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Abstract In this paper we consider a class of strongly damped nonlinear wave
equations. By the transformation of unknown functions and decomposition of operators,
we construct a family of approximate inertial manifolds, and obtain the estimate of
orders of approximation of such manifolds to solution orbits.
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1. Introduction

In this paper, we will study the approximate inertial manifolds of strongly damped
nonlinear wave equations with initial boundary value:

1w = OUggy + o (e — flu) +glz), =£(0,1), te&l0,+o0) (1.1)
w(0) = ug, (0] = u; (1.2)
wl0,t) = u(l,£) =0 (1.3)

where o{s) is a smooth function with the following property
c0)=0, c(s)>7>0, ¥YseR (1.4)

where ¢, vp are positive constants. As for nonlinear item f(u), we assume that [ is

smooth and satisfies the following conditions:
; F(s) :
| lirn = 0; 1.5
) |5 =m0 ESF [T { )
(i1) there exists a positive constant w such that
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s-f{s}—w-F[,s]}U (1.6)
sle D ;

lim
| ] =

where F{. f fls)ds.

Let I = (0,1), L2(I) be the usual Hilbert space of measurable functions which

1/2
are square integrable on I, with the norm |vlp = [ f lv| ﬂ"’IZ.l , and inner product

[, u) = f wudz. Denote A = —d,,, the Laplacian operator on L*(I), its domain is
; :

denoted by D{A). Define X = D(A) x L2(I), the -,
o) = (lull? + |vl3) Y2 where ||ull2 = |Aw.|3, | - |o is the norm of L*([).

The problem (1.1)-(1. 3] arises when one considers the purely longitudinal motion
of a homogeneous bar. This problem is studied in lot of literature. When f and g
vanish, the existence and stability of classical solutions were studied by [1], [2]. The
existence of solutions (u,u;) € W1 x Wh* was proved by [3].

When [ and g do not vanish and (s) is nonlinear, Berkaliev [4], [5] studied the
(Ey, E) attractor and its structure. Recently, in [6] the authors obtained the global
existence and uniqueness of solutions (u, 1) € C(0, 00, X and proved the existence of

global compact attractor and its finite dimensionality property. On the other hand,
there were many results to the inertial manifolds and approximate imertial manifolds
for the nonlinear evolution equations of parabolic type. (See [7] and its references).
But for the nonlinear wave equations, it is yet a difficult problem. Recently, K.5.
Chueshov [8] studied the approximate inertial manifolds of strongly dampled nonlinear
wave equations

g + auy — Au+ flu) = glz) (1.7}

Under some assumption of f(u«}, the author constructed a family of approximate inertial
manifolds and obtained the estimate of orders of approximation of such manifolds to
solution orbits. In this paper, by means of the transformation of unknown functions
and decomposition of operators, we construct a family of approximate inertial manifolds
M (t) for the problem (1.1)—'(1.3],_ our main results are
Theorem 1 Suppose o(s) and f(s) satisfy (L.4), (1.5) and (1.6) respectively, ond
g € HY(I). For any (ug,u1) € X, there exist a family of approzimate inertial manafolds
M;(p.p) such that
dist (My(p, p), u(t)) < Az + ere™? (1.8)

when t is sufficiently large, where w(t) = (u(t),ue(t)), and Aysy is the (N + 1)th
eigenvalue [(N + 1)w)?, especially dist (My(p,p), A) < ey e  +c1e =0t iwhere A is the
global attractor of (1.1)-(1.3) in X, constant ¢ 15 Eﬂ{f{’jﬂEﬂdEﬂt of N.

2. Preliminary Results

In [6], the authors showed the following results
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Theorem 2  Suppose o(s) and f(s) satisfy (1.4), (1.5)-(1.6) respectively, and
g € HY(I). Then for any (ug,u1) € X, there exists a unique global solution wu(t)
satisfying (u,u;) € C(0,00, X). Furthermore, the semigroup 5(t) associated with the
solution of (1.1)-(1.3) possesses a global attractor A.
Theorem 2 shows: if ||(ug,u;)]| € R, then there exists a constant ¢ = c¢(R) such
that
lurz|o, [uele < e(R) fort =i (2.1)

where f; depends only on K.

Because S(f) is not compact in X, [6] introduces the following decomposition:
S(t) = C(t) + Uy(f), where Ui(#} is uniformly precompact for t > tg for some #p,
and C(#) is a continnous mapping from X into itself such that the following holds:

For every bounded set By C X,

re(t) = sup |C(t)ell = 0 ast— +o0
oz Y

C(t) and U;(t)e have the following forms:
G{f’] I:qu,‘u:[} — [E.I ﬁ:l
Ur(t)(uo,ut) = (w,v)

wt) =+w, w=v+u

where T, v, o, w are the solutions of the following problems respectively:

T — gy =10
(P1) B(z,0) = w
o(0.t) =0(l.t) =0
andl
B < fuafPe>"" (2:2)
vy — Qg = (alug))z — f(u) +9 '
(Pa) v(z,0) =0
w(0,t) =v(l, ¢} =0
and

[ 4 |ueld < e(R),t = T,v(z,t) € L%(0, o, H}) (2.3)
Wy — Opg + o to'(ug) (T — olizz) = o lo'(ug)u(z, t)
(P3) § @(0)=up, wi(0) =
| B(0,4) = @(1,£) =0 |
and @(z,t) € L®(0,00; H? 0 HY), wi(z,t) € L*(0,00; L%(I)), there exists positive

constant 3, such that :
(@, @)l € e(R)e ! - (2.4)
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(e — wes )y + o o' (us) (e = o) = Flz, 1)
(Py) ¢ wl(z;0) =0, w(z.0)=0
w(D,t) =w(l, ) =0

where F(z,t) = a~'a'(ug)v(z,t) — f(u) +g.
Denote :

i e T o L 1 e
Blz.i)=e" Joo ':_"I':I":"iff Flz,7)e® Lo olus(za)ds g (2.5)
i

[6] showed 8(x,t) € L2(0,c0, H'), 8(z,t) € L*(0, 00, H'). .
Therefore, we have

Wi — twrr = 0T, 1)
(Ps) ¢ wiz, ) =0, wx.0)=0
w(0,8) = w(l,t) =0
It is not difficult to obtain w(z, ) € L0, 00; H* N H}), and

lwiz, t)|l s < (), [|onzlo < e(R) (2.6)

By all the above results, we have the following proposition:
Proposition 3  Under the assumptions of Theorem 2 if there exists differentiable

i
manifold 1 = (p, ) in X such that [[( —w, ¥ —v)|| < coryl, for t = to, then we have

l i
(o — w9 — w)ll < corn’y +cie™™®

Proof

e =t —w]|| = —w—-E, ¢ —v-0)| £ |l —w -2} + (&7
< |l —w, b — )|l + [@l]2 + [Tlo < (e — w9 — )| + c(R)e™

L
< coApdy +e(R)e™

where 3 = min (aw?, ).

3. Construction of Approximate Inertial Manifolds

By using Proposition 3, we can construct approximate manifolds of the problem
(1.1)=(1.3) for (P2) and (Ps)

Denote p = Pyu, p = Pyw, g = Qunu, ¢ = Qyuy, where Py is the orthogonal
projector with rank N, Qn =1 — Py

Let vP = Pyy = Fylu—0)=p—-3", v¥ = Qyv; w’ = Pyw = Py(u—-o) =p -,
wi = Qnw, where TP, @ are the solutions of equations which are the projections of
(1) and (P3) under Py.
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Now, we consider the construction of w,(p).
Decomposing (Ps2), we have

WP — avf, = Py(lo(ps + gz))z — flp+q) + 9] (3.1)
i = avd, = Qullo(ps + @)z — flp+4) + 9] (3.2)

1 Let
wp(p) = ﬂ_lﬂ‘i-l[QN{ﬂI{F:r:}Fa:r — f(p) + g)] (3.3)

Denote
MW(p,p) = p + pulp) (3.4)

Proposition 4  Under the assumptions of Theorem 2, for any (p,p) € B - X,

we have

dist oy (MM, 0) < c(RIARE, + c(R)e™™,  for t 2 %0 (3.5)
Proof
A (9 — v9)]5 ' (3.6)
< o' (p2)pez — 0 (Pz + @2) Doz + @az) — F(0) + Flp+@ll_y + [Iv/ll_s
But

|‘;'II|:]":'.1':| T T {}.J{FT 5 QE}[P.T.I - '?.EE“IJ
< liﬂ'llt:ﬁ'u:j e ':Tlr{pr X "?m]'}PJ:.zh} == |‘::"II [PI 7 ‘?:I::“E'II] o = G%‘IIiLWE??m:ED + Cl'?:m:lﬁ it C:'[RJ
Ifip) = flp+q)lo £ Clalo £ c(R)

Hence ||@wlo’ (pe)pze — 0 (P2 + @) [Pz + Gzz) — f(P) + flp+ fﬂ“__é < c[R).
Because :

Al < alofall_y + lo(pa + g-Juss — F(2) + 9]y
< alully + lo(pe + gzl — flu) + glo
< eee(R) + Clupe|o + | flu)lo + lglo £ c(f)

We have ; ]
oAz, — adZv?|, < c(R)

=L
It indicates [@n — v < elR)Ayk,
i =
distLg“}(M“:’,ﬂj < |+ iy — vP — 0y < e(R)AGE, +c(R)e™™" :

Next, we construct @, (p, p), decomposing (P4) into

""'"'f - awlh, = Pni(z,t) - (3.7)
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wi — awl. = Qué(z,1)
where
d(z, ) = S J @' luz)dr I}t F(z, T}[:En_l Jo oluz)ds g
Flaz,t) =a o' (ug v — flu) + g
[6] has showed that

18113 + [1€ell3n < (R)
lwll%s + lwell3 < e(R)

Setting
p,=a A7} (a1 (. )]

where
] S [ LT
Gz, t) = f Filz, r)e ™™ -], o (pedds g
0

Fi(z,t) = o 'o'(p:)p - flp) + 9

(3.8)

(3.9)

(3.10)
(3.11)

(3.12)

(3.13)

(3.14)

We denote the linear semigroup associated with the solution of (2.2) by T'(#), that is

5(t) = T(thu = zj:;,: [ e = e

Therefore, by u; = v + 7, we have
n ="+ PyT(t)u
Now we estimate ||ad{w, — w5,
leAlpw — Wl g £ Nl g + [18(z, 1) = 6 (2, )]l
By (3.11),
lwill g < e(R)

L ¥ (4 e
161z, 1) — 8z, )| g < ‘ f (Fy(z,7) — F(z,7))e™™ ‘ot pads g
0l

H1
: = ! =] by

f F(JE,T}[E!'HH lffﬂ {?r:'dﬂ b [l_n .Ir.— o [p:,-l-:lri}{,[_y}d?_
0

i

Ht
£ 1+11

Noting that o'(s) = v > 0, we obtain

[ (0! (o2} = £(8) + f(p+4) = @™ (pz + ga)o)e™

<]
0

HI.

(3.15)

(3.16)

(3.17)
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=

i
fu (o 16! (pa)v” — @ o' (pe + gzl + @ o' (p2) PAT (EJus + f(p +q)

- f{p]]e_“_]"““_ﬂdf

=
< fl_: a o' (p) = ' (ps + @)Wl g1 + |0’ (P2 + qu)u’ll g + o (P2 ) PN T (Bl
+ ol f(p+q) — F(p) e = dr
< Ca™ f; (Igzlzoo [0l + 1ol + £ Flulo + llall s )em® ™ 0" dr
< elfi) [f! o= wlt-")gr ¢~ /te‘“_l’f“':‘_":'rh-
0 N
< a(R) +e(Bap 21— ™) (3.18)

where we have used p = vP + PyT(t)u; and [T'(f)u |l £ {?t"’lﬁﬂulﬂm vt >0, flvll3, <
c[R) (see (2.3})

f o [ _.- — ¢ i 1
R llU iz, r)|(e-o S o PN _ o[l ety g
]

il

By using (2.3) and the definition of F, we have
IF(z, )z < IF (@ Dl < e(B) (3.19)

i e 'E i
f a2 I_L 7 {Pn+'ﬁ'=]d5d_¢ < l'_'h!“'}'ﬂ_l {320}
K]
and

t oyt L
!] [ [F[:rx;: - J.e (pz)ds =1 f g Pt qﬂ}dsld?'
0 T 0
L o G £
EL | E(x, )| oo - € lf*“dﬁ{fﬂ_l']f [l || oe |12z |0 ds) dr

com) [e= eI <o) (= me T Nar < iR
2 ; (3.21)

where we have used the uniformly boundedness of o= Mot (Yt > 0).
From (3.19)-(3.21), it is easily to obtain 1I< C(R). Combining (3.18), we have

161 (z, 1) — 8(z, 8)|| g < e(R) + avile(R)tT% < er(R), V=1 (3.22)

So that [Jed(p, — w)ll; € c(R).
Denote
MO (p,5) = p + wulp,$) (3.23)
Proposition 5 Under the assumptions of Theorem 2, for any (p,p) € B C X,
we have distﬁm{ﬂfﬂ[m,wj < G{R}A;ré_l + Ce Bt for t > 4 = max(1, ).
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Proof By [|A(¢. — w?)|; < c(R), we obtain

| A(pe — @)l < e(B) A
S0 l
IA(p + pu — P — W)l < A(pw — Wy + @]z £ e(R)ANE, +Ce™
Proof of Theorem 1
Let M; = (M™, M1)), by Proposition 3, it is sufficient to estimate [|(p + v —

w, p+ on — v}l
Noting that Proposition 4 and Proposition 3, we have

I(p+ w0y =w,p+w, =) =llp+ e —wlz+lp+w. —v

1 i
<c(R)Agi +Ce™™ astzi

}]

Therefore, we obtain

1

distx (M, (1)) < llp+ 2w = wlla + 19+ @0 = vllo + 1@z + [7llo < (RN, +e(R)e™

Especially, for the global attractor A of (1.1)-(1.3} in X, we have disty (M. A) <
]
c(R)ANE, + cre™
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