix{

Our methods of this paper can also be used to deal with the systems with more than
two differential equations. The systems with more general nonlinearities need further

discussion.

2. Existence Results

In this section, we first describe our existence theorem and then use the Leray-

Schauder degree to show the existence of positive solutions. Throughout the rest of
this paper, we set B = C%(Q) x C%(Q), denote by - ||, the norm of L9(2). We denote
K the cone of non-negative functions in E.
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Theorem 2.1  Leta,b: Q — (0,+00) be bounded continuous functions such that

i=mina(z) >0, b=minb(z) >0
rEfl Tl

Suppose that § > 1, u > 1 and

2(1 + &) 2(1 + p)
ax {255 - -9, 2058 _ (v _9))

Lete,m e L™®(0), e,m > 0 in {} and e,m & 0 in Ll If ||e]|leo and ||m||ee are sufficiently
small, then there exist at least two positive solutions for (1.1)-(1.3) in C*(02) x C2(02).
We denote by A; and ¢ the first eigenvalue and the first eigenfunction of —A in

{1 with the Dirichlet boundary condition. It is well-known that the inverse operator
(=A)™' B = E of (—A) is compact. We first note that by the maximum principle to
find a positive solution of (1.1)-(1.3) is equivalent to finding a nontrivial solution (u, v)
of

- Au = a(z)|v]® + e(z)

— Ay =b(z)|u/* +m(z) in Q

uw=1=_[ on g
Let f(z,v) = a(z)|v|*+e(e), fole,u) = b(x)|ul*+m(z) and A(u, v) = (~A) L (fi, f2) =
(=)~ f1 (—A)7 f2). The positive solutions for (1.1)—(1.3) are fixed points of the op-
erator A from E into itself. We first investigate the Leray-Schauder degree of [ — A
near 0 and then in a large ball in £, where [ is the identity map from E to E.

Lemma 2.2  For any given ¢ > 0, there exist positive numbers r < ¢ and § such
that for e,m € L*(R) with |lefloo + Mo = 4,

deg (I — 4, B,(0),0) = 1

where Br(0) denotes the ball centered at 0 in E with radius 7.
Proof We know that (1.1)-(1.3} can be egquivalently written in the form

(u,v) = Afu, v)

Set q = N + 1. Thus, according to the standard regularity of —A, there exists C >

such that

lullgo < Clla(x)lv]® + e(z)l,
lellco < Cllb(z)|ul* +m(z)|lq

We make the homotopy H :[0,1] x E = E by

H(s,u,v) = (w,v) = (=8) " [s(a(@)v]’ + e(x)), s(b(@)|ul* + m(z))]
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We shall show-that there exists » > 0 independent of s such that H(s, ) #0 in d5.(0)
for all s € [0,1]. Let ) = max{|la(z)lloc, lb(z)llcc}. Let ¢ > 0. Take 0 < r < 1
3 2

satisfying r < ¢ and €% ECEEE and £2* < -;—1—52 for all £ € R with [£] £ r. (Here
Ci
we are using the facts that § > 1, p > 1.) Thus, if (u, v) satisfies that H(s,u,v) = (0,
then
f Vuf? = 5 f (a(z) |0 + e(z)u)de (2.1)
1 : 0
f Vol = s f (b(z)|ulFv + mz)v)dz (2.2)
N )

It follows from (2.1} that

: PR 5

A
> [ |Vu|? — : [ﬂil:fﬂ}tl?&{ii‘— —lfu?d:r:mf elx)udz
n 21 Jo 2 Jn n

Al

1 Lk
= 3 /5 ?dm—ﬂrf El[ﬂz]lt:‘mdu:—fﬁemtr

It follows from (2.2) that

f Vo2 = sf{f; T}]uu*u + m(a)o)dz

fr-:fvﬁ — ffﬁ ?“di—a—[ ?dm—fm (@)ia
L

;,_ S e 7 e f
5 ﬂfu dx 2‘11 ‘:f_: (zutde — | mudz

Therefore,
5 1 :
b f (4 AR f (2(z)0? + b2 (z)u¥)dz — f (eu + muv)dz
2 Jo 2 0
A
= Elfﬂ{uﬂ-iru?}dn:— IL{u +u2]d$—fﬂ{eu+mv}d:t;

A : .
> 2 [ @ +%)de = max{lels ko) [ (s + v)d

> 3 [ (ul#+ 101%)do — max{lellee, Imiloc} [ (u+v)ds
et

r"ﬁ_&((”uﬁm + [lvllge) |E-].|qu[ﬂﬂ”m + ltmﬁm})"
2 CCy ; Ch

— 9| (llelloo + lImlloe) (llello + flulla) > 0

> g4 ,
if ﬂ(f::*:a & 1ﬂ|1’wgi) — |QJdr > 0; where [lufco + llvllco = r. We also use the

1
fact that dg = 2 and g > 2 here. This contradiction implies the nonexistence of the
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solutions of (2.1)-(2.2) on 8B.(0) for s € [0,1]. From the homotopy invariance of the
Leray-Schauder degree, it follows that

degp(l = A, B-(0),0) = degg(I, B-(0),0) =1

Lemma 2.3  For each (e,m) € L=(Q) x L®(}) with e 2 0, m = 0 in §}, there
exists B > v such that
degp(I — A, Br(0),0) =10

Proof Let us consider the problem

— Au = alz)(|v|® + slv| + 5) + e(z) (2.3)
— Av = b(z)(|u|* + s|u] + 5) + m(x) | (2.4)
wu=v=0 on &0 ' (2.5)

where 5 == 0.

Since e > 0 and m = 0 in 2, it follows from the strong maximum principle that if
(1(s. ). v(s,-)) is a nontrivial solution of (2.3)-(2.5), u(s, J,v(s. -} = 0 in £

Lot golzu,v) = (a(z)(jv]® + sjo] + 8) + elz), blz)(|ul” + slul + &) + m{zx)) and
Filu,v) = (=&)Y o g;. We first show that there exists S > 0 such that there is
no nontrivial solution of (2.3)—(2.5) when s > S. Since any nontrivial solution of
(2.3)-(2.5) is a positive solution of (2.3)-(2.5), we only need to prove that there is no
positive solution of (2.3)-(2.5) when s > S. Multiplying (2.3) and (2.4) by the frst
sigenfunction ¢; of —A under the Dirichlet boundary condition, we easily see that

N fﬂ b >0 fﬂ Al = a fﬂ b i (2.6)

and

Alfw;ﬁldmé sﬁf nprde (2.7)
I i i

Thus, (2.6) and (2.7) imply that

}u%f vy EEEE?f vy d
1 L

This is clearly impossible for s sufficiently large. This means that there exists 5 > 1
such that there is no nontrivial solution of (2.3]-(2.5) when s = .

Now we will show that for s € [0, 8], there exists R > 0 independent of s such
that, if (u(s,-),v(s,-)) is a nontrivial solution of (2.3)-(2.5), then we have ||u(s, -}||ee +
(s, )|lee < B. Since a nontrivial solution of (2.3)-(2.5) must be a positive solution of
(2.3)-(2.5), we only need to establish the a priors bounds for positive solutions of (2.3}
(2.5). The proof is based on the similar argument to that in the proof of Theorem A of
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[1]. The main method is the blow up argument. For convenience, we only sketch the
proof. Suppose that there are sequences {s;} with s € [0,5] and {(ug(sg,-), ve(sg, <))}
of positive solutions of (2.3)=(2.5) with s = s, such that

tp = max ug(sp, T) = +oo  or £ = maxwg(sg,T) = +oo
reil el

as k — +oco, we will derive contradiction.
Define
8 2(1 + 4) e 2(1 4+ p)
b el & o= 1

then ap > 0 and ag = 0. Set 1
1

Ve =t +&°

then v — +oc, as k = +oo. Choose zp, %, € £ such that t; = up(se, z), & =
w8y, Tr). Let Qp = yed{zy, 852) and Qr = yed(Eg, 92). Here d(z, 99) denotes the
distance between x and #€1. Then there are three cases to be considered here: (1) there
exists a subsequence of {{Qy, tiﬂ:’&)} (still denoted by {(QL,@;;]}} such that (), = +oc
and Q0 — +oc as k —+ +oo; (ii) one of the @ and @ approaches to +oo as k — +o¢;
(i) { (%, {:}L}} are uniformly bounded. According to the three cases above, we can
make the suitable transformations as in [1] and by the blow up argument as in [1] to
obtain the contradictions respectively. Note that since s; € [0, 5] for all &, there is no
any difficulty when we use the arguments of [1] here.

The arguments above imply that there exists R > 0 independent of s = 0 such that
for any nontrivial solution (w(s.-),v(s,-)) of (2.3)-(2.5)

”1-'!'(5: Hl:c: 3t ”H{S, :I”l:h:: < R

Since deg(l — Fy, Bp(0),0) = 0 for s = 8, the assertion follows from the homotapy
invariance of the Leray-Schauder degree.

Proof of Theorem 2.1 By Lemmas 2.2 and 2.3 and the degree’s excision prop-
erty we find that degp(f — 4, Br(0)45,(0),0) = —1. This implies that the problem
(1.1)-(1.3) has at least two positive solutions.

3. Stability and Instability of the Positive Solutions

We discuss the stability and the instability for the positive solutions of the problem
(1.1)=(1.3) in the present section. Our main result is ;

Theorem 3.1 Let a(z). b(z), 6, u satisfy the conditions in Theorem 2.1. Lete,m €
L=(Q), e,;m = 0in Q and e,m # 0 in Q. If |lellee and [[m|le are sufficiently small,
then there exist at least one stable and one unstable positive solutions of (1.1)-(1.3] in

C2(8) = C2(S).
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By the stability of (u,v) we mean the stability of (u,v) as the solution of the
corresponding parabolic system of (1.1)-(1.3). The following lemma can be found in
[7].

Lemma 3.2  Assume o, 3, v, € L=(Q) with 8, > 0 in Q. Then there exists a
real eigenvalue A of the problem

— Ah = ah+ 3k + Ah (3.1)
—Ak=dk+ v+ Ak in Q (3.2)
h=k=0 on (3.3)

. fknown as the principal eigenvaelue) such that (3.1)-(3.3) has no eigenvalues A with
Re A < 1,- X has an etgenfunction in K and X is the only real A to which there corre-
sponds an eigenfunction in K to (3.1)-(3.3). Here K iz a§ thei in Section 2.

[t follows from Lemma 3.2 and Henry [8] that (u,v) is stable if the principal eigen-

value A of the problem

— Ah = da(z)v® "k + Ak (3.4)
— Ak =pb(z)u* th+ Ak in 0 (3.5)
=k = ans ag (3.6)

is positive and (u,v) is unstable if X < 0.

Lemma 3.3  Let (u,v) be a positive solution of (1.1)-(1.3) and A(w.v) be as that
in Section 2. Then

(i) If A > 0, then indexp (4, (u,v)) =1,

(i) If A = 0, then indexy (4, (u,v)) = 0.

Proof Suppose that A > 0. We shall prove that

dﬂgE{I 2 .rq.’l:ﬂ«., '1-’}? BT{UL D} = 1

for any r > 0. We consider the problem

— Ah = sda(z)v® "'k (3.7)
— Ak =sub(z)u*"h in R : (3.8)
h=k=0 on 9% (3.9}

for s € [0,1]. We shall prove that this problem has no non-trivial solution. In fact,
suppose that this problem has a solution (h, ks) (pessibly complex valued), then by
Kato's inequality (See Kato [9], Lemma 3)

— Alhy| < sa(z)o’ k|
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— Alkq| £ sub(z)u*~Hhy| in 0
o5 =leEi=0 on &0

This means that s A'(x, v)([hs], [ks]) = (|hs], |ks]). Thus,
r{sd {u,v)) = 1 (3.10)

where »(T'(s)) denotes the spectral radius of T(s). On the other hand, by Lemma 3.2,
we have that there exists (hy, k) with by > 0, k| > 0 on @ and ||hyflee + [|killee = 1
such that

— Ahy = fa(z)v’ " + Ak
— Ak = pb(z)u* Thy + Mk in
hpi=ki=0 on d12

This implies that
sA (u,v)(hy, k1) < (R, k)

sinee A > 0. Therefore, as before,
r(sA'(u,v)) < 1

This contradiets (3.10). This contradiction implies that there is no non-trivial solution
of the problem (3.7)-(3.9). By the homotopy invariance of the Leray-Schauder degree,
we kinow that

degg (I — A'(u,v), B;(0),0) = 1

for any r > 0.

We know from above that I — A'(u,v) is invertible. Thus
indexp (Alu, v), (w,v)) = degp (I — A'(w,v), B-(0),0) =1

Here we are using Theorem 1 in [10] and that (u,v) is demi-interior to K (in the sense
of [10]). We next prove the statement (ii}. Let (hy, k;) be the principal eigenfunction
correspouding to A We set By = {s(h1, k1) : s € R}, here (hy, k) spans the kernel
of the operator T — A'(u,v) (since A = ). Then there is a closed subspace E,; of
L7=(81) = L=°(€1) which is invariant under A'(w, v) such that L%°(Q) x L*=(Q) = E, & Es.
Denote by F; the projection from L® () x L=(12) onto E; for i = 1,2, P is a bounded
operator, that is, there exists M > 0 satisfying

1Piwllee € Mlwlleo, i=1,2
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for all w € L*(§1) x L*=(02). We choose £ > 0 as satisfying
{s(h1,k1) : |s| < e} x {w € By : |lwljeo < &} C B3(0)

and put U.((u,v)) = (uw,v) + {s(hy, k1) : |s| < e} % {w e By : ||w]|l < £}

Now we show that (u(p — 1)b(z) uﬁ* 2h%,8(0 — alz)v®~2k2) ¢ F;. We know that
(plp — 1)b(z)u2h2 §(6 — a(z)v’—2k}) € E. In fact, if § > 2 and p > 2, we easily
know that this is true. We only consider the cases that ¢ < 2 or g < 2 or that both
of them are less than 2. The regularity of —A implies that u,v, by, k1 € CH(Q). By
Lemma 2.3 in [11] we know that there exist [; (i = 1,---,8) with Iy = lgy > 0
[k =1,2,3,4) such that

Lo, 8Q) < w(z) < Ld(z, 30
lsd(z, 3Q) < w(x) < [yd(z, 80)
lsd(m, 801 < hy(z) < lgd(z, 30)
lrd(z, 30) < ki (z) < lgd{z, 90)

These imply that u*~24% and v?~2k] are bounded in the neighborhood of 8Q. Thus,
W =2h2 8242 € L(0). Assume that (p(p — 1)0(z)u" 243, 6(5 — 1)a(z)v’ ~2k7) € By
Then we shall see later that there is (wy,ws) € L®(02) = L*({1) such that

— Awy — Sal(z)v® "ty = 6(5 = 1)alz) i 2kd
— A — pblz)ur  wy = plp — Dblz)u "%k in Q

wy=wp =0 on o0&}
Then

0 {f (e = D)b(z)u” "2k} + 6(d — 1)a(z) w0243 dx
2 f wal — Ahy — ez’ )da +fnw1{ — Aky — pb{z)ut " hy)dz = 0
13

This contradiction implies that (u(g — 1)b(z)uF"2h?,6(d — 1)a(z)v?=2k?) ¢ Es. There-
fore, there exists 3 # 0 satisfying

2 p=212 —A0b f—dpe . h
y:[n llb'ii]ua zh;} (5l plp — 1) {E}HJ_E LDl (3.11)
§(6 — Da(z)v’ =k 310 — Va(x)v~ky by
Now we prove that for any (f(z),g(z)) € Ei, there exists a solution (h,k} €
£22(0) = L2°(SY) for the problem

— Ah = da(z)v’ "tk = g(x) (3.12)
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— Ak = pb{z)uF—th'= f(z) in (3.13)
Rt O ) (3.14)

In fact, consider the homotopy
H(s,z, h k) = (R, k) — (=A) s(da(z)v® Tk + glx), s(pb(z)u " h + f(z))]

We shall prove that there exists M > 0 independent of s € [0,1] such that if (&, k)
satisfies that H(s,x, k. k) = 0, then |[|hllee + ||kllee = M. In fact, suppose that there
exist sequences {s, } C (0, 1) and {{hn, kn)} satisfying H(sn, 2, bn, kn) = 0 and ||ha e+
lknllee = +00 a8 n — +oo, then (hy, k) satisfies

— Ahy = saldalz)v®  hy, + g(x) (3.15)
— &k, = Sn{.ll-'!m:m:l“'h_l"r"fr: FrlE)) ' m il (3.16)
Hirgia=thin 3] on 311 (3.17)

Let zn = fn/ (Anlloe + [1Enllac) and wy = kn/ (1hnlles + [ fnlleo). Then ||zn ||+ [lwnllee =
1. This implies that [|znlles = 1/2 or |lwallee = 1/2. Since ||zzllec £ 1, [[wnllee £ 1,
sy — 5 £ [0, 1] and

4 glz)
— Az, =3 (rﬁ'a o)od =L, A ) J.18
. R 3 Mhnllea + ||k llo I: )
¥ flz) ) :
— A, = 5,1( btz + (3.19)
kb(z) TinTloo 4 Tenllon
Zn =4 =0 on o) (3.20)

Bv the regpularity of (—=A)}~! we have that 2, = %, wy — @ in C1{§}) as n — oo, Z and
. 5 ¥ { :

w satisfy

— AZ = 5da(z)v’ "D
— Aw = Zub(x)u” ' in 0
z=w=10 on il

Since § € [0,1], we have from above that z = w = 0 in 2. This contradicts the fact
that |Z]lee = 1/2 or @] = 1/2.

Let G(s,z, h, k) = (s(da(z)vi k + g(z)), s(ub(z)u”~'h + f(z))). Then according
to the homotopy invariance of the Leray-Schauder degree, we find that

degg (I = (=AY P G(l,z,-), Bie(0),0) =1

This implies that there exists a solution of (3.12)-(3.14). We also know that if there
exist two solutions {:?tl-._ﬁz-} (i = 1,2) for (3.12)-(3.14), then {ﬁl,k]]h-{hg, ko) = s(hy, k).
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This implies that for (f(z), g{z)) € Ea, there exists a unique solution (h, k) € Es for
(3.12}-(3.14). Moreover, by the similar idea to above we also have

[l + [[Elleo = CIIfllee + [lolloc)

In fact, we first multiply both sides of (3.12)-(3.13) by 1/(||fllec + ll2]lac). then obtain

[l o [l %llos (g . ;
¥ < C by the same idea as that in the proof of (3.18)-
q'ﬂﬁ‘i tllgllee ~ Mo+ Nglleo =~ P (3.18)

Fix {uy,v) € By with ||Jup]|es + ||v1]|ec < £ and define

i) = _[1 (— Alu—+uy + shi) — alz)v + v + sk | v + vi + sky) = h)Gkidz

o -/ (= &lv+ v+ sk) — blz)|u + w
2

4 shy[F"Hu 4wy + shy) — m)Bh de
for s € R with |s| < £. Then we have

W (.03(0) = L (= Afu+uy) - al@)o +vi |5~ (v +v1) - h) Bk de
+ [ﬂ e e e R e

T, (0) = /;! (= Ahy = da(z)|v + v~k ) Bk da
+ fﬂ( B R T e L e

W7, 3(0) = 8(8 - 1) L a(z)v + v 3 (v + v1) g3 de
+ule—1) [ bla)utwl () Bhide

Consequently, we find

IE(TIJ:'(S} T IFfiﬂ-J-'] {ﬂ} 2y miu.a}m]‘g + @i{u,uj U}JSE + ':}{32} [3-21)

bla)u* + mix) hy
LU, v) = =
9o(2; U, ) ( al{z)v? + h(z) £ k1
We claim that for each 0 < p < 1, the compact mapping (—A)~! e g, has no fixed
point in U, ((w,v)) and that (u,v) is the unique fixed point of (—A)"! o g in U ({u, v))

For p € [0,1], set
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Suppose that

—Alv+u+7h) Y [ 0(z)|u+uy + Thil*~Yu 4+ uy + 7hy) + m(z)
~Alu+uy+7h) ) o + vy + k|0 w + vy + Thy) + R(z)

+ B (’r“) (3.22)
ki

for some p £ [0, 1], (u1, 1) € F2 and 7 € R with ||u]joe +|v1llec < € and |7| < . Then
by (3.21) and that

flz+z1) = f(z) + fz)e + f (z)z] + ofa7)

if z; is sufficiently small, we have

1
— A — pb{z)ur "ty 'E'.H'I.Uf - nbiﬂ“-'«“_?lzul - Thl}z + &a(uy, 1, s K, 7)
— Ay — dalz)v®~lu ) = el

=68 - Da(z)v® 2 (v, + 7k + & (ur, vy, b, kL 7)

~ﬂﬂ(h]) (3.23)

where || llse < Clllur |2, +1lv1 |12, +72) (i = 1, 2). We also use the fact that the principal
eigonvalue X=10. Project both sides of the equality on Es, it follows that

—Awy — pblz)ut 'y ny lP pilpe — 1)h{x ]lu“ (g +Thy)?
~Auy - da(z)v™ 1y | 8(8 = Dalz)v? =2 (v + 7k )2

bk
+I 45‘2['“]_ -T"I] ]:? 1: TII (3-24}
Ey(uy, vy, by, By, 7)

and hence

Y\ -A —dafz)pi-1\ L (g — Db(z)ur—2(uy + 7hy )2
)\ —pb(z)ur! — A s 8(8 — Da(z)v?~2(v; + 7k1)°

Ea{uy, vy, by, Koy, 7) .
+P2 (‘fl[ﬂhﬂhhhhlsﬂ-j) } (3‘2&}

From the arguments above, we have that there exists &) > () satisfying

u1lloo + [lo1llee < Cil(llunllos + llvallsc)? +7°)

Since we may choose £ so small that Cie < 1/2, we obtain from the inequality above
that
ut]lee + lo1lloo < 2C17° (3.26)
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for each (uy,vy) € Ey satisfying (3.22). Then we have from (3.21), (3.22), (3.23) and
the inequality above that

0 < pp? [ﬂ (B3 + k3)dz = Wy )(7)
! wlp — us—2B3\ " (e — D202\ 7N (AhY |
il 2 [fn ((.ﬁ{a—nuﬁ—?kf) _F?(a{&—l;mff—%% gy ) |7
r\T (B
ren=-31[, () (5n) o] #+e

where &5 € o(7%). Here we use the fact that f [( = &y — ph(z)u” taeg Y hy + [ — Aug —
1
Al v‘j‘lvljhld:s — ). Then we have from the inequality above that {uy,v) € Ep

with fluilles + llilles < € satisfies (3.22) only when p = 0 and 7 = 0. (3.26) implies
{;,v;) = 0. Thus we have shown that (=A)~! 2 g, has no fixed point in O (e, v))
for 0 < p <1 and (u,v) is the unique fixed pomt of (-A)"!ogin Ug((u,v)). Then
according to the homotopy invariance of the Leray-Schauder degree, we find that

degp (I — {—L‘L}"l o g, U ((u,0)),0) =degg (I — (=A)"' o g, Ue((u,v)),0) =0

This implies that indexg (A, (u,v)) = 0.

Proof of Theorem 3.1 By Lemma 2.2, there is v > 0 sulfliciently small such
that the problem (1.1)-(1.3) possesses a positive solution (£, ) in B.(0). Let X and
(h1. k1) be as before, it holds that

— Aby = dafm)® kL= My
— Ak — pb(z)i* hy = Ak

Assume that A < 0. Then multiplying the first eigenfunction ¢, of the first eigenvalue
A of the problem
—~Au=Mt, u=0 on &0

in both sides of the equations above and integrating them on {2, we have that

M f} By rde = aLa(x]#—lk.¢1dm + ifﬂhlcgslctm (3.27)
§

}i.l f ﬁi}]_tﬁild.ﬂ: = ;_;,Lﬁ(m:l-ﬁﬂ_lhl[ﬁldﬂj -I—-i'/;_lk[tﬁldm EEES}
8]

We have from (3.27) that

M [ huids < dllalel 1S [ b (3.29)




54 Guo Zongming Vol.12

We also have from {3.28) that

A fn kybydz < ullblloollEl1E L hydrdz (3.30)
Combining (3.29) with (3.30), we have that

22 < péllallsollbllos TS NS

This is a contradiction since 7 Is sufficiently small. This contradiction implies that
A = 0. and then (i, 7) is stable. On the other hand, taking R sufficiently large, we have
by the proof of Theorem 2.1 that

deg (I — A, Br(0)45:(0),0) = -1

We can see from the proof of Lemma 3.3 that if (u, ) is a positive solution of (1.1)-(1.3)
in Bpr(0) satisfying X = 0, then (u,v) is isolated. Then by Lemma 3.3, we conclude
that there exists (g, T1) € Br(0)\B-(0) with Y < 0. Therefore, (us,v2) is unstable.
This completes the proof,
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