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Abstract We describe some recent results on solutions of the static, stationary,
spherically symmetric solutions of the SU(z) Einstein-Yang/Mills equations. The main
result is that any solution which is defined in the far field and has finite (ADM) mass,
15 defined for all ¢ > 0.
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1.  In this paper we describe some recent results on spherically symmetric black
hole solutions of the SU(2) Einstein-Yang/Mills (EYM) equations; such solutions are
called “colored black holes.” Our main result is that given any solution to the EYM
equations which is defined in the far field (r > 1) and has finite (ADM) mass, is
defined for all > 0; see [1]. Since we know (see [2, 3, 4]) that given any event horizon,
there are an infinite number of black-hole solutions having event horizon p, our result
implies that all of these solutions can be continued back to zero. In particular this gives
information as to the behavior of the gravitational field and the Yang-Mills field, inside
a black hole, a subject of recent interest; [3, 6].

Our main result is surprising since, generally speaking, for nonlinear equations, exis-
terice theorems are only local, with perhaps global existence only for special parameter
values. However for the EYM equations we prove global existence for any solution
which is defined in a neighborhood of infinity. This result is not true in the “other
direction” ; namely if a solution is defined near r = 0, with particle-like boundary con-
ditions (see [7]), a singularity can develop at some ¥ > 0, and the solution cannot be
extended beyond r = 7 (see [8, Thm. 4.1]).
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2. The coupled EYM equations in 3 + 1 space time with gauge group @, can be
written in the form [1-20]

1 . e
Rfj—-z-ﬂy{j=::rﬂj, d'Fy =0, 4,7=0,1,2,3 (1)
: 1
Here R;; — §Rg,-j is the Einstein tensor computed with respect to the (unknown) metric
9i; and Tj; is the stress-energy tensor associated to the g-valued Yang/Mills curvature
2-form Fy; where g is the Lie algebra of . If ¢ = SU(2), and we seck static, spherically

symmetric solutions (solutions depending only on r), then we may write the metric as
ds® = —AC2dt® + A~ Vdr? + r*(d6? + sin? Bdp?) (2)

and the YM eurvature 2-form as [7],
F o= w'ridr Adf + w'rodr A (sin 0de) — (1 — w?)rsd@ A (sin 8dg) (3]

Here (A, C), and w denote the unknown metric and connection coefficients respectively,
and 71, 72 and 5 form a basis (the Paul matrices) for the Lie algebra su(2). As has been
discussed elsewhere, (ef. [1 -20]), it follows from (1)~(3), that the spherically symmetric
SU(2) EYM equations are

1 — )2
rA + (1 + 2w =1— [——;;”—J' (4)
s
redY [r{l ~ 4) - {_'})_ w +w(l —w?) =0 (5)
and o -
2
G (%)

Notice that (4) and (5) don’t involve ', so the major part of our effort is to solve (4)
and (5).

A (colored) black-hole solution of (5)-(6) having event horizon p > 0 is a solution
defined for all r > p and satisfying

Alp)=0, A(r)>0 ifr>p (7)
r!ipn.:}c.“l:ﬂ lingﬂfr‘(l —A(r))=F < oo (&)

and
lim (w?(r), /(7)) = (1,0) )

These conditions imply that the metric is asymptotically flat and has finite (ADM)
mass i, and that the YM field is well-behaved.,
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In considering black-hole solutions, we see that the equations are singular at r = p
in the sense that A{p) = 0. To overcome this difficulty, the data (w(p),w'(p)) must
lie on a curve C(p) in the w — w' plane ([2]). The main result in [2] is that for every
p > 0, there is a sequence of initial values {(y,,Gn) : n € E.} C C{p), for which the
corresponding solutions (An(r), wn(ra), wi(r)) of (4), (5) satisfy (7}-(9). If 8.(r) is
defined by

On(r) = TanT* (wp(r) /wa(r)), == < 6alr) <0

2
and the rotation number 1, is given by
| ey
Q= —= lim [6.(r) = 6a(p)]

then for each n, £2;, = n. That is, for each value of the event horizon p > 0, there is a
countable number of black hole sclutions having event horizon p.

3. Defining p(r) = r(1 — A(r)), we have A(r) =1 — #ir) and p(r) is called the
mass function. The total mass @ defined in (8), (that is, the A.E}M mass), is an invariant

quantity, and thus has physical significance. We now consider solutions of the EY M
equations satisfying the following minimal physical hypotheses:

15> A(r)>0 ifr>1 (10)
and
lim p(r) =F < oo (11)

Note that (10) implies p(r) > 0 in the far field (r = 1), and (11) implies that the
solution has finite total mass.

For such solutions defined in the far field, we let r decrease, and ask what can the
solution do? There are two possibilities:

(i) Alr) < 1forallr, or

(ii) Alg) = 1 for some o > 0. ;
In case (i), if we come back to r = 0, with A(r) > 0 for all r > 0, then ([9]), it
must be that A(0) = 1, w*{0) = 1, and w'(0) = 0; such solutions are called particle-
like solutions, see [9]. If on the other hand we come back to some (first) p > 0 where
A(p) =0, it was shown in [2], that this implies that the solution is a black-hole solution;
Le. (w(p),w'(p)) € Clp).

In case (ii), we call such a solution Reissner-Nordstrom-Like (RNL). In this case
the solution is defined for all » > 0 and satisfies

lim(A(r), w(r), w'(r)) = (c0,w,0) (12)
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for some @, and r*A(r) is analytic at r = (. In [10] we prove the existence of infinitely-
many RNL solutions satisfying A(e) = 1, (w(o),w'()) arbitrary, if & > % These
solutions satisfy (8) and (9), and have finite rotation numbers. If w(0) = 0, then near
v =0, we can write

wir] = Grd + O(rY)

so B(r) = D(%), and hence rllﬁ. gir] = :I:g (mod 2ar). These solutions thus have half-
integral rotation numbers.

For our RNL solutions, we prove that alr) > 0ifr > o, A'r) < 0ifr < o,
so that A is singular only at r = 0. We prove also that r = () is a non-remeovahble
singularity since the curvature invariant & — Bijke RY* satisfies ® > const. /%, But
this singularity is not inside a black hole; i.e. it is not “hidden”, but rather, r = 0 is a
“naked” singularity. '

4.  Physically relevant solutions should satisfy this minimal hypothesis:

(H) For r 3 1, A(r) > 0 and ,Enén”{ﬂ <00
For such solution, set -

p=inf{r: A(s) >0 if s>r >0}

then p = 0, and if p = 0, the solution is 3 particle-like solution, while if p > 0, it is a
black hole solution. We call a solution regular if it satisfies (H) and 0 < A(r) < 1 for
all r > p. We then have the following theorem; see [10]:

Theorem A All regular solutions of the EYM equations are black-hole or particle-
like solutions, whose existence was demonstrated in the papers [2, 4, 8, 11].

Thus, there are no other physically relevant particle-like, or black hole solutions
different from the ones we previously obtained. Moreover, in [10], we showed the
following theorem which characterizes solutions satisfying (H):

Theorem B Any spherically symmetric SU(2) solution of the EVM equations,
which satisfles hypothesis (H) lies in one of the following sets:

(i) Regular solutions, 0 < A(r) <1 for allr > p;

~ (a) if p > 0, solution is a black-hole solution,

(b) if p=0, Slﬂfutfﬂﬂ 18 particle-like.

(ii) Reissner-Nordstrém-Like: Alo) =1 for some o > 0. All such solutions have
finite mass, and are asymptotically flat at infinity: (A(r),C(r)) = (1,1) as r — co.

‘This theorem characterizes all physically relevant solutions outside of a black hole.

Now we ask: what happens inside of a black-hole? To answer this, we ﬁrﬂt state the
following theorem:
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Theorem C (Smoller-Wasserman [1]): Let (A, w) be any solution of the SU(2)
radially symmetric EYM equations (4), (5), which is defined in the far field. Suppose
too that one of the following two conditions hold:

(i) dim plr) < oo (finite total mass), or eguivalently,

(ii) A(r1) > 0 for some r) > 1.

Then the solufion is defined for all r > (.

This result displays the rather amazing structure of the EYM equations; indeed,
these very complicated nonlinear equations have globally defined solutions provided
that the solution satisfies the minimal physical assumption of having finite total mass.

As a corollary of the last theorem, it follows that the black-hole solutions whose
existence was first proved in [2], are actually defined inside the event horizon all the
way up to r = (; namely, we have

Theorem D Let (A, w) be any black hole solution of equations (4), (5) having
event horizon p = 0, defined for all v > p, and satisfying (7)-(9). Then the solution is
defined for all v = (0.

5. We have also proved in [1] that for solutions having finite total mass, the
zeros of the metric function A are discrete, except possibly at r = 0. We conjecture
that r = 0 cannot be a limit point of zeros of 4, so that A has a finite number of zeros.
In [6], the authors numerically found a colored black hole having two zeros. It would
be interesting to give a rigorous proof of this result.

Using the methods in [2, 8, 11], we have proved the following theorem; see [1]

Theorem E  There is a continuous two parameler family of solutions (A 5(r),
Wag(r)) to the EYM eguations (4), (5), defined in the far field, which are analytic

1 T : : ;
functions of s = = That s, if ((A(r),w(r)) is a solution to the EYM equations

: 1
(4), (3), which is asymptotically flat, and is analylic in 3 = = then (A(r),w(r)) =
(Agp(r),wq glr)) for some pair of parameter values (o, 3).
In this theorem, one parameter is the (ADM) mass § and in fact A{s =0) = 1, and

g = —f1. The other parameter is o = 2 and w?(0) = 1.
Iiﬁ s=i d-ﬁ =0

It follows from the results in [8 or 2], that the (ADM) mass G is finite for any
solution which is defined in the far-field. Moreover, for such seolutions, rw'(s) — 0

2s = 00; ¢f. [2]. We do not know if lim = lim d‘”: exists. Thus we pose the
question as to whether every asymptotically flat solution to the EYM equations (4),
(5) is analytic in 5 = :'—_ at s =10.

If the answer is affirmative, as we suspect, then (as discussed in [1]), we may consider

the (c, 3)-plane as representing those solutions having the following asymptotic form
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near s = (:

A(s)=1- s + h.o.t.
w(s) =1 - as+ h.o.t.

and all such solutions are described by a point in the (ce, @)-plane (or in the plane

corresponding to w(s = 0) = —1), or they correspond to the one parameter family of

) . : 1
classical Reissner-Nordstrom solutions: A(r) =1 — Lo = wir) = 0.
T

In the (@, @) plane, certain regions are easily identifiable. Thus, if o < 0, or if
o > () and 8 < 0, these correspond to BNL-solutions. The line o = 0 corresponds to
Schwarzschild solutions of mass . Particle-like, and black-hole solutions must lie in
 the first quadrant, & > 0, 8 > 0. Presumably there are a countable number of distinct
curves lying in the first quadrant which are distinguished by the number of zeros of W,
parametrized by the event horizon p = 0: ;{p = 0 corresponds to particle-like solutions).
All other points in the first quadrant correspond to RNL solutions, as follows from our
above results, because any point in this plane represents a solution which is defined for
all r = 0.

Thus near nay given black-hole solution, there are zlobal solutions which are neither
black-hole solutions, or particle like solutions; they must therefore be RNL solutions.
It follows that for any such-global solution (A, w), either A4 has a zero, in which case
the corresponding point (e, 3) lies on one of the above-mentioned countable number
of curves, or it is one of the countable number of particle-like solutions, or it Is an
RNL-solution, [9, 10].

It follows that in any neighborhood of a black-hole solution (Ag(r), wo (7)), there
are RNL solutions. In particular, if 4g(r;) < 0, then arbitrarily close to this solution
there are solutions (A(r),w(r)) having A(r;) > 0. This is a spectacular example of
non-continuous dependence on initial conditions.
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