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Abstract Part 1 of this paper establishes the infinite-time stability of a class of
over-compressive viscous shock waves; the equations studied here are a mathematical
analogue of those of magnetohydrodynamics. Part 2 communicates a rather general
short-time stability result for undercompressive shock waves in several space dimensions;
té:‘:hnicall;,r, this is an easy extension of Majda’s corresponding result for Laxian shock
WAVES,
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1. Infinite-time Stability of Non-classical Viscous Shock Waves

A traveling viscous shock wave solution _
u(3,8) = ¢*(z - st), §*(o0) = ut (1)
of a “viscous” systeni of n conservation laws

ug + (f(1))e = (B(u)uz). (2)

is called stable for infinite time if with some appropriate norm || - || and some § > 0,
the following holds for any perturbation U : R = R™ If |G| < 4, then the solution
u of (2) with data |

u(z,0) = ¢"(z) + TWolz), zeR (3)

exists for all times £ > 0 and converges in the sense

i d ]

lim sup |u(z,t) — ¢(z — st} =0 (4)
reR
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to another viscous shock wave of profile ¢ with the same end states P(too) = u*. For
classical shock waves, stability in this sense has been proved by Goodman, Matsumurs,
and Nishihara, Liu, Szepessy and Xin in [1-4] under various assumptions; certain non-
classical shock waves were shown to be stable by Liu and co-authors in [5-7]. The
purpose of this paper consists in establishing an infinite-time stability result of certain
non-classical viscous shock waves in the “cylindrical model” introduced by the author

in [8]. This model (see also [9]) is given by the equations

Yo+ (2Y)z = pipe
P s (5]
Zt 1 E“y[ + 2 ,I:I:L' = QEII

where £ € R, t € [0,00), y(z, t) € R*! (n > 3), z(z,t) € R, and gL > 0. We
abbreviate (5) as (2), with u = (v,2) and B = diag (£, -+, 1, ¢) € R™™™. The inviscid
part of (5) is hyperbolic, with characteristic speeds
Agpi(u) =z yl, Ag(u) =2 (6)
We consider the maximally overcompressive case, i.e., shock waves which satisfy
A{u”) > s > Aa(ut) (7)
A solution ¢ : R = R™ of the boundary value problem
B =fog—sd—q, ¢(+too) = (8)
with
¢=flu") - su” = flut) - sut (9)

will be called a profile for the pair (u™,u*). We write g = (q1, qﬁ}, 1 € R"! and, w.
L. 0. g., fix from now on

§=0 and ¢ >0 (10)

Lemma 1 If q; € R*! is sufficiently small, then there exists (1) a unique pair
(u™,u™) with (7), (9), and (ii) a unique profile ¢ for (u™,u") with and $5(0) =0,
Proof (i) The equation f(u) — su = g reads

Y=
i (11)
SUul?+2%) = g

If g1 = 0, then its solution set consists of the two points

u® = (0, F(242) /%)
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and the circle
x = {((2¢2)"/6,0),6 € §"%}

Points © € x have dy(u) = s and can thus satisfy neither A{u) > s nor As(u) < s
For u~ and w™, (7) holds. Now perturb ¢; away from 0. (7) and the Implicit Function
Theorem imply that the points u—, u™ perturb regularly. While ¥ does not, nevertheless
no new solutions of (11) are generated near x which would satisfy Ar(u) > s or Azfu) <
5. (i) In case q = 0, the existence of ¢} is obvious, since u—,u"t are (the only) fixed
points of (8) contained in the invariant line ¥ = 0. In other words, the point 0 is an
element of the unstable manifold of ©~ as well of the stable manifold of u%. As these
are both open sets, this property persists under perturbation of ¢; away from 0.
Theorem 1 consider u™,ut as in Lemma 1 and a corresponding profile ¢* and
let

m'= [ (#"(a) - di(e))d (12)

If now |q| and |m®| are sufficiently small, then there exists a § > 0 such that the
following holds: If

T = -/;Zt_fﬂfmjdﬂ' . (13)

sufisfies

77| < 4

then a unique (other) profile ¢ for (u™,u*) is determined through the relation

[ @ -#eyie= " wwea (14)
If my is furthermore also small in the sense that the function Uy given by
Uo@) = [ (8"(3) + W(&) - $(@)d (15)
satisfies
o]l < &

then the solution u of (5) with data (3) converges in the sense (4) to ¢b. Briefly speaking,
(1) is stable for infinite time.

A principal motivation to study this problem is the fact that in the analogy between
the cylindrical model and the equations of MHD, the shocks whose stability we prove
here correspond to almost gasdynamic MHD shocks. The rest of this paper is devoted
to proving Theorem 1.
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Lemma 2 Consider u—

ut and ¢F as in Lemma 4.2, If m € R®
small, then there exists g uUng

is sufficiently
que profile o with

[ 4@ - g3y = m

(e v

For a proof of this, we invoke the following abstract observation, which is ele

mentary
fold theory [10].

from the point of view of invariant mani

Lemma 3 Let & be e flow of a smooth vector field on o
S.of R, I~ and I+ normelly hyperbolic invariani man
submnanifold which is contained in the
the stable manifold of It

Smooth submanifold
ifolds for &, and M C & a

intersection of the unstable manifold of I- and
- Then for any u M,

[+
v = [ A (%%[u,f}rﬂ“ﬂ)dt € Lin(T, M, R"

erists, and the mapping

7 M =, Lin(TM,R™)

s smooth,
Consider first the flow ® of (8)
neighborhood of the point 0 s R"
the stable manifold of yt

with (10) and q; = 0. We know already that a
is contained in the unstable m
. We compute

© df
10 = [ L2 0,4

o

anifold of u= and iy

| o%
Along the profile #5 = €(0,.), the derivative Tﬂ_m’ ) satisfies the variation equation
- ¥

a% g—;fm, t) = B~'Df(%(0,1)) %?fﬂsiﬁ
with
-Z%m, 0) =1
As
¢(R) C {0} xR
and

-'Df[ﬂ:z}} = zl,

is diagonal, we see that ¥(0)

is a diagonal, positive definite matrix.
have

In partic ular, we

det 4(0) £ 0
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According to the Implicit Function Theorem, this proves Lemma 2 for the case q; = 0.
To prove it for small g # 0, we consider the augmented system

B¢ =fop—sp—q

o (16)

defined on R™ x @@, @@ a sufficiently small neighborhood of g, = (0,q2). For g € @, u~

and uT are smooth functions of gq. Obviously,

I* = {(v*(g),q9): g € Q}

are Imrrﬂa.ll}f hyperbolic invariant manifolds for (16). Applying Lemma 3 to this new
situation, we see that the map

(w,0) = Al ) = [ (@(u,9,1) - $(0,0,8))dt

15 differentiable. As o
)
e =0
s non-singular, there exists a smooth function u = %(m, g) on a neighborhood of (0, ¢.)

such that ¥
| (6(,0,8) = $(0,0,)dt = m & u = a(m, g

The proof of Lemma 2 is complete.

We keep investigating the same situation. Consider a profile ¢* and a perturbation
iy such that the quantities sn* and 7@ given by (12), (13) are small. Using Lemma 2,
we find a unique profile ¢ with (14). It remains to show that if the function Uy given
by (15) is sufficiently small in H?(R), then the solution of (5) with initial data ¢* +
satisfies (4). Instead of u, one considers the integrated perturbation

UGt = [ ;{uﬁ, ) — $(3))d3
[ satisfies the equation
Uiz, t) + Ald(z))Uz (2, t) + Q(¢(z), Uz(z,t)) = BUszz (1, t) (17)
Wlere A =Df and ' & quadtatic el st ine
Q(¢,2) < |2|” - (18)

System (17) is uniformly parabolic. Thus [11, 12], it has a unique sclution U €
c([0,T), H*(R)) for some time T > 0 with (arbitrary) data Uy € H2%(R), as soon
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as |[Upl|z is sufficienty small. For given U and any 5 > 0, let T3 > 0 be the supremurm
of all such T' which moreover satisfy -

sup {|U],|Uz|} < B (19)
R x[0,T

A standard short time estimate shows that for every 8 > 0, there are constants T, T =
0 such that '

1TC, 002 <y = T 2 7 (20)
For such Up, well-known considerations (e.g. [1]) on (17) yield the energy estimate

102, DIE < (10001 + [ 100, 1) (21)

for all T" £ [0, Tg) with some constant ¢ > 0 which does not depend on T. Suppose now
one has also

Lemma 4 Thereisa B > 0 such that for all 8 € (0, B1) and Uy with ||Uglls < Y3
the solution U of (4.20) with data Uy satisfies

T
UG+ [ UL 8)13de < || U, 0))2 (22)
i

for all T € [0,Ty) with some ¢ > 0 which does not depend on T.
Then one can combine [El}_ and {22) to find 3, § such that

1Tollz < 6 = U, T)ll2 <5 for all T € [0,Ts)

This, however, means by (20) that for such data T = co. Then, (22) implies

| () 1Bde < oo (23)
Through an integration step of the form

5 T-T ;
[U.(z,T) < C{Th:rg;ufT (I3 T>5>7 >0
—4L2

(23) implies the desired decay result

E&i@ﬁ Uz(z,t)| =0

It remains to show Lemma 4. To do so, we let w : R — (0,00} be a smooth weight
function (following [13]) and define V = V(z,#) through

Ulz,t) = w(z)V(z,1) (24)
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Substituting (24) into (17) and dividing by w yields

I

Vi o i{ﬂ{q&]}{w"ﬁz’]z + %Q{cﬁ, (wV)s) = (Vﬂ +2o- V & w_v)

ur
Multiplying by V* and integrate with respect to = and ¢, we obtain
1

if |V (z, T;.|2,:.:g;+f f #))(wV ) pdzdt
T oo 1
3 f f ZVEQ(o, (wV)g)dzdt
0 J—po W
LT 2 Gl A T
2 _[ IV (z,0)2dz _f f VtBV,,drdt
2 — ] —

A ' "
+f ] U*B(E£V$+W—V)dmdt
0 — T T

Integrating by parts, the second term on the left hand side of this equation becomes

| o (= pe )+ L(Aw) ) Vasds

Using (18) and (19), we estimate the third term on the left hand side as

B f [ Svii@wY)sfdzas
g-zf fm |wV|(1V 2 + (%)ﬂﬂﬂdmdt
:g-zﬂ[ff |V|3d¢dt+f/ ( )|1—’|ﬂd.mdt]

The second term on the right hand side is

T peoo
& f f VBV, dzdt
0 -

T poo
< —min{u, (} f f Ve |2 dzdt
0 —oa

Finally, the last term on the right hand side can be written as

ff ( )V*BVdsudt

Combining these observations, we obtain

2[ Ve, T)2dz
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f f E"t[-——[ﬁln N+ —-A[qﬁ}—{max{;i ¢+ 24) ( )2 Jlf'dxd?:
+ (min{u, ¢} — 23) IfDT _/; = V| 2dzdt
< %[Z |V (z, DJ|2d:1? - (25)

Lemma § Letx > 0. If g1, m", and 7 are sufficiently small, and the weight v s
chosen as solving
w'(z)

- w(z)

=w(d(z))|¢'(z)], zeR

and

w(l) =1

with w : R® = R a rertain appmpnate function, then there are constants €1, €2, C3,
k=0 such that

< wiﬁ} Sca,  |w(z)| £ e (26)
and
[w'(z)] < e3|¢' ()| (27)
s well az
I‘l '2
Alz] = — %di {[ }] m(t;—;:f}—)) Iz k| (z)|I (28)

hold for all z € R.
- Proof Consider first the special case q; =0, m* =7 = 0. In this case,

, #'() =1¢'(2)|(0,-1) e R* ! x R

and thus 1
~5 2 (A = Ly @)oo (6(=) = L@l

Consequently, the conclusion of the lemma holds in this case with w = Dbw=1l¢ =1,
ce=c3=0 k= 5" By regular perturbation, there are numbers k1 >0and Z > 0 such
that

A=) = kI if #{f(z) < -7

Ald(z)) < =k T it i(d(z)) > 2

while

—2 H(A(H(2)) > @I it -7 <w(pa) <3
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if |g1f, |m*|, |7 are small enough. By possibly making these three. quantities still
smaller, the value Z can, for every ko > 0. moreover be adjusted so that also

()| < k2 i |R($(2))| > =

holds. Since ¢ stays uniformly in a bounded region and f is smooth, there trivially
exists a constant k > 0 such that

= —{A[q‘.ﬁ[ﬂiu] —k|¢' ()]

We choose 5
skfky, z<-%
wliy, z) = .ﬂ', S E e
—3k/ky, z>7%
and '

ko = ki /(9xk)
For 2 with |7(4(x))| < Z, these choices yield
A(z) 2 (= k + 3k — 0kkk{ k) |6/ (@)1 > Flb()|1
Thus, (28) holds with ;
k = min {.ﬁ.‘, ;I}
Properties (26) and (27) are obvious, since |@'| decays exponentially at both infinities.

Lemma 5 is proved.
Using Lemma 5 in (25) and choosing 3 appropriately small, we obtain

oo A v , _
f V (2, T)|2dz + f f (¢ ()] |V (, £))2dadt + |V, |2dads
—T |:| T
= Ef |V (z,0)2dx
—

with some ¢ > 0. By means of (26), (27), this implies

f_z |w[n:]b"{:z:__T}|?dm+fﬂT f_z )V (z, )z dzdt < f,f fw(z)V (z, 0)|2dz

with some ¢ > 0. Since U = wV, Estimate (22), and thus Theorem 1, are proved.

We conclude by a simple

Observation Let ®p(u~,ut) be the set of all profiles for (u™,u™) with respect
fo B and set '

Mp(u™,ut) = {m e R": fm (d(z) — ¢*(x)) = m_  for some ¢ € @E{uimﬁ]}_
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Then Mp = R™ for g1 = 0 while Mp has finite width if qp £ 0.

Proof For ¢, = g0 with ¢; > 0, all rest points lie in Uy = R x R and the width
of Mg in any direction transverse to Uy is bounded. For q1 =0, the circle ¥ of further
rest points mentioned in the proof of Lemma 1 makes My unbounded.

2. Persistence of Multidimensional Non-classical Shock Waves

Consider a hyperbolic system

0 et +3 L Fyutta)) =0 1
ot : d‘xj.
i |
of n conservation laws in d space variables — induced by a mapping I = (Fy,---, Fy) :
U — R™ 4 of a convex open set I/ — R” into the space of n % d matrices and a
“transition condition”
G(s,N,u",u") =0 (2)

— defined by some function G : R % §% ! x [/ %« [/ — R™. TFor (30, Np, u.) €
R x §% ! % [/ and (r,£) € C x Ny, let B=(T,&; 30, Noyus) [E7 (1, 80, No, u,)] denote
the linear space of all x € C® for which the linear constant-coefficients problem

ﬂ.f:ﬂ: t) + Z ] {u,. aiﬁl:ﬁﬁﬂ} 50 guf'-fn =11/ (3)
has a solution of the form
Gi(t, 7) = peSt N R e i(—o0) = Ofii({oc) = 0] (4)

Definition A4 gruudru;r:;fe g0 = (30, No,ug , ud) € R x Sl ST e T satisfies the
untform Lopatinski stability condition with respect fo F and G if a v > 0 emsts such
that for all (7,€) € C x Ny with |72 + [£2 = 1 and Rr > 0, the inequality

oG a G G 2
v b — o —i
(T {"?D:I ('E'& 3N) {'E?D})F'; Bu— [:qﬂ}.lu' e Hut [q{ljﬂ' |
> (&P + |+ [t ]?) (5)

holds for erbitrary (k,u=, ut) € C x E=(7,&; 50, No,ug ) x E* (7,8 80, Ny, ug ).

The first purpose of this note is to communicate this notion, together with the
following related fact.

Theorem 2 Consider a smooth closed hypersurface My © RY which lies inside
¢ compact ball B(0,Ry) € RY and let Qy, Q5 denote the interior of My and the
intersection of its exterior with B(0,4Ry). Assume
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(1) Systemn (1) satisfies cerfain structural conditions (cf. below).

(if) There is a function wp : R* — U such that wp|QF € H(OF) for a fized
integer k > 2 [g] 27

(iii) There is a function g € H¥ T My) such that for each fized v € My, condition
(2) holds with s = og(a) and u® = fu.ah(e:r}l the limiting value of ug at the point o from
wnthin ﬂﬂ:, respectively, and N = Ny(a) € §9! the exterior normal of Mg at e

(iv) For every @@ € My, the quadruple (eola), Nolex), ug (), ud (@) satisfies the
uniform Lopatinski stability condition with respect to F and G,

(v) oo and ug satisfy certain higher order comnpatibility conditions (ef. below).

Then there exist a T > 0 and o A"+ manifold M = Upcr=r({t} % M,), composed of
closed hypersurfoces My C B(0,2Rq), and a function u: Q= [0,7) x B(0,3Ry) = R™
such that the restrictions w | OF fo the exterior 0 resp. tnterior 17 of M of Q
belong to H*(QF) and satisfy (1) in the classical sense, u assumees initial data ug (t.e.,
u(,.) = ug on B(0,3R)) and every quadruple (o), N{a),u (o), uT(a)) — with
(ola), Viz)) the exterior normal (|N(a)| = 1) to M at a— and u*(a) the limiting
values, within 0%, of u at a—, « € M, satisfies the transition condition 2

This theorem has been proved by Majda [14, 15] for the (most) important special
case

G(s,Nyu™,u™) = (Fu") = F(u7))N = s(ut —u7); (6)

i this case, (2) are the Rankine Hugoniot jump conditions, which express conserva-
tion across the discontinuity. At the technical level, our more general statement is an
almost trivial side-remark: It is proved in completely the same way as Majda's original
theorem®, and instead of addressing any of the many details of Majda’s argumentation,
we simply invite the reader to go back to [14, 15] and verify that this transfer readily
works at every single one of its steps.

The result, however, is interesting in a number of further contexts, out of which
cases of the form
(7)

G(s, Nyu™,u™) = ({F(Tﬁ} = FuT))N - s(ut - u_])

His, N u=,ut)

with m > n seem particularly useful. This form ecorresponds to non-classical shock
waves of a kind often referred to as “undercompressive”; the vanishing of / that transi-
tion condition (2) imposes in addition to the Rankine-Hugoniot conditions corresponds

" In particular, the structural and compatibility conditions in (i), (v} are the lengthy, but natural
conditions mentioned in [14, 15].
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to further extraneous requirements on the jump discontinuity: In these cases, conser-
vation alone is not sufficient to determine the dynamics of the shock front, but these
additional requirements restore wellposedness. The forthcoming parper [16] will contain
examples of this type. One of these is provided by undercompressive shock waves for the
Complex Burgers Equation, a system of two conservation laws in two space dimensions:
the uniform Lopatinski stability condition is satisfied with the constraint H = 0 corre-
sponding to the requirement that each planar shock wave (o(c), N(a),u (o), uT(a)),
e £ M, has a viscous profile.

The second purpose of this note consists in relating the above observations back
to the CF type results obtained in (17] for the case of one space dimension. More
specifically, we have:

Lemma 6 [n the case d = 1 (one space dimension), the uniform Lopalinski sta-
bility condition with respect to, say, f and g reduces to

R (o) @ oL (a0) B~ (1, 50) © 2 (o) B (5 30) = R™ s)
welh
R*(u,s)= S kerm(f'(u) = AI)
+{A—g)>0

Note that independently of this justification as a uniform Lopatinski criterion, con-
dition (8) arises naturally in the direct study — see [17] — of the one-dimensional case
via the method of characteristics.

To establish the Lemma, we first fix 7 € C with |7| = 1 and R > 0, and determine
E* = BT (1;50,1,ug). 4 € C" belongs to E* if and only if there is a smooth function
¥ : R — C with #{+cc) = 0 such that

u(t, ) = pe™(z) ' (9)
satisfies 5 @ﬂ
A Feods A
E]'t_l_{f (ug ) 5UI}BE_D (10)

Now, (10} with (9) is equivalent to

o(z)
¥(a)

(f(ug) = ADp=0, A=s—7

Le., (A, p) is an (eigenvalue, eigenvector)-pair of f'(ug) and

T

3(z) = 5(0)e %"
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This is decaying for  — oo if and only if A is one of those cigenvalu;as of :ft [u@"j which
are bigger than s3. In other words,

Et = 3 kerg (f(uf) — AI)
A0

Analogously,
E- = kerc(f'(ug) — Al
A8

The uniform Lopatinski stability condition is thus equivalent to

2

.

Ay dg sl lfg ,
ﬁ"ﬂ';:(%}-*-@wn}# +Eﬂ%}#

Z 7 (sl +e” P+t (1)
holding for all

(e %) €Cx 3 kera(f'(ug) = AI) x 3 kere (f/(ug) — M)

A< sn A= 5

But this is equivalent to (11) holding for all

(Rop™, ") ER X Y kerr(f'(ug) — AI) x 3 kerg (f'(ug) — AT)

A<ap ' A=gn
which in turn is the same as (8).
Remark  While it is here that they first appear printed in a journal, the results of
Sections 1 and 2 were first obtained in [18] and [19], respectively. The results of Section

2 were announced in [17, 18] and communicated at the Sixth International Conference
on Nonlinear Hyperbolic Problems in Hong Kong, June 1996,
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