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1. Introduction

The initial-boundary value problem for the scalar conservation law was first dis-
cussed by Bardos, Leroux and Nedelec? (in several space variables). They showed the
existence and uniqueness of the global weak solution by vanishing viscosity method and
the Kruskov’s method. But they had obtained neither the estimation of the solution
in the boundary nor the stability in respect to the boundary data. In 1988, Le FlochF!
considered the initial-bopndary value preblem for the convex conservation law (in the
quarter plane). They derived the explicit formula for the exact solution, and proved
the uniqueness of the weak solution (if* the class of piecewise regular functions). It
15 well-known that the nonconvex case is more complicated than the convex case, and
that the uniqueness in the class of bounded and measurable functions is more perfect
than the uniqueness in the class of piecewise regular functions.

We consider the initial-boundary value problem for the nonconvex conservation law
(in the guarter plane):

u + flu) =0 (0 <z < oo, t>0) {EI_]]
u(0, £) = u(t) (t=0) (1.2)
u(z,0) = ug(z)  (0< 2 <.+00) (1.3)
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In [4], we first have given the definition of the global weak solution for the problem
(1.1}-(1.3). And we have proved the existence of the weak solution for the problem
(1.1)—(1.3) by the polygonal approximations method (for ug(z), us(t) are bounded vari-
ation functions, f(u) is a locally Lipschitz continuous function). In this paper we first
give the estimation of the solution in the boundary. Then we prove the uniqueness in
the class of bounded and measurable functions by Kruskov’s methodlll. And we obtain
the stability in respect to the boundary data and the initial data.

The global weak solution of the initial-boundary value problem for the scalar non-
convex conservation law plays an important role in the mathematical modeling and

computations of the one-dimensional sedimentation processes(®:6].

2. Definition of the Weak Solution

Assume that f(w) is a Lipschitz continuous function on [—M, M|, ug(x), us(t) are
bounded and measurable functions and

|flu) — flu')] € Llu — |, Yu,u' €[—M,M] (2.1)
— M < ug(z),; uplt) <M, 0<z<-+c0,t20 (2.2)

where M, L are arbitrary positive constants.

Definition 2.1 A locally bounded and measurable function w(x,t) on [0, +00) x
[0, +00) 15 called a weak solution of the initial-boundary problem (1.1)-(1.3), if for every
k€ R' and for any nonnegative function w(z,t) € C§2([0, +oa) x [0, 4+00)), it satisfies
the following inequality:

o0 4o
{l L {lu = Klpe + sgn (u — k) (f(u) = f(k))p: }dadt

+ [ sgn fnle) = (00,8 = £(B) 0, D

¥

o0
+ [ luo(z) ~ klip(, 0)dw > 0 (23)

I, a0
where sgnx = g
) R

Lemma 2.1 [fu(x, £) is o weak solution of the problem (1.1)-(1.3), then
sgn (u(0,2) — K)(f (u(0,8)) — f(K)) <0, ¥k € I(u(0,8), (1), ae.t>0 (24)

where I'(a,b) = [min{a, b}, Max {a, b}].
We have:
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Lemma 2.2  Assume that u{"'} (z,1) 1s the weak solution a_f the problem (1.1)-(1.3)
associated with the data I:uﬂ]{r], ]{tj}, t=1,2. Then

sgn (ut)(0,2) — ul(0, 1)) (F( (0, 1)) — F(P(0,8)) < L) - P (1)) (2.5)
Proof By Lemma 2.1, we have
sgn {u':"l'[:[!rat}—k}{f{um{ﬂ,tjj—f[fc}] <0, VkeIP(0,8),u’ 1), ce t >0 (2.6)

i = 1,2. We distinguish between four cases (for convenience’s sake, we lat u': = uiﬂ (£),
wlt = y(0,1), ¢ = 1,2):

(i) utfl = ‘t.!;:l (=12

By (2.1), we can prove (2.5), obviously.

(i) u) = u},l}, wl? 2y tm

T wl = Y ¢ I{ul® ug :':I from (2.1) and (2.6) we can prove (2.5) obviously.

1t wV = ol ¢ I(uf®, 4}, we distinguish between four cases:

@) i)y B )
(Ao) u® < u},?:' < ull) = n}_:, )
"(Aj) wll) = ur;l:' < ul? < ufj
(Agq) f ) = *i's[z} = u.{ = uil}

For the cases (Aqp), (Az):

sgn (') — u®)(f (u®) {u{?}}}
= sgn (ull) — u‘i'}}(f (ug?) = £P)) + sen () — @) (F ) = Fu@))
< sgn (u® —u®)(£ (") ~ £ < 15 () — £ < LD — )

For the cases (Az), (Ay)"

sgn (ult) — u.[E}'} (F (ult)) — f(u®))
< |f(ulV) - f{um}l < Lju® = u?)| < Ll - uP)

(iif) u® # ul?, ul@) = 42

We can prove (2.5) as in the previous case (ii).

(iv) ul® # ul (i =1,2)

If ult) ¢ I{u':z»" u{ }} or ul® g I(ult) u{ }] by (2.6) we can prove (2.5), obviously.

If u“:' ¢ I{ul?), u': ]], ul® ¢ Tl u[ }} and either u{ ) e I{u':?-",_uf? :'jl Or ugﬂ
I(ufh), 'i!.s ]|, we distinguish between two cases:

(B1) ull) < uf'} £ uil] < 2
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(Bs) u'? - ugll < *uf) < ull)
In these two cases, we have
sgn {uﬂ} L ﬂE?J} = sgn (ull) — ui Yot = sgn {u{?} = u{i}}
Hence

sgn (ul® — u@)(Fu) — Fa®)
= sgn (u — o) (F(D) ~ £(uf")) + sgn (D - u@)(FfV) - F(u?))
+ sgn {u{lz} ~ T:EEJ]{f{uf}} — f{u{g}}}
< sgn (ul) —u®)(F(y”) - Fu?)) < 1£ ) = FuP)] < LiufP - o)

If u'{”,uin ¢ I l[:.!.m,ugg}}., u{‘c"}?uf} ¢ I l:u':”]ugljjl, we distinguish between eight
cases:

(Cq) *-te:f}l:' < ul) « 3 - ugz}
(Ca) uii} < ul® < ull) < uEl}

In these two cases, we can prove (2.5) as in the previous cases (As), (As).

(C3)  ul <yl <ol < u®
(Ca)  u® <uf® <l <ol

In these two cases, we can prove (2.5) as in the previous cases (B,), (Ba).

(Cs) [ b o) < u': ) _
(Cs) E, ) <@ <M < yt)
(Cq) ult) < uglj < u? < ufj
(Cs) o< uf} < ull <« ﬂél:'

These four cases are similar, we only discuss the case (Cg):

sgn (u® — @) (D) - fuh)
= sgn (u® — ufP) (F(uW) - £(u ]Jl+agn{u§, —u®)(f(u?) — F(u®))
< sgn (u® — ) (F®) - £?)) < |F@D) - £

< LW — ol < £l — {2
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3. The Uniqueness of the Weak Solution

The main result of this paper is contained in the following

Theorem 3.1 Let u.[":'{;r t) be the weak mfuﬂun ﬂf the problem (1.1)-(1.3) asso-

{1}

ciated with the data {uu (), u; " (1)), where uuj{i‘} 1y, [t] are bounded and measurable

functions satisfying (2.2), i = 1,2. And f(u) is o Lipschitz continuous function of
— M, M] sotisfying (2.1). If

etz t)]| € M, ae. (z,t) € (0,X) % (0,T), i=1,2 (3.1)

then for almost oli t € (0,Ty), we have

X =L
fﬂ D O il f.;. i (2) — uf? (2)|dz

+Lf b (2) — 0wl (1)t (3.2)

where X, T are arbifrary positive constants, Ty = min (T., E)
Proof Let Qr = {(z,t) |0 £z < X — Lt,0 <t < Ty}. By Definition 2.1, for
every k € R' and any nonnegative function, ¢(z,t) € C5°(Q7), ¢(0,t) = 0. Then

+oo o0 ¥ :
L[ 1890 = K+ sgn @O, 0) -
a a

(F(z,8) - f(k))po}dzdt >0, i=1,2 (3.3)

L g8 :
Let wyiz) = Hw(%), ez —Et—T1) =wplz —£) —wp{t — 1), where b > 0, w €

e
C5° (=00, +o0), wiz) = 0, suppw < [-1,1], f w(xz)dz = 1, £ and T are positive
—i20

parameters. Using the method of the papers [1] and [7], we can obtain

[ [ 1069 ,0) - w2, D+ sem (w2, 0) - w2,
(F (D (z,1) — FuP(2,1))0o ) dzdt > 0 (3.4)

We select £, 82 € (0,T3), t1 < £2, and define

o)

anlz) = _[x wy(s)ds = fh w(s)ds

= — G

Grplt) = ap(t —t1) —ap(t — 1) = f;k w(s)ds
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Xz, t) =1-r:rﬁl[:t:—|—Lt~X—|-E]=f
1

+00
) = b e ) fl _ w(s)ds
==

where £ > (0, b > 0, § > 0. Obviously, for sufficiently small k, £, 4, Gi(t) € C5°(0, Th),
Xelx, t) € Cg®(Qr), Hs(z) € C§°[0, X)), Hs(0) = 0. If in (3.4) we set

wle,t) = Gult) Xe(z, t) Hy ()
then for sufficiently small &, e, §,
p(z,t) € C°(QT), w(z,t) =0, ©(0,t)=0

Obtaining

f.[g |';u,':1J{$ t] FE H{E:I{mlﬂlg:;al:t:lxs[m:f}Hﬁ{x}dmdt

+ ffﬂ? {fu':l][a:., t) — u{z}tm,ﬁjl% +sgn (u(z, ¢) — ul® (2, 1))
(Fu(z,2)) ~ f(u

} Gp(t)Hy(z)dxdt

+ [ fq _sen(wD(@,8) - uP (2, 0)(f(uW(e, ) - Fu®(z,1)))
Hy(z) X (2, 8)Gp(t)dadt =T + L + I; > 0 (3.5)

we note that when u!) (g, ¢) # ul® (g, t):

(2, 1) - “}{w = +sgn (ulV(z, £) — u®(z,1))
58X, |
oz

X, f{ (1) t)) — '{E] t)) 89X,
=u® (2, ) - u(z,1 |{ “ui = )

_}:g

(W () = Fu®(z,8))

E:‘X :
't

<JulV(z, ) — ul®a, f}|{

then the second integration in (3.5)

L <0 (3.6)
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Because, for every (z,4) € Q ={(z,f) |0z < X - Lt,0 < t < Ty}, X( :rt}—l aned

1
Hi(z) = Ew(l — E) > 0, Hi(z) € C§°[0,26), hence the third integration in (3.5):

T w0j
L= j; sgn (D2, £) — @ (3,4)) - (f (D (z, 1))
— fu'®(z, ) Hf(2) G (t)dzdt (3.7)
Note that

24 24
m(t) [ Hy(zdz < [ sgn (@ (a,8) - u®(z,8) - (FuD(z,0)

— [ (u®)(z,1))) Hj(z)da
24

< M{(t) Hj(z)dz
0

where:

m(t) =  inf {sgn (W (z,t) — u®@(z, 1)) (f(uV(z,1) - fFP(z,1)))}
M) = sup {sgn (4 (z,0) — a0 (F D 2,8 ~ £, )}

and that

24 28 1

Hi(z)dz =f sw(1=Z)de =1

0 0

Thus

d
lim | " sgn (w0 (2, ) ~ 0D, ) (F WD (e, 1) — F 6D (a,0) - Hila)da

= sgn (uD(0,2) - u'?(0,)) (f(u!V(0, ) ~ F(®(0,2)))
Letting d — 0 in (3.7) and using Lemma 2.2, we obtain:
\ ¢
I < f Ll (uy(£) — u? ($)|Gr(t)dt = L f uf ) - uP@)IGh@dt (3.8)
0 t
Note that for sufficiently small h:

Grlt) =1, te€ (i1,12)

and
G (t) = wy(t — t1) — wi(t — t2)
By (3.5), (3.7) and (3.8), we have

Ta pX-—-Lt
_/I; ./E-i lﬂ':]-:' {Ett} = u(Ej {.T-, f]l{ﬂ.‘n[i‘. — tl} -_ mh[t = fﬂ]}dﬂ!’.ﬂ:
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(4]
+L£|ﬁ%ﬂ—%%mﬁgﬂ (3.9)
b
Let )
A =Lt 4
= f |t (z, ¢) — u[’j{ﬂ:,mdx
L
then :
- :{h +
Jim [ p(Oun(e = t)de = iy o B = )
=plt), 1=1,2 : (3.10)

Letting i — 0 in (3.9) and using (3.10), we obtain

_.-'{.—Lf‘z X—Lﬁl Y
f [t (z, t5) — ul® (z, ty)|dw < f M (i, 1) — ul?(z, t,)|de
3 0

ta
+Lf g () = ul? (8)|d (3.11)

5]

Following [1], let ¢; — 0 and exchange ¢; for ¢ in (3.11), then for almost all £ € (0, Th)
X—Lt . X
L1060 - e, 01z < [ o) - P (@)
0 0

i
+th$%ﬂ—ﬁ%ﬂm
]
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