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Abstract Inthis paper we discuss the supersonic flow past a curved convex wedge.
Qur conclusion is that if the vertex angle of the wedge is less than a critical angle, the
shock attached the head of the wedge is weak, and if the wedge is formed by a smooth

convex curve, monotonically increasing, then the global solution of such a boundary
value problem exists.

Key Words  Global existence; supersonic flow; quasilinear hyperbolic system.
Classification 35LG0, 35L67, 35L50, T6N15.

1. Introduction

It is well known that when a supersonic flow hits a wedge with small vertex angle,
there will appear an oblique shock attached on the edge of the wedge. If the surface of
the wedge is a simnooth curved surface, then by its influence the shock front will also be
a curved surface. It is shown in [1] that if the wedge has constant section and the vertex
angle is less than a critical value, then the shock front and the flow behind the shock
can be determined locally. An interesting and important question is then whether we
can determine the flow with the shock front globally? When the surface of the wedge
is composed of two straight lines combined by a smooth curve, the global solution can
be obtained by constructing infinite reflection of rarefaction waves (See [2]). In this
paper we will use a different way to discuss such a prohleﬁl. Our conclusion is that if
the shock is weak, the vertex angle of the wedge is less than the critical angle, and if

the surface of the wedge is formed by a smooth convex curve, monotonically increasing,
then the global solution does exist.

* Project supported by National Natural Science Foundation and Doctoral Programme Foundation of
Institution High Education of China.
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2. Description of the Problem and Its Reduction

Let us first give a precise description of the problem. Assume that the wedge is
symmetric with respect to a centre plane, then we always consider the upper half of
the wedge. Assume also that the surface of the wedge has constant section on any
plane perpendicular to its edge, and the equation of the surface is y = f(z) satisfying
fi(z) > 0, f"(x) < 0. Besides, the flow is assumed to be isentropic and irrotational,
this assumption is acceptable if the possible shock is weak. In this case the system to
describe the flow can be written as

{ (u? — a%)u, +uv(uy +ve) + (v° - a?)u, =0 0

where a represents the sonic speed. These unknown functions also satisfy Bernoulli
relation

Loty 2 a’

E[u +v}+;_—1=cﬂn$ﬁ (2)
Ahead of the shock the flow is constant with its parameters u = uy, v = ¥g, p = gy,
satisfying up > ag, vo = 0. So the constant in (2) equals %ug + as

¥l :
Denote the location of the unknown sheck by v = s(x), we consider a boundary

value problem of (1) in the domain

R:2>0, f(z) <y <s(a) (3)

while its boundary is denoted by B : y = f(z)and S :y = g(z). And the boundary
conditions are

v=uf'(z) onB (4]

u+vs'(z) = ug, plus'(z) —v) = ppugs'(z) on § (5)

where the condition (5) is called Rankine-Hugoniot condition.
The system can be diagonalized by introducing Riemann invariants. Denote

uv =+ aviu? + ¢2 — g2

(6)

Ay =

which represents the characteristic directions of the system (1). Then by introducing
suitable integral factor k. we can define functions r and s by
{ ds = k_(du+ A_dv)

(7)
dr = ki (du—+ Agdu)
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That is ﬁ_h}t 3_5_0
Oz tay @)
e T

Here s and r are called Riemann invariants. Since any smooth function of s or smooth
function of 7 also satisfies the equation in (8) respectively, these functions are also called
Riemann invariants.

Regard u,v as independent variables, and z,y as unknown functions, then the
system is equivalent to

{ I:EE l ui}yﬂ + (s + o) + {{IE w UE]IM =0

(9)
Ly = Uy
Its characteristic directions are py = —(Az)™!. Let
g=(u*+ 1?2}”2, @ = arctan E,
then
—=-(\)7 &= T g (10)
Because
el =1
ds =du+ A_dv, ds=0+ 5 —(A=)".

Hence by letting

we have d(f — F(q)) = 0. Correspondingly, the equation of r in (8) is equivalent fo
d(f + F{q)) = 0. Therefore, we can simply take

g=0—-Fig), r=804 Flg) (11)

as Riemann invariants, where F(g) is a given monotonne increasing function of g.

The system (1) or (8) is strictly hyperbolic system with respect to  direction. Our
aim in this paper is to prove the existence of global solution of the boundary wvalue
problem (1), (4), (5). The result is

Theorem 1  For the boundary value problem deseribed as above, the C' smooth
solution of the problem (1), (4), (5) globally exists, provided f'(xq) is small, and f'(z) =
0, f'(z) <0 is satisfied for any = > 0.
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According to the local existence and uniqueness of C'! solution to the typical bound-
ary value problems (See [1]), the problem is solvable locally in = < zp with small g,
and then we may consider an initial boundary value problem in

s>z, fl@)<y<s(z) (12)

with boundary conditions (4), (5} and initial data given on Ty : z = xo, flzo) <
y < s{zp) instead. Since the data on & = zg are taken from the local solution to the
problem (1), (4), (5), the consistency conditions at the points (zg, f(zq)) and (T, s(z0))
are automatically satisfied. Still by using the local theory of boundary value problems
for quasilinear hyperbolic system we can extend the domain of existence of (1 solution,
and the crucial point to obtain a global solution is to establish a uniform estimates of
the solution and their derivatives of first order. This will be done in the following twa
sections.

3. Boundedness of Solution

Consider the boundary value problem (1), (4), ), (5) with initial data given on = = z
in £2;. If we prove that the solution can be extend to Ty < < g+ h with uniform
h independent of zj, then the theorem stated in previous section is obtained. To
simplify our discussion we assume that b is small such that through each point (z,y)
in the domain oy < z < zp+ A, f(z) <y < s(x), at least one of the two leftward
characteristics intersects with the initial line z = #p in the interval flzo) < v < s(xmg).

Lemma 1 If the problem (1), (4), (5) admits a C! solution (r, ) in the domain
To =T < xoth flz) <y < s(x), then the C° norm of r,s has an upper bound
ndependent of k.

Proof Assume that P(z,y) is an arbitrary point in the domain. Let us consider
three cases. First, assume that both A4 and A_ backward characteristic lines intersect
the initial line I'y : £ = zy. Denote the intersections by @+ and @_, then by the systexm
(8) we have

r(P) =r(@-), s(P)=s(Q4),
which implies
Ir(P),s(P)| < D max(|r(zo, y)|, |s(zo, y)|) (13)

In the second case, we assume that the A, characteristics intersects the surface of -
the wedge at ()1, and A_ characteristics intersects Iy at J_. By using the system
(8) we have s(P) = s5(Q,.). We know @ = arctan f'(x), because on the surface of the
wedge, the direction of the velocity is tangential to the surface. Then (u,v) is located
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in the domain 0 < @ < arctan f'(zq), @« < ¢ < go, where a, is the critical sonic speed
(See [3]). Correspondingly, s{(}4) is bounded uniformly. Combining it with the fact
r(P) = r(Q_), we have the uniform boundedness of r(FP) and s(P).

In the last case, we assume that the A_ characteristics intersects the shock front
at (J_, and Ay characteristics intersects I'y at (4. By the system (8) we have r(F) =
r(Q-) and s(P) = s(Qs). Since (u(Q-),v(Q-)) must located on the shock polar,
it is located in a fixed bounded domain on wu,v plane. Hence r(Q-) has its bound
independent of h. Combining the fact s(P) = s(Q4) we again obtain the uniform
boundedness of r{P) and s{F).

Next let us indicate the data on @ = xp are monotonne with respect to y.

Lemma 2  Assume that (r,5) is the local smooth solution of the problem (1), (4),
(5), xo is small, then ri(zo,y) = 0, sy(zo,y) = 0.

Proof The equation of shock polar on u, v plane is (See [4])

pu” + pgﬂ% — (o — po)uug + put =0 (14)

which can be written as G(u, v) = 0. Therefore, along the tangential direction £ of the

shock y = s(z) we have

Goy(urre + usse) + Gulvere +v582) =0

a .
Multiplying it by EE: Z]] , we obtaln
(GuSﬂ = GUS'LI}T-E = I:G”_Tﬂ — GL‘T‘HJSE - ﬂ {15}

Notice that two families of characteristics of the system (9) on u, v plane are epicy-
cloid defined outside the circle g = a.. The shock polar intersects epicycloid transver-
sally except at (ug,0). Moreover, if we take the direction of g-increasing as the direction
for each curves, then at any point satisfying a. < ¢ < gy the shock polar is in between
two epicycloids passing through this point (See [4]). Therefore, considering the co-
efficients in (15) are proportional to sine of the angle between corresponding curves:
G = const., s = const. and r = const., we know that (Gysy— Gysu) and (Gury — Gyta)
always take different sign. It certainly implies that k = refse < 0.

Denote a; = f'(0), as = $'(0), we have

a2 N lar = 0> N (16)
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Notice that (1,a;) is the tangential direction £y of the surface of the wedge at the origin,
and (1,az) is the tangential direction of the shock front at the origin, we can write four
equalities for the derivatives of r and s at the origin. That is

17
Tr 4 A_r, =0 sl
Sj: + "J"'F'Sll' — E:II
a ! =372
where d = —- = f"(z)(1 + f'(z))"¥2 < 0.
L
Direct calculation gives us
(=k(az = Ae)(ar = A2) + (A — a)(aa = A))ry = Ay —ag)d  (18)

in view of A_ < ay < ag < Ay, |k] < 1, we have
(A+ —ai){az — AL) > |k(az — Ay)(ay — A2)|

i
then — = (0.
oy~ 4
Furthermore, by using the first, second and fourth equalities in (17) we have

e d— (a1 — A_}ry, > 0
] — .:!'l._|.
Then by using the continuity we obtain the conclusion of the lemma.
: dA A
Lemma 3  For the functions A+(r,s) we have e > 0 and -{}— = | 8
g

Proof By using (11) we have

Alssis)in Sl B
ab.q)  \1 —F

Then

al:"}*—w ”E‘+;| A I:Aﬂ:il{":'"-—:*:"‘+} ! EEE:-';]

d(r,s) — 8(f,q) a(r,s)
4 5{.}&_, .-]'l._|_:| : (3{?",3]) =L

a(8,q)  \9(d,q)

1 1
RO (3’ B
SRR s

1
27 2F"
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Namely

A~ 18X % R e L e S (19)

T B T O e T TR SN R ) n T
Notice Ax = —(u5)~!, where g is the slope %E:- of characteristics of (9) on u, v plane,

T4
then A 18 T Sl
- i 2 12 _"[J
HOl T g2 aa(du) LY

Denote the angle in between the radius and the py characteristics by o, then tana =

de d
g— = qF"(g). On the other hand, tan (o + #) = 2% Hence
clqg cls
A P dex
ﬁ = EEEC [H_FE:I(ETI) > ()
by virtue of %% = (. 3 ;
Similarly, we have E—;— = -—}:q_- -Ev}— (.__) . Direct calculation implies
Tt +

d 5 ik d {QE it ﬂi}l,-’ﬂ
=P =+ )

a
T g g
=~ {I_gl:ﬂ':t?_ —a’) ]’u{ff — aay) — (q" — ﬂﬁj]ﬂﬂq}
il 1 £ =k
= E(T : aglq® — a?)~V2 4 {fza }ti'(q? 5 ﬂzjuz) -0
A
hence 2 > 0. And then o > 0 is obtained from (19).
g or
On the other hand, notice that p_ = (-E?E) is the slope of the characteristics
L
Ay A
f? = —F(g). Then by the same method we have i—g =0, ﬁd; < 0. Substituting it
into (19) we obtain % > (.
Lemma 4  If the problem (1), (4), (5) admits a C* solution (r,s) in the domain
To <z < xo+h, flz) £y < s(z), and r(zo,y), s(xo,y) are naﬂderzrmsmg functions

of y, then the C! norm of the solution is mriﬁ-:mﬂﬂdﬂnt aof h. Moreover, r ['x: y) = 0,
y{m,ﬂ ) = 0 holds for any = > xy.

Proof  We still consider three cases as we did in the proof of Lemma 1. First,
if two characteristics of (1) through P(z,y) intersect Iy, then the proof is the same

as that in corresponding theorem of Cauchy problem for quasilinear hyperbolic system
with one space variables in [5, 6].
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In the second case, the backward A, characteristics intersects the surface of the

wedge. By the method in [6], we know g—; and then % can be controlled by r}, (o, y),
: or ar
sy(o,y). Besides, — 3y 3“-“ (0, P —JL_E_— = EI'
From the ab::we fa::t and f'(z) > 0 we ha,w:
dr dr or
1 I lj'li 2y —1,/2 =
5t~ WA A R PRE o
In view of f"(z) < 0, we have
O 0050
¢y E"Fl

which implies ;T < (). Then notice that
1

E_ﬂs+aﬁ_{a A}E_S
94 Oz !31.'_ el dy

ds
we have — > 0 because a; < AL,

8y —
ds n :In:'i‘e
In order to estimate Eﬂy inside £2;, we introduce a function w = &M c.?_y1 where
flr, s) satisfies
QNS
or 7 .-:"._|_ - A Or
By differentiating the first equality of (8) with respect to 1, we obtain
35 8%s  OAyp Or Bz Ay [8s)\2
— 4+ A — -|—] =0
520y " oy T or oy oy 0 () o
From the definition of w we have
I'E}TI'.J hir S]( 323 dh dr 55 -f”l 35 IE'S)
— =" + — o
dx Oxdy Or Oz By 9s dz Oy
W _ prsy (s Ok Br 8s | Oh8s\°
e e i A a1 ==
dy dys  Or Sy Jy  ds \ Oy
by using (21) and the definition of h we can obtain
dw dwr Eik.l. hirs),, 2
= e 2%
% gt = 2 U (22)

Denote the A-characteristics through (3, f(8)) by y(z, 3), then it satisfies

{ —y{m ﬁ} A (r(z, y(z, B)), 1(6))

(23)
y(8,8) =
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where s1(f) is the value of s on the characteristic line. Correspondingly, the value of
w on the line 1s w(z, y(z, F)), which satisfies

d_ﬂ-? - _% —h(r,s), 2 ;
{ dz ~  8s 2 b (24)
w(B, f(B8)) = wo(B) 2 0
The solution of (24) is

w = il (25)

* 02t ~hirs)
1 ——g i
-.I—'z‘nufﬂ s e T

= 0 on B implies wg = 0, we have 0 < w < wyp from the expression (23)

1

and then Ei_s > () on the characteristics starting from (3, f(3)) is its direct conclusion.
Y

ds
Moreover, the C" norm of

dy
The last case 1s that the leftward A_-characteristics through P intersects the shock

front y = s(x). Obviously, through each point on the shock the Ap-characteristics
ds  ds

s i /
(and then E] can be controlled by (=0, ¥), sy(To,y).

intersects 'y, then the boundedness of 3 72 can be obtained as in Case 1. Moreover,
)
s :
we have — > 0 on 5.
Ay
d :
Mow the point is to prove that -{,]—T > () also holds on 5. Since
Y
ds  Os s O
Bl oz o
; 3] d d
by the equality (15) we have a—; > (. Therefore, EI. = (ag — .}L_J_l‘a‘g > (). The next
u
step 1s to prove % > 0 inside €, since the method is quite similar as we did in the
ds :
second case to discuss —, we omit it here.

dy

Proof of Theorem 1  Summarizing the above four lammas we can readily prove
Theorem 1 now. By using the theorem on existence of local solution to boundary value
problems of quasilinear hyperbolic system, we can find k > 0, such that C' solution
exists in 29 € # < zg + h. Since the C! norm of r, s is unifortnlly bounded, and their
monotomicity on xg = xp + h still holds according to Lemma 1, 4, the ﬂaﬁe method
can be applied when y is replaced by zy + k. Then the solution r, s can be extended

to whole €11, and the theorem on global existence in Sectiﬁ_n 2 is proved.
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