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Abstract In this paper, we consider the free boundary problem satisfying the
Dirichlet boundary condition, This problem is derived from the reaction diffusion equa-
tions with the zeneralized Mcliean reaction dynamics. We shall show a Haopf bifurca-
tion occurs ab some critical pont T when the stationary solution (v (z), 57 satisfies
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1. Introduction

The well posedness and the Hopf bifurcation in a parabolic free boundary problem
with the MeKean reaction term are proved in [1]. In this ‘paper, we consider the
free boundary problem for the generalized McKean Linetics satisfying the Dirichlet

Loundary condition. We are dealing with the following problem.

¢ uy = Dugz — (L +b)v+ Hiz - s(t)) for (z,t) € 2~ U Qo

(0,8} =0= vil,t) for.t =0

1 v(z, 1) = vol(z) for0<z <1 (1)
r% = C(v(s(t), f}) fort >0

\, b{.[]:l =50
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where v(z, t) and ve(x,t) are assumed continuous in 2,2 = (0, 1) x (0, cc). Here H{y)
is the Heaviside function. The velocity of the free boundary s(t) is defined by

a l—a
G F R I=(—§., =
and the In::écplir.it form of € is given by
2v — 152
Clv) = : 2 =, O0<a<l

V(552 —v)(v + §)

This problem has its origins in some work by P. Fife ([2], [3]) on asymptotic analysis
of the dynamics of internal layers in reaction diffusion equations. The free boundary
problem is an outgrowth of work done by M. Mimura, Y. Nishiura and their coworkers
([4-7]). These authors take as a starting point a system of two reaction diffusion
cruaflons

ETUp = EUgr + flu,v), v = Duvgy + glu, v) (2)

depending on two small parameters £, 7. Here u and v measure the levels of two diffusing
quantities. The functions u and v are assumed to satisfy Dirichlet boundary conditions
at x =0, 1. The functions f and g are assumed to be of bistable type, i.e., the equation
f = 0 determines u as a triple valued function of v and the curves defined by f =0,
g = 0 have three points of intersection, which determine all of the interactions between
wand v. The term bistable refers to the fact that these points of intersection correspond
to equilibria of the system (2), two of which are stable, the third unstahble.

When ¢ and 7 are chosen to be very small, the system (2) models a situation in
which the quantity measured by u reacts much faster than that measured by o (T
small), while at the same time u diffuses slower than v (£ small). The principal interest
in systems like (2) comes from the fact that there exist families of statlonary solutions
parametrized by £, which approach discontinuous functions of £ as ¢ — 0. When &
15 small, the stationary solution, being smooth, exhibits an abrupt but continuously
differentiable transition at the location of the limiting discontinuity. The transition
takes place within an z-interval of length O(g). An z-interval, in which such an abrupt
change takes place, is loosely called a layer — a boundary layer when it is adjacent to
an endpoint of the interval or an internal layer when it is in the interior of the interval,

In 1981, Mimura, Tabata and Hosono ([4]) proved the existence of nontrival internal
layer solutions to the stationary (time-independent) problem associated with (2). The
question of the stability of these stationary layer solutions when £ is small was later

dealt with in a pair of papers; one by Nishiura and Fujii ([5]) appearing in 1987 for the
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case where 7 is large and the solution is asymptotically stable and the second in 1989
by Nishiura and Mimura ([6]) for the case where 7 is small and there is a breakdown
in the stability of the stationary solutions as 7 approaches 0. In the latter paper,
a particularly dramatic phenomenon occurs as the stationary solutions lose stability.
The loss of stability results from a Hopf bifurcation and produces a kind of periodic
oseillation in the location of the internal layers. (The amplitudes of the solutions also
undergo a somewhat less pronounced periodic oscillation.) These periodic solutions are
called “breathers” or “breathing solutions” because of the nature of the oscillation in
the position of the internal layers.

In this paper, we are interested in the singular limit € . 0 of the system (2). In this
case, an analysis of the layer solutions suggests that the layer of width ((eg) converges
to an interfacial eurve z = s(t) in z,f-space as € | 0. An analysis of the dynamies of
this process has been shown (See for example [6, 7)) to lead a free boundary problem

consisting of the initial-boundary value problem

(v = Dok + g(h=(v),v) for (z.t) € s

v (0,4) =0 =2%(1.1) for ¢t > 0

{ow(sit), ey =wt(s(f),t) fort>0 (3)
v (s(t), ) = v (s(t),t) fort>0

v=(x, 0) = wo(x)

Y

together with an initial value problem for the interface
1l
— = ;C(U(S(t},t}].l t>0; s(0)==sn (4)

Here 2, Q1 have the same meaning introduced earlier in the problem (1). The function
C'(w) in (4), which specifies the evolution of the interface s(t), is determined from the
first equation in (2) by using asymptotic techniques. Details in the derivation of (3},
(4) from (2) can be found in the references [2, 6, 8].

In the present work, we establish the occurrence of a Hopf bifurcation as 7 | 0
in the free boundary problem (3), (4). This free boundary problem comes from the
problem {2) where the reaction terms f and g are of the generalized type investigated
by MeIean [9], namely

a
f—u— for u < —=
1 i 5
) l=a
flu,v) =4 u—v=—a for — o <u<
2 2
1l —a
| —uw—v+1 foru>

2
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and

glu,v) =u=bu

2 . The

Since we assumne that [ and g are of the bistable type, b must satisfy b = 1

—_—

velocity of the interface, C(v) may be represented by At (v)+h~(v) —2h%(v) but it must
l—a

2

- . (L
be defined in the interval (Vmin, Vmax) where vpax = and Uyin= 5 Theretfore,

it can be normalized by
o 1—2a
2u 5

VUFE —v) (v + 8)

The corresponding picture of the nullclines is illustrated in Figure 1.

Clo) =

Fig.l  Generalized McKean reaction terms.

In this paper, we will establish the existence of the Hopf bifurcation described
above by an application of the implicit funetion theorem along the lines of the results
in [10]. In order to apply the implicit funetion theorem, we require more regularity of
the solution than that obtained in the paper by Hilhorst, Nishiura and Mimura cited
earlier [7]. Our approach to the problem of well-posedness and to the Hopf bifurcation
is to write (1) in the form of an abstract evolution equation on a Banach space which is
the product of a function space and an interval of real numbers. Once we have done this,
we are able to apply standard results from the theory of nonlinear evelution equations
[See for instance [11]|) to show well-posedness of the problem and, more importantly,
give an analysis of the Hopf bifurcation.

Before we proceed to the main results of the paper, we first point out a particular
problem which arises in the formulation of (1) as an abstract evolution equation. Briefly
stated, the idea is to write (1) in the form

d(w, )
dt

+ A(v,5) = F(v,5), (v, 5)(0) = (va(-), 30)
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of a differential equation in a Banach space X of the form X =X x I, where X is a
space of functions and I is a real interval. For the problem (1) this could be done, for

instance, by identifying the operator A, represented in mafrix form, as

d'ﬁ
—D— +1 0
] y]

and the nonlinear operator F' by

T (ﬁ'l[ﬂ[-,t},sl:ﬁjlj) 2 (lH{-—m{tJJ j
| F(v(-,1), s(t)) ~Clu(s(t), 1))

The Dirichlet boundary conditions are incorporated in the definition of the Banach
space X.

The difficulty comes from the fact that the nonlinear forcing term F(wv, 3) contains
o Heaviside function in its first component. The combination of this jump discontinuity
and the nature of the dependence of v on s in the second component of I makes it
impossible to find a function space of the form X = L,, 1 £ p < co such that I satisfies
a Lipschitz condition on R w0 =

In next section, Section 2, a change of variables 1s given which regularizes the
problem (1) in such a way that results from the theory of nonlinear evolution equations
can be applied. In this way, we give an alternative proof of well-posedness and obtaln
enough regularity of the solution for an analysis of the bifurcation. In Section 3, we

show that as T decreases, a Hopf bifurcation occurs at a critical value of 7.

2. Regularization, Existence, Uniqueness and Dependence on

Initial Conditions

We now examine a free boundary value problem depending on a parameter v € R,
v = 1/7 of the form
v+ Av = H(z — 5] (z € (0,1)\{s},t > 0]
s'(t) = vCluls(t), 1)) (£ > 0) (F)
v(z, 0) = volz), 3(0) = 50
Here A is the operator Ay = —uvg; + (1 + b)*v together with Dirichlet boundary con-

ditions v(0) = v(1) = 0. Note that by a rescaling of ¢ in (1) we can always achieve
that I = 1. For the purposes of the results in this section, A can also be any other
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invertible second order operator. For the application of semigroup theory to (F), we

choose the space
X = Lo((0,1)) with norm || - ]2

The operator 4 can be considered as a densely defined operator

{ A: D(A) Chense X =+ X
D(A) = {v € H%%{(0,1)) : v(0) = v(1) = 0}

Definition 2.1  We call (v, 8) a solution of (F), if #f satisfies the following noatural
properties: There exists T > 0 such that v(z,t) is defined for (x,8) € [0,1] x [0,T),
s(t) € (0,1) and v(s(t),t) € I for t € [0,T),

a) v(-,t) € CH([0,1]} for t > 0 with v(0,¢) = v(l,t) =0,

b) s € C[0,T)) N CY{(0,T)) with s(0) = 50 € (0,1),

¢) (Av)(z,t) and vy(x,t) exist for £ € (0,1)\{s(t)} and t € (0,7,

d) t = v(-,t) € CU([0,T). X) with v(-,0) = v € X and

e) v and s solve the differential equation for t € (0,T) and x € (0,1)\{s(t)}.

For fixed s satisfying Definition 2.1, the map t — H(-—s(t})} is locally Holder-continuous
into X on (0, T). so by standard results for parabolic problems (See e.g. [11]) we obtain
from the first equation in (F) that the following regularity holds for w:

Proposition 2.2  If (v,3) 15 a solution of (F), then v(-,t) € D{A) and the map
£+ w(-.t) is in CN[0,T), X)N CL{(0,T). X).

An existence proof for (F) can be obtained along these lines (See [7]), but it is
impossible to get differentiable dependence on initial conditions this way, because the
risht hand side H(- — s) is not regular enough, and it is this differentiability that is
needed for an application of the Hopf bifurcation theorem. To remedy this difficulty,
we decompose v in (F) into a part u, which is a solution to a more regular problem, and
a part g, which is explicitly known in terms of the Green's function G of the operator
A.

Proposition 2.3  Let G : [0, 1]? — R be o Green's function of the operator A.
Define g [0,1]? = R

1
i) ::ﬁ Gloz)dy = ACHI( = o)) (z)

and v:[0,1] = R
1(s) i= g(s, )

Then g(-,5) € D(A) for all s, %{E,S} = —G(z,s) is in H*°((0,1) x (0,1)), and
vec=([0,1)).




=1
|
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Proof Everything follows from the fact that G is in H>™ and C°° on either
{z <y} or {z >y}, and that H(- —s) € L%
Using these preliminary observations, we decompose a solution (v, s) of (] into two

parts by defining

(t)(z) = v(z,t) - g(z, (1))

Thet
‘ {u“{ﬂ (2) + (Au()) (&) = vC(u(t)(5(8) + 7(s(1))) - Gz, 5(t))

(1) = vClu(t)(s(2) + (s(t)))
We denote the space A x R by X and define
D(4):=D(A) xR
{ A : D(A) Cense X = X, Alu, 8) 1= (Au,0)

This svstem can be written as an abstract evolution equation with initial conditions

) - :
{ a(u,s} + Afu, 8) = v flu, s) @)
(. §)(0) = (u(0),5(0)) = (uo. s0)

The nonlinear forcing term f is

i, = (vc(u{msu:l:l +(s(t))) - Gla, sis}})
? pC(u(t){s(t)) + ¥(s(2)))

and defined on the set W = {(u,s) € CH{[0,1]) x (0,1) : u(s) + ¥(s) € I} Copen
2H{[0.1]) % R as follows
W = X xR Flu,s) = falu,s) -[fi(s),1), where
fi:(0,1) = X, fi(s)(z) ;== Glz,s), and
fa: W = R, falu,5) == Cluls) +7(s))
The advantage of (R) over (F) is, that the right hand side of (R) is one step more
vegular than that of (F) since it involves G(z,s) instead of H(x — s). More precisely,
we can show the following:
Lemma 2.4  The functions f1: (0,1) = X, fa : W > R and f: W — X are

continuously differentiable with derivatives given by

i d
Ails) = %{-,sn

D fa(u, s)(4,5) = C'(u(s) +v(s)) - (u'(8)8 ++'(5)3 + @(s))
Df(u,s)(#,5) = fa(w, s) - (f1(5),0) - § + Dfalu. s}(@;5)) - (f1(s), 1)
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We can now apply semigroup theory to (R) using domains of fractional powers
o € [0,1] of A and A4:

X®:=D(AY), X°:=D(A%; X°=X"xR

For this we need to find an & € (0,1) such that X* < ¢1([0, 1]) because f : WNX® = X
15 continuously differentiable. Theorem 1.6.1 in [11], for example, ensures that this is
the case for @ > 3/4. Standard applications of theorems for existence, uniqueness
and dependence on imitial conditions (cf. [11]) together with the starting regularity of
solutions to (F) (Proposition 2.2), as well as the regularity of the functions g and ~
(Proposition 2.3) then give the following result:

Theorem 2.5 i) Forany 1 > « > 3/4, (up, s0) € WNX® and v € R there erists
a nunigue solution

(e, $)(E) = (u, $)(E; ug, sg, 1)

of (R}, The solution operator
(o, S0, 1) = (w, s)(4: ug, s0. )

is continuously differentioble from X% x R info X® for t > 0. The functions y(x, L)
u(z, b) = ult)(z) + glz, s(t))

and s then satisfy (F) with v(-,0) € X°, v(s.0) € I.
i) If (v,s) 15 a solution of (F) for some v € R with initial condition vy & X,
1 > >3/4, 50 € (0,1), vo(so) € 1, then (up,s0) := (v — g~ x0). 50) € XMW and

(0 - £). 5(8)) = (u, 8)(8 0, 50, ) + (g(- 5(£)),0)

where (u, s)(t;ug, sp, ) 48 the unigue solution of (R).
iii) For any 1 > a > 3/4, v € R, (v, 50) € U := {(v,s) € X% x (0,1) : v(s) € I}

the problem (F) has a unique solution
(v(z, 1), 5(t)) = (v, s) (. ¢ w0, 50, )
Additionally, the mapping

(va, sp, v) = (v, 8)(-, t; vo, 50, V)

is confinuously differentiable from X° x R? into X® x R.
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3. Stationary Solutions and Hopf Bifurcation

In this section, we shall show the Hopf bifurcation occurs for some p. The stationary

problem, corresponding to (R) 1s given by

Au® = 1/7G(z, s*)C(u*(s*) + ~(s7)), w'(0)=0= 1" (1)
0= 1/7C{u*(s") +v(s"))

L 1
for (u",s*) € D(A) N W. The function (s} = f G{s.y)dy then becomes
£

sinh (L 4 b)s
(1 + b)2sinh (1 + &)

~(s) = (cosh{l+b)(1 —35)—1)

For 7 s 0, this system is equivalent to the pair of equations
w =0, Cly(s")) =20 (3]

We thus obtain Lk
| =0 9sinh 3 L

P ition 3.1 If0 = < 3
il jldes 4 (1+ b)2sinh (1 + b’
1

stationary solution (0,s*) for all 7 # 0 in 5™ € (0, 13] I:L; ). The linearization of f
at (0.s") is

then (R) has a unique

DF(0,5%)(@,3) = 8(i(s") +¥'(sM)3) - (G(87), 1)

The pair (0.s%) corresponds to a unique steady state (v*, 5%} of (F') for 7 3 0 wnth

v*(z) = glz.s7)
o : 1—2a . 1
Proof We note C(r) = 0if and only if r = oy Sinee 4/(s) > 0for 0 < s < 3
and v'(s) < 0 for L < g < 1, the equation (5) is solvable with s* € (0,1) if and

1-2a e e ol 2 A

Ayt T[{:;j]:f = = ’T(E) or 7(4) < === < 4(1). We note that 7(5) -
2sinl ! . : : : 1 |

T F,:an:nh {11 T Thus, there exists a unique solution s* in (ﬂ-. E) Or (5 1)-

The formula for D (0, s*) follows from Lemma 2.4 and the relation C'((1—2a)/4) =
4. The corresponding steady state (v*, %) for (F) is obtained by using Theorem 2.5.

Since C'((1 — 2a)/4) = 8, we define the new parameter p = 8/7. In order to show
the oceurrence of Hopf bifurcations at some p* in (R), we must show the stationary
solution (1*(z),s", £”) is a Hopf point and then there is a periodic solution near the
stationary point by the Hopf bifurcation theorem in [10] and [1]. We introduce the
definition of Hopf points,
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Definition 3.2  Under the assumptions of Proposition 3.1, define (for 1 2 o >
3/4) the operator B € L{X= X)

B = %Df{ﬂ,s“}

We then define (0, s*, 1) to be a Hopf point for (R) if and only if there exists an gg > 0

and o O -curve
(= g0+ p* 0" +eg) = (M), $(p) € C x Xc

(Y& denotes the complezification of the real space Y) of eigendate for —A+ pB with
) (= A + pB)($()) = Ap)dlp), (-4 + uB)d(i) = Al ¢(1);
i) AMp*) =i with 8 > 0;
i) Re () # 0 for all A € o(—A + p" B\ {£15};
iv) Re M(p*) # 0 (transversality).
We now check (R) for Hopf points. First we have to solve the eigenvalue problem

—Afu,s) + pBlu.s) = Mu.s)

where v = u — (-, s*). This problem is equivalent to

(A+Nu=p- (¥(s%s +u(s") - Gl 57)

As = - (v (s7)s + u(s®))
We now shall show that there exists a unique, purely imaginary eigenvalue A = 17 of
(6) with @ > 0 for some p* in order for (0, s", 1) to be a Hopf point. As a first result,
we show the (0, s*, i*) satisfies the condition of (1) and (ii) in Definition 3.2,

Lemma 3.3 Assume that the operator —A + p'B has a unigque pair {£i8} of
purely imaeginary eigenvalues for p* € R7. Suppose that ¢* be the (normalized)

(6]

eigenfunction corresponding to the eigenvalue if. Then there cwists o Cl-curve p —
(), M) of eigendata such that ¢(p*) = ¢* and A(p*) = i05.

The proof is similar to the proof of Theorem 3.4 in [1].

In arder to show the transversality condition, we use some equations from the proof
of Theorem 10 in [1].

The equation (6) to A being an eigenvalue of — A + pB with eigenfunction (u, 1) is
equivalent to the following equation E(u, A, u) = 0 where

E:D(A)c xCxR =3 Xg=xC
by

Efu, A ) i= ((A + AJu — p(v'(5%) + u(s7)) - G 87), A — ply (") +u(s7)))
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satisfying E(wo, 10,07} = 0 where ¢* = (1.1} € D(A) x R is the (normalized)
eigenfunction corresponding to the eigenvalue i and shows that F is continuously
differentiable. The following theorem gives that (0,s*,p") is a Hopt point for (R):

Theorem 3.4  Assume that for u* € RT, the operator —A + p* B has o unique
pair {£if} of purely imaginary eigenvalues. Then (0, s*, w*) is a Hopf point for (R).

Proof It remains to be shown that the transversality condition Re X{p*) # U
holds. Let ¢(p) = ((p),1). Tmplicit differentiation of B{(p), M), p) = 0 implies
that

D{?:-}'L]E{'r-'l*"ﬂ:i.ﬁ: J—LHHT.I'-I"r{”HL }‘f[}f” =3 ':TI{S‘} f7 'tifnl:ﬂ‘j{-?t]:' : {G(".‘g‘}r ”

This means that the function 1 1= ' (*) and %= M(p*) satisfy the equations

(A +iB) — ' Bls7)G (o s") + Mo = (7/(57) + bl ) NG s (D
anad
(s + A = 7(87) + Polp)sT) (8)

Puiting (8) into (7) and using ¥y = g = (7(-, s, as before, we abtain
(A +if)i+ M =0 (0)

Multiplying # by (9) and integrating it then we obtain

!

by | 9 ig® LT I ol
7{a") j (A + B = L b (A0 + [] 2G5

L]

—,xf |qpl|3+zz'ﬁ-f T (10)
] ]

1l

Furthermore, multiply (A + )G to (9) and integrate it then
f (A2 — gY@t + 2i0A0H) = Ai(s*)
0

and integrate (9) after multiplied by (A + i), then

1 i o = -~
f (A2 + B2)T% — 2iB01T) = Aa(s")
0
Subtract one from the other, we now ahtaln

] o 1 it 15 s
237 fﬂ = mﬁfu (AGT + N1 T0) (11)
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1
Multiplying A by (10) and subtracting it to (11}, and using the fact p* [ I ]? =1
Juo
(See (16) in [1]), we have
[A]2

1 =1 -
zﬁff 8% +0E(") = 21;3[ ARG+
0 et
From the fact E(1bg, 13, 1*) = 0 and (8), the above equation follows

A to |42
Eﬁgf it + u +
1 iy

and hence the real part of the A = AN (u*) is given by

R 5] Lot
Re(¥(w")) = 267 [ g =2u [ |40
a 0

Hence the transversality condition holds for all p* > 0. Therefore, by the Hopf-
bifurcation theorem in [1], there exists a family of periodic selutions which bifurcates
from the stationary solution as u passes p*.

As a final result we will now show that, whenever (R) admits a stationary solution,
there is a unique g > 0 such that (0, s*, 1*) is a Hopf point. thus 4~ is the origin of 4
branch of nontrivial periodic orbits.

Theorem 3.5  There exisis o unigue, purely imaginary eigenvalue A = i3 of (0)
with 3 = 0 for a unique crifical point p* > 0 in order for (0.5%, p*) to be o Hopf point
-u;.ith. % i il

Proof To do this, we have only to show that the function (u, 3, ) —= E{u, 43, 1)

has a unique zero with 8 > 0 and g > 0. This means solving the system

(A+if)u=p-(v(s") +u(s")) - G(-,57)
if=p-(7'(s7) +uls")
As before, with v := w — G, "), this system is equivalent to the weak system of

eiuations
(A4 i8]y = —dg

if = p- (v'(s%) + G(s",8") +v(s"))
(Actually, this is just the eigenvalue problem for the formal linearization of (F) about

(v s*).)

Now the first equation in (12) has, for fixed 8 = 0, the unique solution v =

(12}

~Gyl-, s*), where Gg is the Green's function for the operator A + i. We are thus
left with having to solve the complex valued equation

if=p- (v (%) + G(s7,87) = Gg(s™,57))
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Since +'(s*) + G(s*, s*) is real valued, this is equivalent to the real valued system
A (™) + G(s*,5") —ReGg(s", 8"} =0 (13)
p-ImGals™,s")+8=10 (14)

Since the equation (13) does not depend on p, it suffices to find a unique solution 3 = (I
of (13), from this § the unique p* > 0 can then be calculated by using (14), provided
Iin (7 5(s*, 8") is negative. By Lemma 12 in [12], the expression Re Gp(s™, ") 1s strictly
decreasing in § € RY with

He I:.‘;r"-:]l:f:?*1 .'-Ii':l = GI:.*?‘, S"}: lim Re GJ3[5*1 S‘:l = ()

F=roo
and Im Gg(s®,s*) < 0 for any 5 > 0. Since v'(s*) + G(s*,s*) = 0 and «'(s") < 0 for
E < 5* < 1, a unique solution {3, p*) of (13) and (14) with 8 > 0 and p* > 0 exists fox

L. g
.—3' <8 < 1
The following theorem summarizes what we have proved for the free boundary

problem with the Dirichlet boundary condition:
1 —2a 2sinh- —itl
4 E (1 + b)4sinh (1 4 5

Theorem 3.6 Assume that 0 < . so that (R),

respectively (F), Fm:. o unique stationary solution (u', s%) where u* = and 3 <
| respectively (v*,s"), for all p > 0. Then there cxists o unigue p* such that the
linearizafion — 4+_u B has a pmrﬂ'y imaginary pair of eigenvalues. The pomnt (0,s%, u%)
is then a Hopf point for (R) and there exists a - curve of nontrivial periodic ovbits

i©

for (R), (F), respectively, bifurcating from (0,8%, ™), (07,57, p n™), respectively.
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