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Abstract In this paper, the existence of travelling wave solution for nonlinear
equation with nonlocal advection

8 um Fu 8 i
ey (;) S E[mtk #u)ul + u™ fluw)

is studied in the case of m > 1, n > 1. When £,4, fym and n satisfy some determinate
conditions, there exists the travelling wave solution.
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1. Introduction

In this paper, we are concerned with the existence of travelling wave solution of
nonlinear equation with nonlocal advection

ﬂ(ﬂ) 9% LI (F * w)a] + " £ (u) (1.1)

ot " 32 3z
where rn > 1, n > 1 and p = sgnu,. Here u(t,z) = 0 is the population density at the
time ¢ > () and position = € R, (s) is the velocity of population. We assume that (s)
{s € R) is a strict monotone increased upper convex odd function. The second term on
the right-hand side of Eq. (1.1) involved nonlocal advective term. One of the simplest
examples of K is

K=¢l-2H(z)], e>0 (1.2)
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where H{x) is the Heaviside step function. The nonlocal advective term has been
discussed by Mimura [1] and Alt [2] from a view of biological aggregation. Because of
the advection, the individuals have the tendency of aggregation. The third term on the
right-hand side of (1.1) is a kinetics of the process, which represents the supply due to
births and deaths. We assume that f(s] is a function satisfying

; i B uw € (0,a)
FeC 1], f(0) <0, F(1)=0, f(1) <0, f(z) = { (1.3)
> 0, u € (a,l)

penerally speaking, fl(s) ~ (& —a)(l — 8). Ecological studies of this nonlinearity are
discussed by Okubol®l. The discrete model for spatially aggregation phenomena for
nonlinear degenerate diffusion equation involving a nonlocal advection term is investi-
gated by Ikedal?l. At present, the studies of travelling wave solution of reaction diffution
equation are quite ripel®

For m = n = 1, the existence of travelling wave solution of (1.1) was investigated by
Huang Sixun® in the three dimensions, by using the methods to deal with travelling
wave solution of reaction diffution equation and techniques to deal with stationary
solution. In this paper, we discuss the existence of travelling wave solution of (1.1),
by using the techniques of [7] and the techniques to deal with nonlinear degencrate
equation.

2. Mathematical Model

In this paper, we consider travelling wave solution of Eq. (1.1), when K takes the
form of (1.2). Then k # « can be represented by

k#u=£[—2f w(t, y)dy + I (2.1)
where I = f i u(t, y)dy, generally speaking, I = I{t). Set
o(t,2) = [ ult,n)dy, uelt,z) = wit,z) (2.2
— ok
then v, (¢, £} = ult, z). Substituting above relation forms into (1.1), we have
g fu™ T 2 2
Po (E) iy + 2ep[e(2v — Du® + ele(2v — DNw + u™ fu) (2.3)
G et
rk = — . Set
where T > (. Se
u(t,z) = u(@),v(t,z) =v(8), wit,z)=w(d), 0==z+ct (2.4)
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o

then I = f ; uly—ct)dy = f u(@)df, from this we know that I is an undetermined
— o0

—ix]

constant, it is independent of £, Substituting w(#), v(#) and w(d) into (2.3), we get the

following nonlinear ODE
e du

@ =
dit
e
ey :

k % = —{ip[e(20 — D]w — cu™ Ywl} — 269[e(2v — D]u? — u™ f(u)
the boundary value conditions for (2.5) are

(v, 1, w)_pe) = (0,0,0)
l:U:-ﬂ1w:||:|--::n] = {Ir[:l!ﬂ}

where [ 15 an undetermined constant and dependent on u. In order to eliminate the

i

w | (2.5)

(2.6)

undetermined constant I from (2.5), we make the following transformation

i

E=—-6, V= E[—um} = E]’ U=u, W=-u (2.7)
Rpt -t — %, then (2.5) can be reduced to
V= —elJ
=W (2.8)

W' = [e(2VIW + U™ W] — 2e(2V)U2 — U™ f(UT)

and boundary value conditions are

(V. U, W) ooy = (V0,0,0)

“'r: [, W}{+m} = f—VDJU,UJ

From (2.8), (2.9), it is obvious that the solution (V, U, W) possesses certain sym-

metry, that is V(—0) = =V (0}, U(-8) = U(8), W(-8) = =W (8), now we'll find the
solution which is indicated as Fig.1. From Fig.1, we only have to discuss the solution
of (2.8) for £ < 0, then |w| = w, the boundary value condition is

(2.9)

| U
: U i
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(V, U W)(—ec) = (V0,0,0)

. (2.10]
VU, W)ioy = (0, Th, 0)
for some positive undetermined constants 1} = %EI and Uy. Then
(FV(-0)+ 1,00, -W(-0)), 030
((6),u(®),w(®) =4 ¢ (2.11)
(— - -V (8), U[E],W{H}), f <0

2
one finds that (v(@), u(8), w(#)) satisfies (2.5) (2.6).

Equations (2.8), (2.9) are the problem of three dimensions. When & > 0, the
equilibrium point of (2.8) is (3,0,0) (& > 0), the linearize (2.8) about the critical point
[VJ U, W} T [.‘Srﬂsﬂ} is

V! 0 —£ 0 V-5g
Il =|0 0 1 U (2.12)
W 0 —nf(0)7 @(28)+re W
0, m>1 e Smi]
where r = { i = { . The characteristic equation of (2.12) is
1. =" 1, n=1
AAZ = (0(28) + er) X + nTf(0)] =0 (2.13)

the characteristic values are

do =0, ¥* = “{[p(26) +rd] £ \/[0(28) + re? — a7 (O)n}

Let
8= - i) (2.14)

be an eigenvector associated with the positive eigenvalue. Let Y;(&; 8,¢) = (V. (£, 3, ¢),
U (€, 8,¢), We(€,8,¢)) be a trajectory which starts from (3,0,0) with the direction
e™(3), then the problem of finding the solution of (2.8), (2.10), for a given £ > 0
and a suitable parameter ¢*, is reduced to proving that there exists 8(e), such that
Yo (€, Ble),c") intersects the [F-axis, at § = £le), setting Y.*(£; B(e),c*) = Yi(¢ +
£(e); Ble), ), then Y*(&; 3(€), ¢*) satisfies

(m Y2 (66(e),¢7) = (8(6),0,0), Y2(0, 8(e), ") = (0,Up, 0)

By use of (2.11), we obtain the existence of travelling wave.

Now we discuss the case ¢ = 0 firstly, then we elect suitable parameter ¢* and fix
¢*, finally we discuss the case ¢ > (0. When = is small, there exists F(g), such that
Yo(&; B(e), c*) intersects the [/-axis.
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3. The Case e =10

Firstly we discuss the case ¢ = 0, When £ = 0, (2.8) becomes
Vi=10
Uv'=w (3.1)
W' = [p(2V) + cU™=YW — U™ f(1)
Then V' = 3 (let 3 be a positive constant). When V = g, (U, W) satisfies
U'=w
] . g a2
W' = [p(28) + U™ YW — U FlI)

For (3.2), let T';; be a trajectory which starts from (0, 0) with the direction (At a])
and lies in the first quadrant.

Lemma 1 Fix 3 >0, af least there exists one ¢(B3), such that (U, Wl_eoy = (0,0},
(U W) 4a0) = (1,0).

Lemma 2 For any 3 > 0, there exists one ¢ = e(), such that I'y conneets (0,0}
to (1,0), ie. (U, W)_y = (0,0), (T, W)itooy = (1,0).

By [5] [8], we can prove Lemmas 1-2. Here we omit the detail.

From above, for any 8* > 0, there exists a unique e*(3*). Fix 8* and ¢*, there
exists a unique trajectory Yy(&; 5%, ¢*) which satisfies

lim ¥(¢; 8% ¢") = (8%,0,0), {ET&D Yo(&: 8%, ¢%) = (8%,1,0)

E—r—o0

Fix @ = 0, from Lemma 2, choose ¢*, we discuss the properties of the trajectory
Yo({&; 5, ¢*) in three dimensions. For convenience, we introduce some numbers:

(1) Let p be sufficiently large, such that ue(28%) + ¢* > 0 and

(b= Dp(26%) >’ (2™ =1), 20 (3.3)
(1 — 1)p(28%) > {l—a)Eal SN g =) (3.4)

(2) Let d be a sufficient small (§ < min(a,1—a)) and « is chosen from the following

p(28%) + 2!
pp(20*%) + c*
w(28%) + ¢*(1 = a)™-!
pp(26%) + ¢*

< o< (=08 (=5)y e =0 (3.5)

< e [T=mE=1), <0 (3.6)
From (3.6), we get

P(26%) < up(28)a + ¢'fa — (1~ a)™ 1] < pp(28%a+ e — (1 - &™) (3.7)
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(3) Choose f as following

o %aﬂ‘l{wiﬂﬁ“m + c*a — 2™, ¢t >0
= { 1 1
min {iaﬂ‘l[ﬁaﬂ{ﬁﬁ"}ﬁ+ c*o — (1 — a)™ 1y, Ew"'l[#w{?ﬁ*}]} o ?‘iﬂa}

By use of (3.3)-(3.6) the definition of 7 is suitable and 03 satisfies (20) < pi(23%).
(4) Consider the function equation

F(V,U) =2:0(2V)U* +U™f(U) =0, 0<V <7 (3.9)

Let U = U.(V) be the smallest root of Equation (3.9) for I/ > 1 (¢ > 0). When
e =0, Up(1) = 1. Because @(s) is a strict monotone increasing upper convex odd
function for s, ¢(2V) > 0, $(2V) < 0. Set

sup U (V) =T, >1 (3.10)
0<V<g

When = is sufficient small, we have

Vi Fai e (3.11)
dU, (V) o
< U 3.1:
<0, 0<V <P (3.12)
Let L ={(V,U),0 <V < B,U = U.(V)}, A = {(V, 1)) |10V <A1-d<U <

UV}
When point (V, I7) lies on the curve L, F(V,U) = 0; when point (V, 7} lies in the
region A, we have
2e@(2V)U% 4 UT (1) = 0 (3.13)

Let £ be a sufficient small positive, 0 < ¢ < £o (€0 is a small positive), such that

Lol e d)m_l + (1 —4) (3.14)

(1-4§
By use of (3.5), (3.6), (3.14), we have

&
eyl
a < (1 - 4) < T~ (=9 (3.15)
Let
W™ = [pp(28%) + c*)4 (3.16)
TR L Ue(0) = U
W' (U) = W [1 Z Li-m}—{l-ﬁ}] (3.17)
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Define I'; (i = 1,2,3) and o in two dimensions (7, W) by

_1"‘5 ={(UW)|U=0U.,0),0<W < W*}
={{UW)|1-6<U<U(0),W =0}
={{UW)|U<U(0),W>0,W=W (U)}

o = {(UW) | U < U(0),0 < W < W (U)}

and define Ef = (¢ =1,---,5), §; ( =1,2,3) and Z° in three dimensions (V, U7, W) by

Ef={(VVUW)|0<V <B,U=U(V),0<W <W (L)}

Es ={(VVUW)|0<V<B1-8<U < U(V),W =0}
Es={(VVUW)|0<V<B1-86<U<U(V),0<W =W ()}
E; = {(VWUW)|V=0,(UW) ez

Ef ={(VVUW) |V =83U<U(B.0<W <W (U)}
F={(VUW)|0<V<B1l-0<U<U(V),0<W <W (U)}
h=it{E;NE}, bL=int{E;NE}, l3=int{E; NE;}

]

Lemma 3 When ¢ = 0, there exists By (0 < Bo < 8 — 3*), such that for any
B E [B* — B, B + Bo); Yo(&; 8,¢*) € B0 for some &; after entering £°, Yy(&; 8° + Bo, ¢*)
withdraws £ from EY and Yy(& 8% — Go, ¢*) withdraws £° from o

Proof The proof is divided into some steps. Step one Project the trajectory
Yo(&; B, ¢”) on the plane (U7, W), and let it be Fy(&; 8, ¢*). We prove that Py(£; 3, c*)

enters oy from T'§ only and doesn’t enter of from I'!, TY and points A, B, C (See Fig.2).
Because U' = W > 0 on I'] and W' =

—U™ f(I7) < 0 on I'Y, the trajectories can't i
enter ¥ from I'Y and T'9. At the corner e
point A = (1, W*), (8" + ) I3 o
G cic o DR ) 20 =
i | = [P28) + &) - — i E;Jr“ﬂ,_ﬁﬂ ?

< p(206) + ¢ (3.18) B L3NG | gy

@] 1-5 ™~ 1 “

but from (3.8), we get @(25) < up(25%), Fig. 2
then %;LH < @(28) +¢* < pup(28%) + ¢* = the slope of the line AB; at point B = (1 —
4,0), W' = —(1-8)"f(1-4) < 0; at C = (1,0), C is an equilibrium point of (3.2) (saddle

point), then the trajectories can’t enter o) from corner points A, B and C. Finally we
show that the trajectory can’'t withdraw from e through I'). Let n = (pup(26%)+c*, —1)
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be a vector normal to I'§ pointing into o8, and let v = (W, [@(28)+c*Um =YW -1 f (1)
be the vector field defined by the right hand side of (3.2), then

v (pg= [pp(28°) + W — [0(28) + ¢ U™ W + U f(U) Irg (3.19)
When ¢* = 0, by pp(28%) > 0(28), we get n-v > (; when ¢* < 0, by (3.8), we have
w(20%) < 9(28) < pe(28%)a+ e'fa — (1 — a)™ Y < up(28°) + ¢ — (1 — )™

then pp(28*) + ¢* — w(28) — e* /M1 = me(28%) + ¢ — (28) — ¢*(1 — 8)™-1 therefore
n - i > (), which is what needs to show.

Step two  We show that there exists a positive constant £ Bo (0 < By < B - ),
such that after entering of, Py(&; 8% + Gy, ¢ ") withdraws of from I'{; Fy(¢; 8% - Fo, ™)
withdraws o from I'). From above discussion, we know that Py(¢£; 8%, ¢*) starts from
the point (0,0) with the direction (1, AT{3")) and enters into the point (1,0). By the
continuity with respect to parameter * of ODEs, when [ is sufficient approximate to
3%, i.e. there exists Fy (0 < 9, < 8— %) when 3 € [3* = B0, B* + fy], we note that o) is
an open set, then Fy(¢; 8,¢") € of for some £. Because the trajectory 1% (£; 8* + 5, ¢*)
lies above Fy(£; 3%, ¢*), it doesn’t int ersect with Fy(€; 8%, ¢*).  After entering oy, it
doesn’t withdraw from A and T and doesn’t enter into C, then after entering of, the
trajectory Fy(€; 3% + By, ¢*) starts from (0 ,0) with the direction (1, A\* (3" + 3], that
must withdraw of from I'?, In the same way, we know that Fy(&; 5% — fy, %) will
withdraw *'TU from T'Y,

Step three. Now we turn to the trajectory Y4(£: 3, ¢*) of 3-dimensional space,
Because V' = (), § =const. At the plane V' = G, ¥j(&; 3* + Gy, ¢*) withdraws 0 from
B and Yu(&; 8* - Gy, c *) withdraws E° from EY, and when 8 ¢ 18" = 6o, 5* + F),

Yo(€;8,¢*) € Z° for some £,

4. The Case e > 0

In Section 3, we discuss the case ¢ = 0 by continuity with respect to parameter £ of
ODEs and note that ¥ is an open set in 3-dimensional space (V, U, W), [5*— G, 5%+ 3]
15 a close set, we get the following result.

Theorem 1  There exists ¢; > 0, when £ € [0,61] and B8 € [8* — By, 3% + G,
Ye(&8,c*) € Xf for some £; after entering 1%, Y, (£; 8° + G, ¢*) withdraws T from, EY
and Y (£; 5% — By, ¢*) withdraws T° from EE.

Let £ = min(e), e3), fixe € (0,5,), B ¢ [ — By, * + Fy) and ¢ = c*(8*), then define
£g and § a by

€ =inf{e|Ye(6B,¢) €2}, £y —inf{e|e> £y Yo(6; 8, ¢ )ER")
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I Y. (&3, fj:} € X for all £ € {{ﬁ +oa), we let 'f,.s +oo, If Eﬁ is finite, we let
}f{frj:ﬁaf ) = (Ve(€ ,';h.B ¢*), Us ff,jaﬁ c*), W, (fﬁn& c*)) = Fg.

Lemmael For any 8 € [8* — Ay, B* + o), Ps € BEf U U EE U Ef.

Proof First we indicate that :f s 18 finite, i.e. when the trajectory enters into 24
it must withdraw from 7 at £ = :fﬁ Because V' = —ell < 0, U' = W > 0 in £¢ and £
15 bounded, the trajectory Y:(£; 8, ¢*) withdraws from 5 for £>¢ 4 Or approximates
to the equilibrium points. Hmauae there are no such equilibrium points in & , 1t must
withdraw from ° at £ = § gy .8 ;f g 1s finite. Now we prove Py € Ef U E5 U ,-5'4

Because V' = —el/ < 0 on B, the trajectory can’t withdraw from X¢ through Kt

On E%, let n = ([], L “E‘f"ﬁ e s, ml) be a vector normal to B pointing into X, and

let X = (—eU, W, [2(2V) + ¢ Um_ljw —2e@(2V)U? — U™ £(U7)) be vector field defined
by (2.8), then

[ lp(26%) + ¢*]8 . e = T L—
n-X = {Ug_{ﬂj —a oy~ keV)+eu ]}W + 2ep(2V)U? + U F(U)

Because 2ep(2V)U2 + U f(U) > 0 for 0 < V < B,1—d< U< U (V)

- { g’"&ff’f .? s c*_i'} 5 = [p(2V) + U™ ]}W

I:-|r'f":|""'1'I E'ﬁ‘* +"‘: ]*5 *TrITt=17%
3{ 50 =g} [P 2P) + €U }w (4.1)

When ¢* > 0, from (3.11), we know I < 2. and from (3.8), we get

p(26%) + c’la > (20) + c*2m ! (4.2)
by use of (3.15) we get n+- X > (0. When o* > 0, from (3.9}, we get
1p(28°) + e > @(26) + (1 ~ §)™! (4.3)
then

ne X = {[up(26°) + *la — [p(28) + U} W
> {pp(26%) + ¢'la = [p(26) + ¢*(1 — )™ }W > 0

This shows n - X > 0, i.e. trajectory can’t withdraw from %< through EZ. Along [,
because V' < 0, U' = 0, W' = —(2e¢(2V)U? 4+ URf(U)] < 0; along Iy, U’ > 0 and by
use of - X > 0, we get it can’t withdraw from &< through Iy and {3; along I3, W' =0,
' =0 and V' < 0, by use of (3 (3.12) 9 = 0, we also know that the trajectory can’t

all
withdraw from X through 3. This completes the proof of that lemma.
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Theorem 2 = Lel any B* = 0 and get ¢ = c*(3*), fire > 0, (0 < € < &), then
there exists @ = B(g), B € (B* — Bo, B* + Fo) such that Yo(&; 8(c),¢*) intersects into
U -azxis, t.e. there exists the travelling wave solution of the problem (2.8) (2.9).

Proof Whene € (0,¢), 8 € [5"— Gy, 5* + (o], let T be the map from [3* — &, #* +
Bo] into BS U ES U ES

T(B) = Py = Ye(£5; B.c")

—2ep(2V)U* — U™ f(U) < 0, and on Ef, V' = —zU < 0, then the trajectoryYz(£: G, ¢¥)

which leaves E° through ET, EZ and Ef must do so transversally. By the continuity with

respect to the initial value of ODEs, we get T is continuous. Because [3* — Gy, 3* + 5G]

15 a connected interval, L = T'([3* — &y, 5" + fu]) is a connected curve on Ef U Ef U Ef.

From Theorem 1, we know that T(3" + &) € Ey, T(53* — 5y) € E5, then there exists
B(e)

From Lemma 4, we know that T is well defined. On FEf, U/ =W = (; On E5, W' =

Ble) =sup{f| 8 < B* + fo, T(B) € E3}

this () is the one we wish, i.e. ¥.(£; 8(=), ¢*) crosses the U-axis.
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