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Abstract We are concerned with the Dirichlet problem of

div Az, Du)+ B(z) =0 in D
(0.1)
=it o on Jf1
Here £t ¢ R™ is a bounded domain, A{z,p) = (A'(z,p),- -+, A (z, p)) satisfies
min{[p|'**, [p|'**} < A(z,p) p < aollpl"™® + |p|"HH)
with ) < a < .
: A : N42
We show that if A is Lipschitz, B and uy are bounded and 3 < masc:{ N cr

2
+ ks + 2}1 then there exists a C!-weak solution of (0.1).

Key Words  Elliptic equation; non-uniformly degenerate.
Classification 35D03, 35.]70.

1. Introduction and Statement of Main Results

Recently many authors have studied the existence and regularity of weak solutions
for uniformly degenerate elliptic equations

div A(z, u, Du) + B(z,u,Du) =0 in 2 c RY (1.1)

with structure conditions on the principal part

At
M6 < (2,216 € AP (8>0) (12)
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see for instance [1-7]. Under the additional hypotheses on A and B, these authors

established the C1*® regularity of weak solutions. Lieberman!® has got similar resulis
for more general equations; that is, the eigenvalues of the matrix (%) needn’t be
subject to the power law behavior in (1.2).

For non-uniformly equations, Marcellinil®l considered the following non-degenerate

Cage.
aA? :
AL+ [p])* ¢ < Bp; (ORI < AL+ Iph)P e (1.3)
J

with 1 < o < 3.
For o, # and A; satisfying

N+ 2 2
<< & &
It 5 il e N &+N (1.4)
and .
sk 3
|z (z,p)| £C(1+pl) 7 . (1.5)

Marcellini established a local || Dul|z--estimate in terms of the quantities || Dl pely §2,
@, 3, X and A, and the existence of Lipschitz continuous weak solution for the Dirichlet
problem.

In this work, we consider the Dirichlet problems for the non-uniformly degenerate
elliptic equations of the form

div A(z, Du) + B(z) =0 in Q (1.6)
=4y on g8 [1.7)

where 2 € RY is a bounded domain, 4 is Lipschitz with A(z,0) = 0 and satisfies

9A'(z,p)

5 661 S collol* + P IEF (L8)

min{|p|®~", |p|f~1}|¢]? <

forallp e RY\{0}, (e RY, 2 € Q, (0 << f), and

dA(z,p) ‘ (ﬂA"[m,pl | ) 148
o Al < ag 5 Aidi | (1 +p]) 2 (1.9)

forallp e RY\{0}, \ e RN, 1<k < V.
An example exhibiting the above structure conditions is:

N
>~ 5-(b(@)| Dl + (1~ )t + () s ) =0

=1
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where b(z) and ¢;(z) are nonnegative C*-functions, b(z) < 1, and 0 < a < gy < --- <
ay < G, a1 = 1.

It is known that the gradient estimates and the smoothness of the derivatives for
solutions to elliptic equations under standard growth conditions can be reduced to some
a priori C"“-estimate of the solutions. There are some results on the gradient bounds of
the solutions to certain non-uniformly elliptic equations without using the C'®-estimate
of the solutions (See, e.g. [10, 11]). To our knowledge, there is no result on the
smoothness of the derivatives of the solutions to elliptic equations under non standard
growth conditions as those in (1.8). In this paper we apply Moser’s iteration and make
some modifications of the argument presented in [9] to infer the local gradient bounds
only using the a priori bounds of the solutions, and then we exploit the techniques
developed in [1, 5, 12] to prove the continuity of the derivatives.

Definition 1.1 By a weak solution to (1.6), (1.7) we mean a function u € White
(€2} M Wli‘cl"_ﬁ{ﬂ] with w — ug € WJ’H“{H} such that for every ¥ CC 1,

In this paper, we assume that

B(z) € L®(Q); up € L®(Q) n Wwhil+ald/eg) (1.10)
and o : ; ;
+
ﬂ{mﬁ_:ﬂqmax{Ta+-N—,a+2} (1.11)

Our main result is the following;
Theorem 1.1  Let (1.8)~(1.11) hold. Then there exists a weak solution u to (1.6)
(L.7). Moreover uy, are continuous in Q,i=1,2.-.. N.

¥
E

2. Preliminaries and Approximating Problems

We state two lemmas which will be used as we proceed.

. N+2
Lemma 2.1 ([3, Theorem 2.2.1]) Lethe WE}'EI:H} then for k = chlant

()" seon( one)"( )

Lemma 2.2 ([13, Lemma 3.1])  Let f(t) be a nonnegative bounded function defined
in [ro,r1], ro > 0. Suppose that for rg <t < s < r, we have

ft) <6f(s) 4+ [Cols —1)~" + Cy)
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where Cp, C1,# and T are nonnegative constants with 0 < 6 < 1. Then forallrg < p <
R < r, we have

fp) < C(7,6)[Co(R ~ p) 77 + C1]

We construct an approximation of A4 as follows. For £ & (0, 1), we define

Ac(z,p) =(1 = n(lp])) Az, p) + n(lpl) (e + [p))>~p

(8]

=1 —1
+_1M_1;2[{fﬂ|2+52} T p+ (Ipf? + %) T g

1
where n(t) is Lipschitz with n(t) = 1 for t < £ and £ > — e y 0 =5 <1; C] a constant at
our disposal. From (1.8), a simple calculation gives

d;flE 1 i i
5T = Coln, B0, (R RS )P

—f—

C 2y ar
€ IR+ (€ o) T el

~ Cole, B, ag, N)|n'||p|(|p|** + |}~

J
Ine—1/2

Now set kb =

and fix Cy = Cy(e, 8, Ch) so large that

1
Eiptﬂ{'iﬁ +1p2) 5T + (€2 + DT} > Collplft + pI*) for lp| > e

Then the choice
(i3] ISP a

A
l—klxtg EEE.{EE‘:T

n(t)={ 0 gek <t < f?zei"]—l

1
1+ kln 2t {Eﬁﬁva] T %

il <

1
; dg =
vields
oA | 1
o (@P)6t; 2 = min{(lp| + )7, (el + )" e (2.1)

Crex 2 0y &=l 2 2y E=Ly, o
+§Egjﬁ{ﬁ'ﬂﬂjjq+ﬁ'+@13*)m

It is easy to check that

o) <1+ 222l 1+ l+ Py 2

Ing—1/2
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We take a usual smoothing approximation of A.(z,p), denoted by A.(z,p), such

g §A. §A! §A:
- 1 ! -
s d o, < = [
(G @9) < (Grten) <2(35wn)
4 _ : (2.3)
8Ae(z,p) ‘ AL NES ke

ey | S ClesBan, M) (e ) (14 o)

and Ae(z, p) converges uniformly to A(z,p) on compact subsets of © x RV,

Consider

div A, (z, Du) + Be(z) =0 in§2 (2.4)
U = Uge on 952 (2.8)

where B and ug. are respectively the smoothing approximations of B and wu,.

From a well-known existence theory (See [3]) there exists a unique classical solution
u® of problem (2.4), (2.5).

Lemma 2.3  There exists a constant My(c, 5, ag, N, || B||p=) such that

|l ey < Mo(1 + |lugllz=)

il
gll4 B¢
fy 114 < Mo { ol + [ 1+ Dol 20+ )

Proof The first estimate follows from the maximum principle.

The differential equation for u* yields

f {Ac(w, Duf)D(u — ug.) — By () (uf — uge)} =0

)

By (2.1)-(2.3) we estimate f A D{u® — ug) as follows:

i
| Aclz, Du) (D ~ Dug,)
L7
 Fong ,
= | [ a8 (2, Duoe + tD(u* ~ uoe))deD(u ~ ue) - D (u = woe)
]

+Lﬂ5{£,ﬂum]fﬂu‘g — Duge)

1 o |
> & 1D = Due"** — ¢ [ (1wl +)° + (1Dl +&)°)| D — Dua
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Al . '
5o @P): B = {o € % |D(u ~ war)| 2 2Duncl, 1D - wic)] > 1}

From -H.ﬁl{fET inequality,

where a¥ (z,p) =

fﬂ[{!ﬂun! + &)+ (|Dug| + €)°)| D — uge)|

<6 [ 1D = ue) [ + C(6,0,8,N) [ (14 Dugl$+) (6 > 0)
2 ¥

Then by taking 4 small enough we deduce

fE | Dae® — Duuzll_'_ﬂ < C{ _/;; (1 + IDuul'tS?“J"ﬂ}} - ||1-'en||fﬁ~='}

and hence

f |Duf|lte < f}’{f | Dt —ﬂ'uDE|H'u—|—f |ﬂuui1'l'u}
L] K )
= .M.;;{lluDHLW + /;‘1 |:1 |- |.D’i'.!:{||§l:1+&}:|}
3. Gradient Estimate

Let us denote by B,, Br balls compactly contained in 2, of radii respectively p, R

and with the same center.

Theorem 3.1  Let (1.11) hold, then there ezist constants C = Cw, 5, ap, N, ||uf]| oo,
WBllpe) and 12 = mole, B, V) € (0,1) such that for any Br CC

e

[ pupre))
sup |[Duf| < € {1+ | B2
By Iy

Proof We focus our attention on the case 3 < a + 2 because the case e
N+2

N
: . R
The strategy is the following: we first prove that for 7 <t<s<BH,

o+ = follows by modifying Marcellini’s work®l |

Lfhg
(-[H,H |D’“Eih“) < Clhg, S,t}llﬂu’f”jﬂ?&m Yhy > 1 (3.1)
And then we prove that

71/ fo
1D 5y < Clhor ) [ 1Dupo) ", vho 21 (3.2)

%
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T
hg
1 and use Lemma 2.2 to obtain the desired gradient bound. (The precise forms of

inequalities (3.1) and (3.2) will be given respectively in (3.11) and (3.15) below).
Step 1 From the differential of equation for « it follows that

-~

(70 and ~; are independent of hg). Finally, we fix hy large enough such that

Eﬂ'ﬂ’*
i Duf)D.; D ——.f a.
fn ( (x, Du®) : k) i17 BeDyn Ynpe Cp (1Y)

Replace 5 by n0w® and then add over & to get

fﬂaﬁ’;—" D;W Dyn + fq a¥ Dyu® Dputn

34.‘ -
f Dy(Dywn) < [ B.Du(Dun) (3.3)

where
fJ"

(| Dug| + )=-!

(|Duf|=1)+ :
W =f.] (t+ Dt +1+2)°"'dt, b =

andn=WS3 (s>1), €€ Gﬂ=1{9] is nonnegative.
5 2 2
Taking n = W9t e ~1¢2 (for any g > T ¢ vanishing on 1) in (3.3), and then
by (2.1)-(2.3) and Holder inequality we estimate the terms of the resulting equation as

follows:

Lbﬁ-’ﬂjWﬂj{W”"‘%‘lﬁ + f a¥ Dy Djpu Wt Tes —1¢?
G —[ bi.?_D WD WW‘J+1+& 4524_%—[ ﬂfﬁ'jﬂikuﬁﬂjkuﬁﬁ;q+ﬁl_—“u—]£2
2

s fﬂ IDER( + W) (3.4)

aAs

D A Dpuf Wt Tea—1g2)

: Gf (0¥ Digu® Djuf) T WO s 1 Dyt | 2
+C"~ff (b9 D;W D W}zwqi 2o _ |Dif|h Sh T o
+Gf (a¥ Dy D; ej}ﬂwfr l,r,hlmu_flgﬁ.
L R

<9 f a¥ Dy Dy WOt T35 ~1e2 4 gy / b9 D, W DWW is -2
y i

+Cld)g fﬂ (1+ W 582 + |Def?), Vo> 0 (3.5)
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and

[ B, Dy (Dyus Wt Tia—1¢2)
<4 f 0¥ Dyu® Dyt Wt 162 4 5 f b D W DWW T 22
i G’{ﬁ]g—/i;[l L WIFER) (22 4 |DEP), VEs0 (3.6)

In (3.2)-(3.4) we have used the inequality: —W ™= < [Duf| < CW 5 for W > 1.
From (3.2)-(3.4) we take J in (3.5), (3.6) small enough to obtain

fl.D W 1+neg}|3+qf | Duf |V D2 P T L2

< C¢? f; (€ +|Deh) (1 + W) (3.7)

Let us denote f(p) =supW, N = Nif N > 2. N =3if N = 2. For g Shs iR,

fol

set
s+t
3u.=—2-} 20 =2+a+0
it 2 % N = N
rjrﬂ'—l__l_cgn pﬂ'_l_'_&l:- H_iﬁ'ﬁﬁr—g
and for h =0,1,2, -, define
g+ a B4+o+6 B+ e Ecu)
+ = — = + ;
Al i Gn + THEE Ph+1+l+ﬂr (Fh. e

1
Rh = 5 + W{S — .SDL ﬂn = Bn_h

-

Rh=t-[—

oh41 [Su. E I:I, Eh i Eﬁﬁ

h

+u+9 5
and then using the integration by parts we estimate the integral f W%+ E; as

follows.
i 8 o
f th+l3:-$: EE ch Wq"+_"3+1+ﬂ“ ?|-DHE|‘2£JI21+D/ E:’Ea
Bh E.ﬁ. B.||- .

(integration by parts)
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+ e o Ferafd — 2

: _G/ (D s+ S g 26, W+ D Dyg,

B+a+6—2
1+ o

i
+ o+ Jwnt S bt o [ o
h
By a8

1

[ (1 + woatiis) (3.8)

i s—f.

Replacing g and £ in (3.7) respectively by g, and & we have

2o -
[ 1Dw e Dh it Bt 4 g, [ ipwpwet g
h

h

s¢ (2 — t}? f S W%—hw} {E'H.I:I

From (3.8) and (3.9),

f
f (1+Wq"'+1+1+a]|{ ¢4 ‘?ﬁ, f {1+W"h H_n}
By T

Let us define :
A, = ([ (14 W‘fﬁ"‘w&:j) o+ e
El‘.‘:

then the above inequality can be rewritten as follows

b2 i
Appr ( (4 t}z)“*”ff_ﬂ“*ﬁ%ﬁ (3.10)
By the definition of g, and by iterating (3.10) we can easily arrive at
(f 1+ E’P”’"ﬂ"'ﬂf!-:; E]j T+ =Trai Apl e G’{h..:;gw ﬂ;hﬁ o
i (s = t]
C'lho) (j‘ i pyy e }) R, Fee
— = T =
(s — ) %=

< Clho)(f(s)) T 7D

e ( fﬂ R{1+iﬂuff“+l}

143
) R Ea

(3.11)

provided that f(s) > 1, where C'(hg) = oo as hy — eo.
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Step 2 By the definition of p, we find that

Je Ay PB=-a KP-1
4+ — = 4+ —— " — :

& Brilsaere (pc' 1+Er) Fobler: =i

TD::Z l {{1+CE:|H-

T —

(3.12)
iE Pt g 2ta—§

and

T+a - Bi
=l ——— j‘”:I&leH——‘_ L
i=o Pi + 135 @bt 1+e

+o +
_Ehp'n"l_lli:'-l-_-:t Po + fia

h—roo Dh + 2T,

e i (3.13)
T o net: 12—?:: 7 zﬁﬁ:} (N -2)

MNow we choose gh = Cg*l{ﬁ,t] so that 0 < E‘;l < 1, a, =1 on §h+l and |D§ﬁn| =
2.’1
'

iy and then apply (3.7) with ¢ = D, E= E » and use Sobolev's inequality to obtain

o
(it e 2
Apy1 £ (ES—_GE) g (3.14)
where ,
Ay = (f (1+ Wi’a’f%]) PatTHE
Hn‘n
We iterate (3.14) and use (3.12), (3.13) and Hélder inequality to obtain
ft) < Aee < C(s - IR
; Biathgd \ —FTeTET
< Cfs — ¢)=?rom (f;; (1 + Wor=irs }) a+ e (3.15)
24

We are now in a position to prove the gradient bound. From (3.11) and (3.15),
(13T
Cha)(f () FFor=rres e(l+a
flt) < 2{l+a)r f (14 [Duf| )
(s — #)20nt=—1 \JgBg

We fix hy so large that 5 +{$ ::: i} _:1 oD < 1 and then from Hélder inequality we have

1eeenhr
) I+ ftathgs

us 1
F() < %f‘:ﬂj-l-{f-': [Lﬁil{iﬂﬁﬁ' J] |
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where
_ s R | § o o e 2n1(1 4 o)
O 2t htathd LTk frathg 2=inm+—

Hence we infer from Lemma 2.2 that

supg g | Du| < G[l 4 (f(i—%))ﬂ_“]

-

e 1
(], a+ipuge)™) T
14 Ba 5
R

(3.16)

)

which completes the proof of Theorem 3.1,

4. Equicontinuity of Duf; Proof of Theorem 1.1

It is well known that the key step to the proof of uniformly degenerate equations
having C''* solutions is to show that there are universal constants 7,4 € (0,1) and C
such that one of the inequalities

IMAax 0sc D-uffmax{{irnaxnsﬂ D C’R"}
e JEN R

: i < D;
I:%Ef ?upﬂg‘ | Du| < 51;1%51“:;:5111:1531 it

holds (See, e.z. [1]). But in our nonuniformly degenerate case the constants r,d and C
will depend on mp = infp, |Du| if mp > 0, and the case mpr = 0 will be very difficult
to treat. In this section we exploit the techniques developed in [1, 5, 12] to establish
the equicontinuity of Duf and thereby prove Theorem 1.1 by a standard argument.
Let § be an arbitrary positive number, and for any ball B cc @ cC £, let

M(R) = MAX Sup |Dsu®|. Our argument follows lines of [12] with improvement by the
iZN po
introduction of ¢ (the role will be seen in Lemmas 4.1 and 4.2), and our aim is to show

that the oscillation of Duf can be made less than § in a ball of sufficiently small radius.
Lemma 4.1 There exisfs a pla, 3, an, N, 4, 1D || poe gy, | Bz ) € (0, 1} such
that if M(R) > § and

H:t: € Br; Diu® < Méﬁ}H < p|Bg| for some k (4.1)

or

—M(R)

H:::.E Br: Diu® > }| < ulBg| for some k i (4.2)
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SR

then there are constants v € (0,1) and C depending nn!y on d, o, 3,aq, N, || Duf|| 1= (1)
and || Bl|p= such ﬂm.f fore <4,

max 0sc g ., Diu {ma:{{ max osc g, Diu® G’R}
'l"ﬁ_:f'ir Bql ] = 'Tl I:E.N En_ T 3

Proof It is no loss of generality to assume that (4.1) is valid. From (2.4)

. B
f (ﬂ.;jﬂjkuﬁ - E)ﬂm = f B.Dwn fork=1,2,---,N (4.3)
Br B:'-"‘.'i: Bg
holds for all Lipschitz function n with 5 = 0 on 8B.
N+2
For g > we get

W = min {—@1 m&x{:ﬁ;{? e D}}, g(Dypuf) = W2a-N-1

and pick n € Gy (Bg) with 0 < 5 < 1, n=1on Bﬁ, Dyl < — G |L"2 | < L and then

Rz’
replace n by gn'2¢—) ip (4.3) to obtain
oA:
z-_r iy D £, 2g=N
Joa (220" 4 ) Djt
= [ 4ilg' D Dyt + gDix(n)
i
+[ﬂ Be[g' Dy n* ™M + gDg(n*1~ )] (4.4)
i
R
By (2.1}-(2.3) and noting that |Du| > M'EL ) > %5 = :11-5 wherever g' # 0, we compute:

AL
E-_';ID "Dt 29—-N
L_E( jEUS @M)H KU

> QF{M{R” f |DW|E w?q_N_E'T}Equ

Cq(l + M**(R)) ~N=32_27—N 2
T E(M(R) /ER el 45)

(F(M(R)) = min{M*"(R), MP~1(R)}),

J;, (A" Dist Dulo?=) + gDy (7)) + Buly/ Disun™ ™ + gD (7))

< gEF(M(R)) fB |DW |2 2= N 22N
H
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21+ M*# EH} W‘.!q—!‘v'—-‘ﬁﬁlﬂq— N-—-2

OO rw))
1+ MYfE(R) L pe <
+ Cq? = (1+mﬁ) 5 WH-N-2p20-N-2 gz ()

(4.6)
By taking € in (4.6) small enough and noting that M(R) > &, we find that

W 2 2 A
[y, P10y e < e S sy [ waywn -t (g2 N o)

N
From Lemma 2.1, (k = —I:}FE]

(fﬁﬂ {Wﬂl*"”(wﬂ}‘”‘ﬂ) Y

< S(QEMTT(RHI - ME{RH)UR fﬁ,ﬂiww}q’{wn}‘“‘i (4.7)

Rijl+ia

Forgo=N +4, gioy = gir, 1 =10,1,---, then a standard Moser’s iteration yields

supg, W < ctc’i}{iﬁ—""w‘”{ﬂ}tl + MY(R))] /;; . wi}ﬂ_‘

< C(8)(1+ MY (R)) ™5 u "+ M(R)

By taking p = pla, 3, a9, N, 6, |- Duf|| poo (e, | Bl o) sufficiently small, we infer that

1
W < vé-M{R} on B B and hence Dyu® > EM (R) on Ba Now u® satisfies a uniformly

elliptic equation in Bg and therefore, the lemma fc:llmws from the well-known results,

(See, e.z. [3]). -
Lemma 4.2 Assume Hmf
R i1 M(R
H:r: € Bp; Diu® < %l} ‘ {s: € Bp; Dyu® > — g }H > 1| Bg|

hold for all k. Then there exists an integer 8* = 5°(a, ﬁ,au,N 8, | DUl Loe gy || Bl =)
such that max{d,2° R} < M(R) implies

M(g) < (1-2"""1M(R)

Proof Form the hypotheses, there is a constant b = bp, N) € (Ej 1) such that
|{$ € Byp; Dyu® < -%H = %|Bbﬂ'|.
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Let

= (D;:u‘i = (1 & E—th{Rj) . Engw
+

In [-’43] replac’:{af.r;rmthwq g 1:ir;r‘f_""'r (g = N+2, :r’,rEE"D (Ber), 0 =9 <1,n=1o0on
BR, | D) < —} to obtain :

9 gAl : % i 2ae .
j;s (‘F"'?ﬂ' : )[{*&’ - DWW 2 Dyt o (g - NyWE N pa=N-1p )
B N

= f Bl(g— N - YW V2Dt~V + (g - MW=V =lpa-N-1p o

Byp .

(4.8)

Using M I:R] > max{d,2°" R}, we estimate the integrals in (4.8) similarly as before: the
left-hand side of (4.8) is bounded from below by

AP R) [ (DWW 2o
_ Cq(1+ MP(R))(2-*M(R))?
ﬁEF[M{R]]RE H.!JR

W'ﬁ' N— Enq— N1 | {_19]
and the right-hand side of (4.8) is bounded from above by

EF(MR) [ |DW, w2y

By

C(E)g(l + M*P(R))(2~"M(R))* g-N-2_q—N-2
alF(M{R]JRE Bk b ot A7 &1

Hence by taking £ small enough we obtain
-} + M23(R)) ,__,
PP < 00 LB obagiy2 [ )
bR
(4.11)

It follows in the same way as in the proof of Lemma 4.1 that

: DR\ 7
sup W), < Olas a0, N,6, 1Ble) 1 + MV (R) TR () (50D ™ (012)
Bg P

where D(h) = {z € Byp; W, = (Dyu® — (1 — 27" M(R) ?E 0}. To estimate |D(h)|,
we notice that (4.11) holds when g = N + 2, Byp is rc:placed bj.-‘ Br and n € G’D l[B,r:,r_]
satisfies 0 < 5 1,n=1on Byg,|Dn| < ﬁ, then

f |DW,|* < Clay, B, a0, N, 4, || Bll oo, | Duf || poo ) ) RN 227" M(R))?  (4.13)

(¥ 18
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for 1 < h < s*. Since |D{h.][ = (1 — g)mbﬂi: an application of a Ierﬁma of De Giorgi
[3, Lemma, 2.3.5] yields
2 IM(R)DR)F < W) | |DW,| (4.14)
DR DR+1)
From (4.13) and (4.14), we may conclude that

ID(R)] < Cle, B, a0, N, 6, | Du g m(any | Bllu=) RF DD (A + 1)

We take square both sides of the preceding inequality and add the resulting inequality
forh=1,2,...,8" to ocbtain :

(5~ DID(s")? < Cle, B, a0, N, 6, || Dl oogery, [ Blloe ) B2 (4.15)

From {4.12) and (4.15), by fixing s* = $*(a, B, a0, N, 8, || Duf|| oo, || B|| oo ) sufficiently
large, we have '
sup Dgu® < (1 =27 "N M(R) for all &
g
similarly, we have

sup ( — Dhu') < (1 -2 "YM(R) forall k
Therefore |
M(3) < (-2 M(R)

as claimed.

Combining Lemmas 4.1 with 4.2, by standard arguments, we conclude:

Theorem 4.1 For any ¥ CC § and any number 6 € (0,1), there exist v =
e, By a0, N, 6, || Duf|| oo (qeys | Bllzes) € (0,1) and C = Cle, B,a0, N, 6, | Duf || oo vy,
|8l e=, dist (2, 8)) such that for any ball By C ¥, (e < §)

max osc B Dt < max{-ﬂi CR"}

Now Theorem 1.1 is a simple consequence of Lemma 2.3, Theorems 3.1 and 4.1.
Remark 4.1 It is easily seen that Theorem 4.1 remains true if the right-hand side
of (1.8) is replaced by any function f(|p|) of lp| such that f([p|) > min{|p|=-T, lp|f-11
(with the constants depending on f).
Remark 4.2 From our proofs, Theorem 1.1 remains true if the right-hand side of
(1.8) is replaced by ao(1 + [p|®~1)|¢] (this condition is weaker than the original when
a = 1), and this time, the approximation of A(z, p), Ae(z, p) is constructed as following

Ac(z,p) = (1= m)A(,p) + 06 + )" p + — Dt + (pl)? +2) )
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