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EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A
CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY
PARABOLIC EQUATIONS

TONGJUN SUN, LIANG GE, AND WENBIN LIU

Abstract. In this paper, we study adaptive finite element approximation in the
backward Euler scheme for a constrained optimal control problem by parabolic e-
quations on multi-meshes. The control constraint is given in an integral sense:
K = {u(t) € L*(Q) : a < [qu(t) < b}. We derive equivalent a posteriori error
estimates with lower and upper bounds for both the state and the control approxi-
mation, which are used as indicators in adaptive multi-meshes finite element scheme.
The error estimates are then implemented and tested with promising numerical ex-

periments.
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1. Introduction

For the optimal control problems governed by linear elliptic or parabolic state equa-
tions, a priori error estimates of the finite element approximation were established long
ago, see [1, 2, 3, 4, 5]. In order to obtain a numerical solution of acceptable accuracy
for the optimal control problem, the finite element meshes have to be refined according
to a mesh refinement scheme. Adaptive finite element approximation uses a posteriori
indicators to guide the mesh refinement procedure. Only the area where the error indica-
tor is larger will be refined so that a higher density of nodes is distributed over the area
where the solution is difficult to be approximated. In this sense adaptive finite element
approximation relies very much on the error indicator used.

It has been recently found that suitable adaptive meshes can greatly reduce the control
approximation errors, see [6, 7, 8, 9, 10]. If the computational meshes are not properly
generated, then there may be large error around the singularities of the control, which
cannot be removed later on. Furthermore in a constrained control problem, the optimal
control and the state usually have very different regularities and their locations. This
indicates that the all-in-one mesh strategy may be inefficient. Adaptive multi-meshes,
that is, separate adaptive meshes which are adjusted according to different error indica-
tors, are often necessary, see [11]. Using different adaptive meshes for the control and the
state allows very coarse meshes to be used in solving the state and co-state equations.
Thus much computational work can be saved because one of the major computational
loads is to solve the state and co-state equations repeatedly. This can be clearly seen
from numerical experiments in [11] and our numerical tests in Section 4.
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Up to now, a posteriori error estimates have mainly been developed for elliptic control
problems particularly with point-wise type control constraints. The details can be found
in the book [12]. In a recent work [13], a posteriori error estimates were derived for the
constrained optimal control governed by an elliptic equation, where the control constraint
is given in an average sense: K = {[u > 0}. These estimates were held on different
multi-meshes for the control and the state.

Although there are so much progress for elliptic control problems, it is much more
complicated to study and implement adaptive multi-meshes computational schemes for
evolutional control problems. There are some papers on a posteriori error estimates for
optimal control problems governed by parabolic equations, e.g. [10, 11]. They mainly
used the well-known stability results of the dual equations [14] to derive a posteriori
error upper bounds, which were presented mainly in C(0,7’; L?(2))-norm. However, a
posteriori error lower bounds were not provided in these papers.

The purpose of this work is to derive equivalent a posteriori error estimates for the
following constrained parabolic optimal control problem:

1T
(1.1 womin 5 [y vl + Pl
subject to
oy )
5 div(Vy) = f+u, (z,t) € Qx(0,T],
(1.2) yloa =0, t€[0,7],

y(z,0) = yo(x), x €,

where: 2 is a bounded open set in R™ (n > 2) with the Lipschitz boundary 99, yo €
HYQ), f € L?(0,T; L*(Q)), U = L3*(Q), X = L?(0,T;U). Let K = {u(t) € L*(Q) :
a < fQ u(t) < b} be a closed convex set, where a and b are known constants. We
obtain a posteriori error estimates with lower and upper bounds and present numerical
experiments to confirm the effectiveness of the error estimates.

The plan of the paper is as follows. In Section 2, we will construct the multi-meshes
finite element approximation in the backward Euler scheme for (1.1)-(1.2). In Section
3, equivalent a posteriori error estimates are derived for both the state and the control
approximation. Our methods are very different from that of [10, 11]. For the reason
to derive the lower bounds, we do not use the stability results of the dual equations
and derive the error estimates mainly in L°°(0,7T; L?(2)) and L?(0,T; H*(2))-norm (see
Theorem 3.1). Finally numerical experiments are presented in Section 4. To our best
knowledge, this paper appears to be the first trial to consider this case in the literature.

In this paper we adopt the standard notation W™ 4(2) for Sobolev spaces on {2 with
norm || - |lym.a(q) and seminorm | - [ym.a(q). We set Wi™9(Q) = {w € W™(Q) : w|pn =
0}. We denote W2(Q) (Wg"*(2)) by H™(Q) (HZ*(€2)). In addition, ¢ or C' denotes a
general positive constant independent of h.

2. Finite element approximation

In the rest of the paper, we will take the state space W = L2(0,T;V) with V = H}(Q),
the control space X = L?(0,T;U) with U = L?().
Let

a(v,w):/(Vv)-Vw, YVo,weV; (u,v):/uv, YVu,veU.
Q Q
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It follows that
(2.1) cllol < alv,v), la(v,w)| < Cljv[illwlli, Vv, weV.

Then a weak formula of the convex optimal control problem (1.1)-(1.2) reads: find
y € H'(0,T; L*(2)) N W such that

. 1 T 2 2
By R (TRl e 2

(22) (OCP): (%WHG(%M):UJFUW)’ YweV, te (0,T],

y(x,0) = yo(x), z e Q.
It follows from [15] that the control problem (OCP) has a unique solution (y,u), and
that a pair (y,u) is the solution of (OCP) iff there is a co-state p € H(0,T; L?(2)) N W
such that the triplet (y, p,u) satisfies the following optimality conditions (OCP-OPT):

dy

(va)'i_a(va):(f_"uaw)a V’LUEV,
y(,0) = yo(z),
(2.3) (OCP — OPT) : —(%, w) +a(g,p) = (Y —¥a.q), Vq€eV,
p(va) = 07

T
/ (u+p,v—u)dt>0, Vo(t)eK, velX.
0

Let us consider the finite element approximation of the control problem (OCP). Let Q"
be a polygonal approximation to € with a boundary 0Q". For simplicity, we assume that
Q" = Q in this paper. Let T be a partitioning of Q" into disjoint regular n-simplices 7,
so that Q" = U,ern 7 - Each element 7 has at most one face on 00", and the adjoining
elements 7 and 7 have either only one common vertex or a whole edge or face if 7 and
7/ € TP, Let h, denote the maximum diameter of the element 7 in T".

Associated with T" is a finite dimensional subspace S of C(Q"), such that x|, are
polynomials of m-order (m > 1) for all y € S* and 7 € T". Let V" = {v;, € S" :
vplo = 0}, Wh = L2(0,T;V"). Tt is easy to see that V* c V, Wh c W.

Let Tﬁ be a partitioning of Q" into disjoint regular n-simplices 77, so that Q" =
UTU et 7u. Bach element 7y has at most one face on 90", and the adjoining elements
Ty and 7{; have either only one common vertex or a whole edge or face if 7y and 7/, € Tg.
Let h;, denote the maximum diameter of the element 7 in Tg.

Associated with T} is another finite dimensional subspace U" of L*(Q"), such that
X|ry are polynomials of m-order (m = 0 or 1) for all y € U" and 7 € Tl’}. An optimal
control of a constrained problem normally has lower regularity so that we shall use
discontinuous base functions to approximate the control. Hence there is no requirement
for continuity of the functions in U”". Let X" = L2(0,T;U"). It is easy to see that
Xhc X.

Let

(2.4) K'={up(t) eU": a < / up(t) < b}.
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Then a possible semi-discrete finite element approximation of (OCP) is as follows:
(2.5)

. 1"

uhGXhHE}n(t)GKh 5/0 {Hyh B de%Q(Q) + ||Uh||%2(9)}dt7

(ocp)t . (6yh
ot’

yn(z,0) = yg(:t), x e,

wr) + a(yn, wn) = (f +up,wp), Ywp € Vhote (0,77,

where y, € H(0,T;V"), K" is a closed convex set in U", and yl(x) € V" is an
approximation of yo(z).
Let y and yp, be the solutions of (2.2 ) and (2.5) respectively. Let

1 1 1 1
=3 [ +5 [ m =3 [ vy [
2 Ja 2 Ja 2 Jan 2 Jan
Then the reduced problems of (2.2) and (2.5) read

min {/ w)dt} and {/ Jn(up)dt},

uweX,u(t)eK up € Xh uh t)EKh

respectively.

Since (2.2) is a linear control problem, the reduced objective functions are convex.
Furthermore, we assume that J(-) is uniformly convex in the sense that there is a ¢ > 0,
independent of h, such that

T
(2.6) / (' () = (), 0 — ) dt > el — |0 1000

where u,v € X.

It follows that the control problem (OCP)" has a unique solution (yp,, uy,) and that a
pair (yn,un) € VP x UM is the solution of (OCP)" iff there is a co-state p,, € V" such
that the triplet (yn, pn,un) satisfies the following optimality conditions:

Oyn,

(815 wy) + a(yn, wn) = (f +un,wp), Yw, € V",

yn(z,0) = yf(z), =€,

_ h. Opn
(2.7) (0CP —OPT)": (8t wy) + a(gn, pr) = (Yn — Ya,qn), Yan € V",

pr(z,T) =0, x €,

fOT(uh —|—ph,vh—uh)dt20, V’UhGKh.

We now consider the fully discrete approximation for above semi-discrete problem by
using the backward Euler scheme in time ([10, 11]).

Let0=to <ty < ---<ty=T,k;=t;—ti—1,i=1,2,--- N, k= maxie[l)N]{ki}. For
i=1,2,---, N, construct the finite element spaces V* C H}(Q) (similar as V") with the
mesh T/*. Similarly, construct the finite element spaces U/* C L?() (similar as U") with
the mesh (T}%);. Let h,: (hr; ) denote the maximum diameter of the element (1) in
TH(TE);). Define mesh functions 7(-), 7i7(+) and mesh size functions h,(-), hr, (-) such
that T(t)|t€(ti—1;ti] = TZ7TU(t)|tE(ti—17ti] = Tll]’ hT(t)|te(ti—1)ti] = hTi?h’TU (t)|t€(ti—1;ti] =
h.i . For ease of exposition, we shall denote 7(t), 7v(t), h-(t) and h, (t) by 7,70, h; and
h,, respectively. Let K C U N K. The fully discrete approximation scheme (OCP)"*
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is to find (yi,ul) € V" x K, i=1,2,--- N, such that

(2.8)
1 . _
}Téi;;hy 3 > ki{Hy;I —Yall 72 + luillia@) }7
hk | Up i_ i:.l_
(OCP)™ Yn — yZ ' i _ i h
(7awh) + a(yhvwh) - (f(xvtl) + uhawh)v Vowp € Vz )

ki
yh =y (x), =e

It follows that the control problem (OCP)" has a unique solution (Y},Uj),i =
1,2,---, N, and that a pair (Yhi,U,i) S Vih X Kih,i =1,2,---, N, is the solution of
(OCP)" iff there is a co-state P,i_l € VP i = 1,2,--- N, such that the triplet
(Y,f, P,ifl, U}I) € Vih X Vz}ll X Kih,i =1,2,---, N, satisfies the following optimality con-
ditions: (OCP — OPT)"*

(2.9) |

Yh:i_YfZ71 i % h .

(Tawh)—’—a/(yhawh):(f(‘ruti)'i_Uhawh)u V’LUhEV; 3 121,"' 7N7
VP =yb(z), zeqQ,

Pi—l_P’i o . )

(%7wh)+a’(qhvp}i I)Z(le_ydvqh)a the‘/i}ilv Z:Na"' 517
PéV:O, x €€,

(Ui + P o, —Uj) >0, Yo, € KP,i=1,2,--- N.

Fori=1,2,--- N, let

Yh|(ti717ti] = (ti - t)Yhiil + (t - tifl)Yhf /kla
Pty = ((ti = )P+ (t = tim1) Py ) /i,
Uh|(ti71;ti] = U;;/

For any function w € C(0,T; L3()), let O, t)|ee(tir by = w(,t0), 0@, ) lee(ts vt =

i

w(x,t;—1). Then the optimality conditions (2.9) can be restated as
oY},

(W;wh)‘Fa(Yh,’LUh> =(f+Unwp), Yo, eV} i=1,--- N,
Yi(2,0) =y (z), =€,
(2.10) —(%,wh) +algn, Pr) = (Vi —yasqn), Yan €V, i=N,--- 1,
Pp(z,T)=0, x€Q,
(Up + Py,on —Up) >0, U,eK! Yo, €Kl i=1,2,---,N.

The variational inequality in (2.10) can be easily solved numerically as follows:

Lemma 2.1. Let (Y, P, Up) be the solutions of (2.10). Then the solution of the vari-
ational inequality in (2.10) is

(2.11) Uy, = Up(—= Py + max{ P, + @ min{P, + b,0}}),

5=

v
1

where T is the integral average value of v on the element T such that v|, = T
is the L? — projection from L*(Q) to U".

and 11,
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Proof. (I) Since IIj, is the L% — projection from L?() to U", we have
(2.12) /(Hhv —v)p=0, YVopeU" veK.
Q
It follows from (2.12) that [,,(IIyv — v) = 0, which infers a < [, IIyv < b. Thus, we see

IIyv € K"
We know that

a, if — P, <a,
(2.13) / (—Ph + max{P, + a, min{P, + b, o}}) =<0 = JoPu if a<—P,<b,
Q
ba lf l_) S _?hv

which shows that — Py, + max{P, + @ min{P, + b,0}} € K C L?(2). Thus, U, defined
by (2.11) is in K".
(II) Since V¢ e U
/ (Hh(—Ph—i—max{?h—i—d, min{P,+b, 0} })— (—Py+max{ P, +a, min{ P, +b, O}}))¢ =0,
Q
we have V v, € K",

(2.14) /Q(Uh + Py (v, — Up) = /Q(maX{P_h + @, min{P, + b,0}})(vn — Up).

Further, we can discuss (2.14) as follows:
Case (i): If —P, < a, then since

/Uh :/(—Ph—i—maX{P_h—i-EL,min{P_h—l—l_),O}}) =a,
Q Q
and fQ v, > a, we have

(2.15) /Q(Uh + Pu) (v — Un) = /Q(Fﬁ a)(vn — Un) = 0.
Case (ii): If a < —P, < b, then
(2.16) /Q(Uh + Pa)(vn — Un) = 0.
Case (iii): If b < — P, then since
/QUh - /Q(—ph+max{ﬁh+a,mm{?h+5,0}}) — b,

and [, vn < b, we have

(2.17) /Q(Uh + Py)(vn — Up) = /Q(EJr b)(v, — Un) > 0.

Thus, U, defined by (2.11) is the solution of the variational inequality in (2.10). The
proof of Lemma 2.1 is completed. O
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3. Equivalent a posteriori error estimates

Now, we turn to deriving equivalent a posteriori error estimates for finite element
approximation (2.10) allowing different meshes to be used for the state and the control.
In order to derive a posteriori error estimates of residual type, we need the following
important lemmas:

Lemma 3.1. Let 7, be the average interpolation operator defined in [16]. For m = 0
orl,1<qg<ooandVveWhi(Q),

(3.1) v — 7Th’U|Wm,q(T) < Z Chi7m|v|w1,q(7/).
TIOTHD

Lemma 3.2. [17] For all v e Wh4(Q), 1 < g < oo,

_1 1—1
(3:2) [v]lwo.aar) < C(hr Hollwoacry + he |U|W11q(7)).
3.1. Upper bound estimates. Define J(-) and Jx(-) as before. It can be shown that
T T
/ (J'(u),v)dt = / (u+ p,v) dt,
0 0
T T
/ (J;I(Uh),’v)dtZ/ (U, + Py, v)dt,
0 0

T T
/(J’(Uh),v)dt:/ (Un + p(Un), v) dt,
0 0

where p(Up) € V is the solution of the following auxiliary equation:

(P ) - aly(U)w) = (7 +Unw), Y we V= HYQ)
y(Un)(z,0) = yo(), z €4,
33 Ip(Un)
—(= ) +ala.pUh) = Y(Un) —ya,q), VgV =Hy(Q),
p(Up)(z,T) =0, x €.

The following lemma is the first step to derive our a posteriori error estimates.

Lemma 3.3. Let (y,p,u) and (Yy, Py, Uy) be the solutions of (2.3) and (2.10), respec-
tively. Then,

(3.4) [ = wnllF20.7:0200)) < C{mt + [1Pw = PU 720, 7502(0)) }

where p(Uy) is the solution of equation (3.3), and

N t;
77% = Z/ Z/ (Ph — HhPh)2 dt.
j=1 b U

tic1 7y
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Proof. (I). It follows from (2.6) that

T T
el =Ulbsomsoy < | (.u=Unat = [ (7(0)u =i

T
< —/0 (J'(Un),u — Un)dt
T T
/ (J;Q(Uh),Uh—u)df-i-/ (J;;(Uh)—J/(Uh),u—Uh)dt
0 0

T T
= inf / (J;I(Uh),vh —’U,)dt—I—/ (J]II(U}I) —J'(Uh),u— Uh)dt.
’Uh(t)eKh 0 0

(I). Note that

T T
(3.6) /0 (J};(Uh)avh_u)dt:‘/o (Uh+Ph,Uh—u)dt.

By Lemma 2.1 and taking v, = II,u € U" in (3.6), we know
T
/ (U, + Py, pu — u)dt
0

T
(3.7) = /0 Z/ (=pPn + Pr)(Ip(u — Up) — (u—Up)) dt

T
< C(é)/o Z/ (I Py + Py)* dt + 6|ju — UhH%2(O,T;L2(Q))'
TU U

From (3.5), (3.6) and (3.7), we obtain
(3.8)

N ti
cllu = Unll320.7,02(0)) < C(6) Z/ Z/ (P — T, Py)? dt + 6l|u = Unl|Z 20,72 ()
i=1 7t ™

ti—1 TU

T
+/ (Jh(Un) = J'(Un),u — Uy) dt.
0

By the formulas of J’ and J;, it follows that

T T
/ (J;,(Up) = J' (Up),u — Up)dt = / (P, — p(Up),u — Uy,) dt
(3.9) 0 0

1 )
< Q—HPh — PUIZ20,7:0202)) + §||Uh — ullZ2 0,7 12(0))-

Therefore, (3.4) follows from (3.8) and (3.9) by setting § = g in the above inequalities.
O

Using Lemma 3.3, we then can derive upper error bounds as stated in the following
lemma. The detailed proof is rather long, so we only state the main parts that are
different from those in [10, 11].

Lemma 3.4. Let (y,p,u) and (Yn, Pr,Up) be the solutions of (2.8) and (2.10), respec-
tively. Let y(Up) and p(Up) be the solutions of the auxiliary equation (3.3). Suppose all
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the conditions in Lemma 3.8 are valid. Then,

(3.10)
1Y — y(Uh)||2L°°(O,T;L2(Q)) +[Yn - y(Uh)H%%o,T;Hl(Q)) +10:(Yn — y(Uh))”QL?(O,T;H*l(Q))

1Py = U2 0,7 22(0) + 1P = U7 20,7580 ) + 106(Pr = U200 7,51 (52
7

<Cym
1=2

where

N ~

= Z Z / (Vi — ya + 0Py + AP,)° Z/hl[vph : n]z),

TeTh 1l

k i— T
§|P ! Phﬁa

S
Il
Mzu

2 _ 2 _ V. . )2
m_47 z:/h(ﬁﬂh DYy + AY;)? }:men ),

i=1 TETh l
2
s = ||f f||L2(o,T;L2(Q))7

k i i—
ng:Z§|Yh_Yh 1%5

=1
77? = [|Yp(2,0) — yO(I)H%ﬁ(Q)a

where | is a face of an element T, hy is the mazimum diameter of I, [V Py, -n] and [VY}, -n]
are the normal derivative jumps over the interior face l, defined by

[Vph ~n]l = (Vphh|,,.ll — Vph|,,.lz) n

(VY 0] = (VY| = VVil2) - m,
where n is the unit normal vector on | = 7} N7 outwards 7. For later convenience, we
define [VPh n|; =0 and [VYh n); =0 when | C 0. Let O denote 2 50
Proof. Let m, be the average interpolation operator defined as in Lemma 3.1 and
< R(Un),v >= =(0:(p(Un) — Pr),v) + a(p(Un) — Pp,v).
Then it follows from (2.10) and (3.3) that
—(0u(p(Un) = Pn),v) + (V(p(Un) = Pr), Vv)

—(0:(p(Un) = Pn),v = mnv) + (V(p(Un) = Pr), V(v — o))

—(0:(p(Un) — Pn), mnv) + (V(p(Un) — Pp), Vo)

(3.11) = Z/Yh_yd+atph v — ThY) Z /VPhV v — THY)

TeTh TETh
+(y(Ur) — Yi, v) + (V(Ph — P), Vo)

Z/ (Yi — ya + OuPn + AP) +Zhl/vph n]) [lvlx

TET
( (Uh)—Yh, ) (V(Ph—Ph),Vv).

I A
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Taking v =p(Up) — Py in (3.11), we obtain

_55 i) - Pullia) + IP(Un) = Palin @)

<(X [ #h -+ an+aB) +Zhl/VPh ) Ip() - Pl

TETh
+ly(Un) = Yall 2 llp(Un) = Pallz2co) + IV (Ph = Pu)ll 2@ IV (0(Un) — Pa)lz2(0)-

Then integrating time from 0 to 7" and by Schwarz’s inequality, we have

1(Un) = Pull 7 (0.7:12(2)) + 1P(UR) = PullZ2(0 7,11 (2

N
(3.12) <3 ([ 120h —var 0P+ AP +Zhl/lvﬁh-n]2)

I (UR) = Vil o120 + / Py — Puf2dt.

Since we know that

_ t—tiq, . ;
Pp — Py = o (P =P,
then we have
T N oo .
(3.13) /0 [P = Puffdt =3 S|Pt = PR
1=1

Further, from (3.11) and (3.13) we know

10:(p(Un) = Pu)ll 20,111 ()

_ D (C < RO > +ah) = P o)t

vEL2(0,T;HA(Q)) HU||L2(0,T;H5(Q))

N
Z (/ Yh—yd+8tPh+APh —I—Zhl/Vﬁh-n]Q)
Py 1

(3.14)

+ly(Un) — YhHL2 0,T;L2 sz))"'z Pt - Pl

Combining (3.12) with (3.14), we derive
(3.15)

[p(Un) — Ph”%m(O,T;L?(Q)) + lp(Un) — PhH%Q(O,T;Hl(Q)) + [10:(p(Un) — Ph)”%P(O,T;H*l(Q))

N
Z (/ Yh—yd+8tPh+APh +th/V15h-n]2)
Pl !

N
+ly(Un) = YallZ2(0,7;12 Q))+Z I A

Similarly analyzing for ||y(Un) — Yal||z2(0,7:22(0)), We let
< QUn),v>= =(0:(y(Un) = Ya),v) + aly(Un) = Yn,v).
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We see that
—(0(y(Un) — Yp),v) + (V(y(Un) — Ya), Vo)

(3.16) Z /h2 f+Uh—8tYh+AYh —I—Z/hl VYh ||1)H1

TETh
+H(f = fo0) = (VY = Vi), V)

Then taking v = y(Up) — Y, and deducing similarly as (3.15), we have
(3.17)

ly(Un) — YhH%w(o,T;N(Q)) + ly(Un) — YhH%%O,T;Hl(Q)) + 10:(y(Un) — Yh)HQL?(O,T;H*l(Q))

N
SZ (/h2 f—i—Uh—atYh-f—AYh +Zhl/VYh n) )
+f = fHL2 0.1;02() T Z Yy = YR A+ (YA, 0) — yo(@)[172(q)-
Now by (3.15) and (3.17), we can prove Lemma 3.4. O

Using Lemmas 3.3 and 3.4, we can obtain a posteriori upper bounds as follows.

Theorem 3.1. Let (y,p,u) and (Yn, Pn,Up) be the solutions of (2.3) and (2.10), re-
spectively. Suppose all the conditions in Lemmas 3.3 and 3.4 are valid. Then,

flu— Uh”%2(0,T;L2(Q)) +lly — Yh”%w(o,T;Lz(Q)) + lly - Yh”%%o,T;Hl(Q))

+[|0:(y — Yh)”%%o,T;H*l(Q)) +llp - PhH%oo(o,T;Lz(sz))

3.18
( ) +lp— PhH%Q(O,T;Hl(Q)) + |9e(p — Ph)”%?(o,T;Hfl(sz))

where 11 s defined in Lemma 3.3, n;, i = 2,--- ,7 are defined in Lemma 3.4.
Proof. It follows from Lemmas 3.3 and 3.4 that

l|u— Uh”%ﬁ(o,T;L?(Q)) < C{nf + th _p(Uh)”%ﬁ(O,T;L?(Q))}

(3.19) < Cni +C||Py — Pull720.7:22(0)) + ClPo — (U220 7:12(02))

7
< Cni + CllPh = Pullfao.02()) + C D702
i=1
By Poincaré’s inequality and (3.13), it follows
(3.20) 1Ph = PullZ20.1:22(0)) < CIV(Pr = Pu)ll72(0.1:02(0y) < 13-
Combining (3.19) with (3.20), we see that

7
(3.21) l|u— Uh”%?(o,T;L?(Q)) < CZW?-

i=1



12 T.J. SUN, L. GE, AND W.B. LIU

Note that
(3.22)

1y = Yull7 e o,m:22(0)) + 1Y = YallZzo,r5m1 () + 196w = Y Z 207,11 0
<lly- y(Uh)”%m(O,T;L?(Q)) +ly — y(Uh)H%?(O,T;Hl(Q)) + [0y — y(Uh))H%?(O,T;H*l(Q))

HIYn = y(Un)F 0,220 T 1Y = 9O 20,70 0 + 10:(YVa = (U220 7,51 2y

and
(3.23)

|y — y(Uh)”%m(O,T;L?(Q)) +lly — y(Uh)H%?(O,T;Hl(Q)) + [0uy — y(Uh))||2L2(O,T;H*1(Q))

< Cllu = UnllZ2 0,22 (0))-

The similar results can be derived for p — P, and p — P(Uy) as (3.22) and (3.23).
Then by (3.21), (3.22)-(3.23) and Lemma 3.4, we get
(3.24)

ly — YhH%oo(o,T;U(Q)) +ly - YhH%Q(O,T;Hl(Q)) + 10e(y — Yh)”%%o,T;H*l(Q))

+llp = PullT oo 0.1:2200) + 112 = PullZ2 0,11 0)) + 1060 = Pu)ll 720,010

7 7
< CZ’Y? +Cllu — Uh”%?(o,T;U(Q)) < CZ’Y%-
i=1 =1

Therefore, (3.18) follows from (3.21) and (3.24). O

3.1. Lower bound estimates. Now we are in the position of deriving a posteriori
lower bounds. We will use some lemmas. First, we give the following lemma using the
standard bubble function technique in [18, 19, 20].

Lemma 3.5. Let (y,p,u) and (Y, Pn,Uy) be the solutions of (2.8) and (2.10), respec-
tively. Then,

B o
kiﬁfi+§|yﬁ—yﬁ H

< ClO{Hf - f”%?(ti,l,ti;Hfl(Q)) + |lu— Uh”QL?(ti,l,ti;L?(Q))

(3.25)
+ly - YhH%?(ti,l,ti;Hl(Q)) +10:(y — Yh)||%2(ti—1;ti§H71(Q))
“ N = — 2
+k; Z /hi(f+Uh—atYh+AYh—f+Uh—5tYh+AYh) }
reTh VT
where

i = Z /hz(f‘f‘Uh—5tYh+AYh)2+Z/lhz[VYh-n]2.
1

rerh VT

Proof. (I). Since we know that

ki ; i— ti »
SV = [ WY,

ti—1
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and
(8t(y - Yh)vv) + (V(y - Yh)a V’U)
= (f +u,v) — (0 Yn,v) — (V(Yy — Y3), Vo) — (VYh, Vo),

we obtain

/ti (V(Y3, — Y3), Vo)dt

ti—1

= / i ((f + u,v) — (8, Yn,v) — (VY3, Vo) — (9,(y — Y3),v) — (V(y — Yh),Vv))dt

ti—1

_/ti ((f+u—(f+Uh),v)+ S [ (f+Un— Y + AY3) (v — mp)

ti—1 reTh T

=3 190 e = me) = (@uly - Yi. ) ~ (Tl = Yi), Vo))
1 l
< (”f - f||L2(ti—1;ti;H71(Q)) + Hu - UhHL2(ti717ti§L2(Q))

—I—k?( Z /hz(f-l-Uh — Yy, + AY)? +;/lhl[vyh '"]2)%

reTh VT
Y = Yallpo eyt () + 10:(y — Yh)||L2<ti71,ti;Hfl<sz>>) IVOll L2,y 002 0))-

Taking v = Y, — Y5 in the above inequality, we have
(3.26)

ki i i— 7
§|Yh -y < O(Hf - fH%?(ti,l,ti;H*l(Q)) + flu — Uh||%2(ti,1,ti;L2(Q))

+ki7ﬁi +lly — Yh”%2(ti,1,ti;H1(Q)) + [0 (y — Yh)”%?(ti,l,ti;H*(Q)))'

(IT). Then, we take three steps to analyze the term k;n?,.
Step 1: the bubble functions. Let
R, = f+U, - 8,Ys + AYy, R, = [VYy - nl.

And denote by ¢, and ¢; the corresponding bubble functions which are the scaled product
of the barycentric co-ordinates of the vertices of 7 and [, respectively. We denote for any
edge ! the union of the elements sharing [ by w;. We then have

sup ¢ C T, sup ¢; C wy.

Letting R, = f} er, then using the standard bubble function technique ([18, 19, 20]),

it can be proved that there exist polynomials w, € H}(r) and w; € Hg(w;) such that

(3.27) / R2(f +Up — 8,Yy + AY;)? = / R2(f + Up — 0,Y3 + AY3)w,,

T

(3.28) /lhl VY, -n)? = /lhl[VYh - n)wy,
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where w, = C1R+¢, and w; = CoR;¢;. And from the standard scaling technique, we
have:

||V( 7—¢7—)||0 r < C3h 1||R ”0 T

(3.29) IV (Ridt)llowr < Caly * [ Rillo.1,
< Csh?
The constants Cq,--- ,(C5 depend on the maximal polynomial degree of the finite ele-

ment functions; the constants Cs, Cy, Cs in addition depend on the maximal ratio of the
diameter of any element to the diameter of its largest inscribed ball.
We now set

(3.30) wn =8> hR:é,—v > R,
TETh l€Ep
with parameters § > 0 and v > 0 to be determined later. We have
(3.31)
walf = IV(8 Y h2Re6r =7 Y mRid)llg
TETh leéy
— 1 —
< B2 Y WOHIRAG - +26vCsCa Y { Y hehil|Rello<l|Rallo,i}
TeTh TETh LwNT#Y
11
+72 Z{ Z Ci L hp }
€€y l"wl/ﬁwﬁéz
< C'max{f% ~v?*} max{CZ,C3} Z /h2R2 + Z /thl

TeTh

< Cmax{f?%,~y }max{Cg,C2}(n4z+ Z /h2 R, — R;) )
TETh
Step 2: the estimate of 1)2,. Let < R;,(Y2),wn, >= > (BRr,wn)r— > (Ri,wn).
TETh leéy
Since we know h; < Ch, for all edges [ of any element 7, then we have

(3.32)
< Ru(Yn),wn >= Y (Reywn)r — Y (Ri,wn);

TeTh l€EEn
=8> B2(Rr¢-Re)r+7 > (RudiR)i—7 Y. > (R ¢iRi),
TeTh leéy l€Ep T3 TNW AP
_ 1 _
>8> R2IRAG , + v D> IR =D { Y. CheCshi|Rello,~l|Rillo.:}
TeTh leéy l€Ey T;TNWI#LD
_ 1 1 _
>8> BRAG,+ D mllRlE, — Z{§hl|\RlH3,z +5 >, ChICEIR.S .}
TETh leép le &y, T TNW #D
Y = v
> (8- 502052) > BRIRAG . + 5 > R -
TETh leéy
Then letting v = 2 and 8 = C2C2 + 1, we have
(3.33) > BIRAG  + Yl Rillf,; << Ra(Ya), wn >

TET leep
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Then
(3.34)
2 = Z/fﬂ RT+RT>2+Z/mR%
reTh VT l l
siﬁwww+2wmm+z/ﬁR—R
TETh leéy, TeTh

<< Rn(Ya) wn>+2/h2 (R, — R,
TETh

- Z(RT,MH)T—Z Ry, wn)i + Z (Ry — Ryywy)r + Z/h2 (R, — R,

TETh legn TETh TETh

Since we know that for Vv € H}(Q)

Z/ f—i—Uh—atth—/VYh Vo= Y (Ryv)r =Y (R,v)

TETh TeTh l€En
and w,, € HZ (), then
(3.35)
2
o<y /f+Uh—6tYh /v Vi, = Yi) Vo, — /VYthn}
TETh T
+ > (R, — R, +Z/h2R o
TeTh T€Th
= { f Dwn + (Un — w)wn + (0¢(y — Yn))wn + V(y — Y)Vw, }
TGTh T
_/V(Yh—yh)wn}Jr S (Re = Rrowa)r + S /hz (R, — R,

TeTh TeTh

15

Step 3: the estimate of k;n?,. Then for any § > 0, which will be defined below,

we have
b t—t;—
b= [ @0
ti—1 ?
ti t—1ti—1.5
< Z {( f=1)+(Un—u) + 0y — Yh)}(5+1)(T) wpdt
ti—1 reTh VT ’
ti - t—1ti—1.4
(3.36) / {V(y =Y3) = V(Yn = Vi) } (6 + 1)(T) Vwn,dt
tic1 e VT o

+/1 S (R — By, (54 (0L

tim1 reqn

/ ZhQ/R—R 5+1)( —1)0qt.

tim1 reqh

)5wn)Tdt

%
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Since wy, is constant with respect to time and (3.31), we obtain that

t—ti1
166 + D) (=) wall 2oy it ()

<onh{ [ ety Z L
(3.37) = fwnhy ) i V21
o+1 .1 % 2( 5 \2\ %

TETh

From (3.31) and (3.26), we have

—/ti > V(Yh—Yh)(é—i—l)(t_iz_l)‘;andt

k.
1 rerh T ’

o+1
d+2

2 3 (v i—1
§|1—5+2|Ci<;2 Nai + ;h/rh (R, — R,) ))kleh—Yh |1

_|1—5L|C7k2 % Z/th “R.) )%)

TeT

1= (v = v, V)

(3 38) X{C(”f N f||%2(ti—1,ti;H*1(Q)) + Hu - Uh|‘%2(ti—1,ti;L2(Q)) + kﬂ’]i

1
2
Hlly = YallZae, , om oy + 10:(y — Yh)||%2(ti,1,ti;H*1(Q)))}

1 1 1
< OO = S ko + CrC = Sk Z/m — R.)?)

TETh

+|1—5+2|C7k s + Z/TMR—R )%)

TETH

X{C(Hf - f”%?(ti,l,ti;H*l(Q)) + flu— Uh|‘%2(ti,1,ti;L2(Q))

[SE

lly = Vil arsca + 1960 = Y oo, 1) | -

d+1 1

Choosing § = 2C7C'z — 2, so we have C7C%|1 - 5—1——2| =3

and (3.38), it follows

Then from (3.36), (3.37)
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(3.39)
gtk < [ [{F =0+ W)+ oy =Y} + )

i1l erh VT

b t—ti1.5
+/t_1 > /TV(y—Yh)(cH—l)( 5 Vuadt
=l rerTh
b = t—ticiys
+ [ D (R = Ry (6 4+ 1)(——) w,) dt
ti-1 Lerh i

—i—/tt Z hz/(RT_RT)2(5+1)(t_kii—l

i=1l reTh T

)odt

1, 0+1. 2p P2\,
+C7Cz |1 (5+2|kl(T§h/7_hr(RT R;) ) N4i

+]1 - %WHC? (774i + ( Z /Th?.(RT — RT)2)%>

TETh

><{C(Hf - f”%?(ti,l,ti;H*l(Q)) + |lu— Uh”QL?(ti,l,ti;L?(Q))

=

+lly — YhH%?(ti,l,ti;Hl(Q)) +[10:(y — Yh)Hiz(ti,l,ti;H*l(Q)))}
< COIF = AT rsesm-rca + 1o = Unll e,y 20y
+ly — Yh”%?(ti,l,ti;Hl(Q)) + |0 (y — Yh)”QL?(ti,l,ti;H*l(Q))) + 6'king;

+Csk; Y [ h2(R, — R )%,

reTh ¥ T

Taking 0’ = §, we have
(3.40)

kimgi < C(If = A2yt + 10 = UnllZ2, y tine2y + 119 = YallZa, y m o))

J’_”at(y_Yh)”%%ti,l,ti;H*l(Q)) + ki Z /hZ(RT ~ R, )2>

TeTh”T

(IIT). Then by (3.26) and (3.40), we have
ki 3 i— i
§|Yh -V R < C9(||f — 22y v temr-1c0) + e = UnllZage, s or2))

(3.41) Hy = Yall 2o,y esm @) + 10:@ = Yl 2o, om0

th Y /hi(RT—RTV).

reTh T
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Combining (3.40) with (3.41), we can prove Lemma 3.5. O
Similarly we can prove the following lower bound estimates.

Lemma 3.6. Let (y,p,u) and (Yy, Py, Uy) be the solutions of (2.3) and (2.10), respec-
tively. Then
(3.42)

ki i— i
kiﬁ§i+§|Ph - Pl

< Cu{Hy - YhH%Q(ti,l,ti;LQ(Q)) +lp— PhH%Q(ti,l,ti;Hl(Q)) +[10:(p — Ph)”%%ti,l,ti;H*l(Q))

+kZ/

TeTh VT

~ - = — 2
hi(Yh—yd+8tPh+APh—Yh—yd+8tPh+APh) },

where

M=y /hi(Yh—yd+8tPh+APh)2+Z/lhl[vPh-n]2.
l

reTh T

Lemma 3.7. Let (y,p,u) and (Y, Pn,Uy) be the solutions of (2.8) and (2.10), respec-
tively. Then

(3.43) 17 < Cra{llu = UnllZ20,7:22(0)) + 1P = PrllZ20,m:0200)) )
Proof. We have

/tl Z/TU(—HhPh + P)?

ti—1 TU

t;
=/ Z/ (Pn = U Pp)(Py = p+p —pp + Mpp — 1, Py)
v o

ti—1 TU

t; ti
< s / 3 / (Pa — Ty P4)? + C(5) / 1Py~ bl

ti-1 1, ti—1
t;

+/ Z/ (Pn — T Po)(p — np).
t; TU

i—1 1

(3.44)

Since u + p = max{p + @, min{p + b,0}} = const, we have IIj,(u + p) = u + p. Thus

[ 2] oo

tic1

_/.ti Z/ (P, = Pr)(p+u—T(p 4 u) + Mpu — w)

ti1

(3.45) .
- / Z/ (P — . Pp)(Ip(u — Up) — (u — Un))

tic1
t;

ti
<5 Z/ (Ph—HhPh)2+C(5)/ o= Unll2(c-
TU

ti1 7y ti—1

Combining (3.44) and (3.45), taking § = % and summing ¢ from 0 to N, we obtain
(3.46)

N ti
#=3 / 3 / (—TPut Pu)? < Coof{llu—UnlZ 0.2 + 10— Pall2ago s -
i=1 "% v

ti—1 TU
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Thus from Lemmas 3.5, 3.6 and 3.7, we get the following lower bound estimates.

Theorem 3.2. Let (y,p,u) and (Y, Py, Up) be the solutions of (2.3) and (2.10), re-
spectively. Then,
(3.47)

4

2771'2 +m5 < C{llu— Uh”%2(0.,T;L2(Q)) +lly — YhH%W(O,T;L%Q)) + lly - YhH%%o,T;Hl(Q))
i=1

+[0¢(y — Yh)||2L2(O,T;H*1(Q)) +lp = Pulli<(or:22()) + 1P = PullZ2(0. 101 )

+10:(p = P72 0.0 + 1 — f”%?(o,T;H*l(Q))

N
+Zki Z /hE(Yh—yd+8tPh+APh—Yh—yd+6tPh+APh)2
=1

i= rerh T

N
> ki Y | R2(F 4 Un— 0Yn + AYy — f+ Un — 0,Y5 + AY), )2},

i=1  rerh’T

where T is the integral average value of v on the element T such that 0|, = ‘Jff I

4. Numerical Experiments

In this section, we carry out some numerical experiments by using AFEpack software
package (see [21]). We show that the derived error estimates developed in Section 3 can
be effectively used in adaptive finite element approximation of the control problem.

To solve the optimal control numerically we used the following iterations: (The proof
of its convergence can be found in [12])  Consider

4.1 min Jp(u),

(1) i, i (u)

where Jj, (u) is a convex functional on U" and K" is a convex subset of U". The iterative
scheme reads (n =1,2,--+)

bty 1,v) = b(n,v) = pu(Jh(un),v), Vo€ uh,
(4.2)
Un+1 = Pll)f(un-i-%)?

where b(u, v) = (u, v), the projection operator PLU" — K": for given w € U" find
PYw € K" such that ([12])

(4.3) b(Pbw — w, Phw — w) = m}?h b(u — w,u —w).
ue

An application of (4.2) to the discretized control problem (2.10) yields the following
algorithm
(4.4)
b(Upy1,v) = b(Un,v) = pn S Uy + Py w)t, Unsys Un € UM, Vo e U,

T T
[ () + alYa,w)) e+ (V2(0) = yo,w(O) = [ (f + Uit v € W,
0 0

T

/T 0P, h
; (— ( ,q) + alg, Pn))dt + (P.(T),q(T)) = (Y, —ya,q)dt, YV qeW",

ot
Upt1 = P%(Un+%)v

S~
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where we have omitted the subscript h. In our examples, the iteration parameter p, is
set pn, = 0.5.

Example 1. The first example is the following control problem on Q x (0,7] =
(0,1)2 x (0,1]:

(4.5) mm%/ol!ﬂ(y—yd)%%/Q(u_w)zdt

s.t. —y—Ay:u—i-f, Og/ugl,

and the data and solutions are:

w(xz) = sinwaysin g,
v(t) = sinmt,
plz,t) = plx)v(t),
0.5, z1+x2 > 1.0,
uO(Iat) =
(46) OO, 1+ a9 < 10,
u(z,t) = wo—p+max{p—ug+ 0, min{p —ug + 1,0}},
y(o,t) = p(e)v(t),
ya(z,t) = yla,t)+ 2+ Ap,
flz,t) = %—Ay—u.

We compute Example 1 on a uniform mesh and an adaptive mesh, respectively. In
this example, the control has a discontinuous line introduced by ug so that it has much
weaker global regularity than the co-state. The state and co-state are approximated by
the piecewise linear elements, while piecewise discontinuous constant elements are used
to approximate the control.

In Table 1, the mesh information is displayed with L?(0,T; L?(f))) approximation
errors for the control and the states. The adaptive time steps are 16 given by the code,
and we also use 16 uniform time steps in uniform mesh computation. The summation of
the nodes, sides, elements and degree of freedoms(DOF's) for uniform mesh and adaptive
mesh from step 1 to step 16 are shown. It can be clearly seen that on adaptive mesh one
may use more fewer nodes, sides, elements and DOF's in the state variables. Since the
main computational loads in solving the control problem come from repeatedly solving
the state and the co-state equations, the adaptive mesh can substantially save much
computation.

Table 1: Piecewise discontinuous constant element approximation for the control

on uniform mesh on adaptive mesh
u Y p u Y p
# nodes 10625 10625 10625 7964 1286 1286
mesh | # sides 30192 30192 30192 20784 3135 3135
info | # elements 19584 19584 19584 12837 1866 1866
# DOFs 19584 10625 10625 12837 1286 1286
L?(0,T; L?(Q)) error || 2.87e-01 | 2.51e-02 | 2.53e-02 || 2.85e-01 | 6.07e-02 | 6.20e-02




A POSTERIORI ERROR ESTIMATES FOR PARABOLIC OPTIMAL CONTROL

21

And in Figure 1, we can see the adaptive mesh for the control and the approximation
value of the control at t = 1, respectively. The location of the jump is reflected in the

adaptive mesh for the control.

Figure 1: The adaptive mesh for the control and the approximation value of the control at t=1

o o o o o O G O O —
O = N Ry o~ O

|
=]

S o— M = W~ ;O
?OOOOOOOOOﬁ

Example 2. The second example is the following control problem on Q x (0,7] =

(0,1)2 x (0,1]:
1t o 1 2
min - (y—ya)"+ 5 | (u—up)7dt
(4.7) 2 Jo Ja 2 Jq
0
. Y Ay=u+t, 0</u<1,
and the data and solutions are:
w(x) = sinmrgsinwag,
v(t) = sinmt,
plz,t) = pl)v(t),
0.5, x1+xo >t,
ug(x,t) =
(4.8) 0.0, x1+mx <,

) = uo—p+max{p—uo+0 min{p—uo+1,0}},
) = wulp(t),

) = ylz,t)+ G+ Lp,

flz,t) = %—Ay—u.

We compute Example 2 on a uniform mesh and an adaptive mesh, respectively. In
this example, the control has a discontinuous line which moves with time, so that it also
has much weaker global global regularity than the co-state. The state and co-state are
approximated by the piecewise linear elements, while piecewise discontinuous constant

elements are used to approximate the control.

In Table 2, the mesh information is displayed with L?(0,T; L?(f))) approximation
errors for the control and the states. The adaptive time steps are 28 by the code, and we



22

T.J. SUN, L. GE, AND W.B. LIU

also use 28 uniform time steps in uniform mesh computation. Similarly as Example 1,
we can see that the adaptive mesh can substantially save much computation from Table

2.
Table 2: Piecewise discontinuous constant element approximation for the control
on uniform mesh on adaptive mesh
u Y p u Y p
# nodes 30933 30933 30933 20108 1378 1378
mesh | # sides 90048 90048 90048 55798 3303 3303
info | # elements 59136 59136 59136 35719 1954 1954
# DOFs 59136 30933 30933 35719 1378 1378
L?(0,T; L?(Q)) error || 2.52e-01 | 1.95e-02 | 1.95¢-02 || 2.49e-01 | 6.86e-02 | 7.34e-02

And in Figure 2, we can see the adaptive mesh for the control and the approximation

value of the control at t = 1, respectively. The location of the jump is reflected in the

adaptive mesh for the control at t = 1.
Figure 2: The adaptive mesh for the control and the approximation value of the control at t=1
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