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Abstract In this paper, we continue to study the equation
Q' + f(¢,88) =0

where O = —87 + A denotes the standard D’Alembertian in 72! and the nonlinear
terms f have the form

1= Tix(@)Qo(s’, %)
JK
with »
Qole, ) = —BipBp + > 8i00ip
i=1

and T} (@) being C™ function of $. In Y. Zhou [1], we showed that the initial value
problem

#{0,2) = dolz), Be(0,z) = ¢y ()
is locally well posed for

¢p € H*FL, e H*

with s = 1 Here, we shall further prove that the initial value problem is locally well
posed for any s = 0. ;

Key Words  Wave equation; local well-posedness.
Classification 351, '

1. Introduction

In this paper, we continue to study the equation

O¢" + (¢, 08) =0 (1.1)




20 : Zhou Yi Vol.10

where O = — & + A denotes the standard D’Alembertian in R**! and the nonlinear
terms f have the form
=3 Pik(#)Qul(¢”,¢") ' (1.2)
JK
with ;
Qold, ) = —Bddpp + Y Siddhyp (1.3)
i=1

and [ (#) being C*° function of ¢. We call it the equations of wave maps type.
‘We are interested in the problem of minimal regularity of initial conditions for which
the initial value problem

$(0,x) = golz), (0, z) = ¢ (z) (1.4)

15 locally well posed. In Y. Zhou [1], we showed that the problem is locally well posed

for

do € H*F, ¢ € H® (1.5)

with & = é Here, we shall improve it to allow s = 0.

Theorem 1.1 The initial value problem (1.4) for the equation (1.1) is locally well
posed for ¢y € H*F' and ¢ € H® for any s = 0.

In Section 2, we will state and prove a more pref:iﬁe version of Theorem 1.1.

2. Proof of Theorem 1.1

We begin with introducing a space-time norm similar to that in our previous paper
[2]. We rewrite (1.1) as a first order system by letting

¢+ = (8 F vV-1|Dx|)d (2.1)
where
|Dz| = V-4 (2.2)
then
(O £ V=1|Dy|)gps = f (2.3)

Introduce the Fourier integral operators Fy by
Feglt,o) = (2m)72 [ eV Toe2E e, ) (24)

Here and hereafter, ¢ denotes the space Fourier transform of ¢, then it follows from
(2.3) that

GeFydy = Iy f (2.5)
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Let
e = Fyghy (2.6)
Then
Oiihy = Fuf (2.7)
Therefore )
Yu(t,2) = 62(0,2) + [ (Fef)(s)ds (2.8)

For a local solution on the time interval [0, T], (2.8) is equivalent to

v(2) =x(7) (60,2) + [ (B (5)as)

where x € C5°(H) and x(s) = 1, if [s| < 1, x(s) =0, if || > 2.
We Introduce the norms

M, 5() = ( Jl a1+ leyea + Ifi}”’ﬁ?”(*r,«f)d*rdﬁ) t (2.9)

where @ denotes the space-time Fourier transform of +. It follows from Lemma 5.3 in
[2] that

DM () < CTE (|| goll g1 + [l ) + CoT™" 3 M, 1(Fsf) (2.10)
+ +

for any o > 0. We define

Ny(¢) = > NE(¢) (2.11)
=
where
N (6) = My, 1 () (2.12)

it is easy to see that

NEW? = [[ @+ Il + €D+ Ir £ 6D % [€)* P, )drae. (213)

The main result of this paper is the following theorem which can be used to estimate

M”_;E{Fﬂ:_f}:
Theorem 2.1 Suppose that both ¢ and @ vanish when |t| > 2T, then for any
ﬂ'{ﬂ{é,wehave .
(i)
M,, 3 (FsQo(d,6)) < CoT* "Ny ($)Ni(g) (2.14)

where 0 < o < s.
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(i)
My, s(Fe(C-9)) S CoT*~"Ny(T) Y M, ,_y (Fag) (2.15)

&8
T
where } < g < s.
(1) Jf T*N,(8) < M, then for any C? function I' with T(0) = 0, there holds

T*N,(T($)) < C(M) (2.16)
Theorem 2.1 will be proved in the next section. Writing
C) k() =Thxc(0) + (U] x(9) — T 1 (0))

we apply Theorem 2.1 to get

M, . 1(Fsf) < T2 C(M)M? (2.17)
where
M=T%" N,(¢") (2.18)
J
Thus, it follows from (2.10) that
M = Collldollgrer + 1]l ar=) + T3 C (M) M (2.19)
If we take o = g, then there exists a Ty > 0 depending only on
& = [Idoll g+r + ||l 12 (2.20)

such that for any 0 < T < Ty, there holds
M < 2054 (2.21)

Thus, it follows
Proposition 2.2  Let ¢ be a smooth solution of (1.1) (1.4), with initial dale sat-
15fying
ol grasr + [l || s < 6
for some positive number &, where 0 < s < 1, then there exists o positive constant Tp
depending only on § such that if T < Ty, then there holds

sup [|Dg(t, || m < C (2.22)
it=T

el

sup [|D*¢(t, )| rrs < O(8)(lgollgre+2 + [|b1ll g1 (2.23)
it=T



No.1 Remarks on Local Regularity for Two Space Dimensional Wave Maps 23

moreover, if ¢\, 9'5':2] are fwo such solutions with initial data qﬁ}:,”, rﬁ{uz} and q&%”, :;'.:'52],
then

sup [D(¢(1,) - 6D, Nlas < CEONNGE? — o7 gron + 1657 = 671 re) (2:26)

Proof We only prove (2.22), (2.23) and (2.24) can be proved in a similar way. We

extend ¢ beyond time T such that it vanishes when ¢ > 2T as above. By our previous
argument, there exists a Ty > 0 such that for any 0 < T < T, there holds

N,(¢) < CT*3 (2.25)
Noting that ). are unitary operators, we get
ID(t, e < g gt e = DM 6, )l (2.26)
it follows from Sobolev inequality for the time variable that
b (E, M| ore = GTSMH!H}”;{; SCT°M, ;. 1(P2) < Cd

This completes the proof of the proposition.

Remark 2.3 By (2.23), it follows from classical local existence theorem that the
smooth solution can actually be continued to the time Tjp.

In order to state more precisely our local well posedness result, we mtroduce

Definition 2.4 ¢ is said to be a strong H'™® selution to the Cauchy problem (1.1)
(1.4) on the time interval [0, T, #f

D¢ € C([0,T), H) (2.27)

and there exists o sequence of smooth solutions ¢n of (1.1) on the time interval [0,T]

such that

SUp ”Dﬁbn(t: :' i D‘i’[t: ']HHS — 0 asn— oo
g<t=T

We shall prove
Theorem 2.5 Suppose that the initial data ¢g, g1 satisfy

d = |ldollgetr + |1 ]lge < o0

1 :
with 0 < s < 1 Then there exists a positive constant Tp depending only on 4 and
a unique strong H*'! solution to the Cauchy problem (1.1) (1.4) on the time interval
[0, Ty satisfying

sup || Déit, )| me < Cd (2.28)
D<E<Ty

Proof Indentical with the proof of Theorem 5.2 in [2].
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3. Smoothing Estimates

It remains to prove Theorem 2.1. We first prove the part (i). This would follow
from Lemma 3.1 and poincare’s inequality.

Lemma 3.1 Consider the space time norms (2.9), null form (1.3) and Fourier
Integral operator (2.4). We have

M f(E006.0)) < Co( M, 4 (Fa) (; Moory(Frps))  (31)
whﬁm[]{s{é,{]r:cr-::a'u.ﬂd

¢+ = (8 F V=1|Dy|)¢ (3.2)

ox = (0 F /=1 Dy|)e0 (3.3)

Proof We only estimate MS’E_% (F_Quo(é,¢)). The estimate of MH_% (FiQuold, )
Is identical. Let ¢(r, ¢ );®(A, 1) be the space-time Fourjer transform of ¢, ¢, we may
assume 7 = 0 and A < 0 in the support of :55 0, otherwise, we decompose them such
that each of them is the sum of two functions, one has support in = = 0 and the other
has support in 7 < 0, Thus, we have to consider four cases. However, all the four cases
are similar, so we only consider one case. Under our assumption, we shall prove

M,g,_g—% {F— Qﬂl:cﬁ:! 55':',':' E C'TG'M3|.5|-+% ('Ep'f'[ﬁ'+j‘w.5?.;--l_-3—3{F+ 'F-l—:l [34}

By duality, it is enough to prove

Ii= ff (FLR)Qo(d, v)dzdt < CM_, 1 (h)i ol Frd )M, 3 (Frpy)  (3.5)

e |
Ty

Let
R, (1 + Jul) i :
A0 =T e e o
F(7,8) = ¢(r = [, &) (1 + 7] + [€])*(2l¢] = 7)(1 + |=)=+} (3.7)
G(Am) = S(A = nl, M1 + ] + [7])*(2ln| — A)(L + [A)7+} (3.8)

Then, it follows from Parseval’s identity that we only need to prove

I =
ff L bir, A€, )L+ |u| + |€ + ) H{u, £ + n)F(r, E]G(A,T}}{ffdidfdﬂ
(Lot Jul)2=2(1 + o)+ (1 + A7+ ] (21¢] — 72| = M) (1 + [Tl + €12 (1 + |A| + |n|)®
< CIF|NG| 1= (3.9)
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where
blm, A &m) = (7 — J€])(A = [Hii=tem (3.10)
u=A+7— ([ +n] =€+ } (3.11)
and ||F|| denotes the L2 norm of F etc.
We have
2b=[(w— € +n)* — (£ + )] - [(7 - [€])® - £2] = [(A =) = 7] (3.12)
Thus
20 < [(u— € +a)* = €+ + (7 = [€D? - €2 + (A = n)2 = o] (3.13)

We shall consider three cases
Case 1. the first term is maximum among the right hand side of (3.13).
Case 2. the second term is maximum among the right hand side of (3.13).
Case 3. the third term is maximum among the right hand side of (3.13).
Case 3. is similar to Case 2, so we shall only deal with Case 1 and Case 2.
We first consider Case 1. By (3.13), we get

(1 + u] + J€ + nD)(ful + 1€ + nl) 2= H(u, € + M E(r, £)G (A, n)drdAdédn

fgcfwl , .
(L4 |} 2 (1 + |A)o T2 (|| + ITDCnl + (AL + |7 + [€])5(1 + A + 1))

(3.14)
We have
[ul + [€ + 7] < 2(|7] + [€]) + 2(|A] + [5]) (3.15)
Without loss of generality, we assume '
[ul + [ + 9] < 4(|7| + |¢]) (3.16)
Then
1<of B2 (€ + ) F(, )G (A n)drdAded Ea7)
(LD 2L+ ADTF2 (18] + Inl) 22 (] + (MDA + A + [n])°
We have
1Bl < (1€l 19l = & - n) + [7](]\] + fn]) + |A| |n]
50
6154 < (] Inl = & - )+ 4 [Ir{(IA] + [n)]E+5 4 A+ 3+ (3.18)

Thus, we have
F<h+L+1I4
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where I, I and I3 are defined in an obvious way. I and I3 can be estimated by Lemma
A of [1], we only estimate I, we have

I < fo (€] 1n] — & - )2+ H (u, & + n) (7, §)G(A, n)drdAdidn
A (1+ |77 (1 + A2 |€]2 45 |n| e
= [ IE(r Mz lC Qs g2 (7 + Ndrdd

(1+ |77tz (1 + |A)7H2

(3.19)

where

F2{a} = ]f (1] [nl = €-m 2 F*(s — €] — |nl + I£ + nl)ddn (3.20)

|§123+1 |ﬂ|23+?

It follows from Lemma 1 of [1] that
J<C|H|

S50
(7, M ez |G(A, ) g2drdA
(1+ |7 E(L+ A2

Therefore, the desired estimate follows from Holder’s inequality.

I = ClH| (3.21)

We now consider Case 2. We may assume 2|u| < |7| otherwise, we have
bl < C{Ir + €Il 3+l 2~

so I can be easily estimated by Lemma A of [1]. By our assumption, we have

L 1 TS }
(L [ul) 3oL+ [7))FF ~ (417300 + a7

g0 it follows that

ff 81251 + Jul + 1€ + 1)) H(u,§ + ) F(r, ) GO, )dudddedy
(1+ )21+ [ADTTE(E] + Il + D+ 7]+ [ED3(L + [A + E'?;z ]

I <

Making a change of variables £ to £ — i followed by 1 to —n, we get

I<

f/ B[ 3+5(1 + u| + |E)° H (u, ) F (1, € + 5)G(A, ) dudAdédn
(1+ [ul)7H 301+ [ADTHE (€ + ) + [7DEF2(nl + DL+ |7] + 1€ +al)2 (1 + [A] + [ml)*
(3.23)

and

b= (A= [nf){u—I€]) = (A= |n)* + (£ +n) -7
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= (A= [nl}{u =) +&-n—[(A = |n])* - ]

Thus,
(6 < (1€l Inl + & - m) + [w|(IA] + [n]) + [ALE] + A (X + [n) (3-24)

Therefore, we have
I<h+hL+J+ 0y

where Ji, Jp, J3 and Jy are defined in an obvious way. Recall that 2Ju| < |7|, Jo, Js
and Jy can be easily estimated by Lemma A of [1], we only deal with J;

ff (€] Il + & - n) T2 (1 + |u] + |€)* H (u, £)F (7, £ + n)G(), n)dudAdEdy
(1+ [ul)*2 (1 + ADTHE(IE + 0] + [T EH (] + IAD (L + 7] + €+ 0))*(1 + [N + [5])°
(3.25)
If 2|n| < |£], then [€] < 2| + 5|, so we get
. p)its
5<C ff (1€ 9] + £ - n) H:imEJF{'L.»ﬁJ]rﬂ}ji?{—h,ﬁ]dudidedﬂ (3.26)
(14 [u)72(1 + |A)THa|g)z 5|y +e

this can be estimated in the same way as I} in (3.19). If 2|5 = |€|, then by

Ellnl + & - = (€ +m)* = (1€] — [7])? < 2/6 +n)?
we get

Jp =
o ff H(w, )(1€ + 0l + nl = |EDFFQ — u + |€ + nl + Inl = |€],€ + n)G(A, n)dudAdédy
(1+ [e)7+3 (1 + [ADo+2||E ||

B ff dud)
(14 |u)?t3 (1 + [A)oT2

J] FO = w7 +16,6)(r + 1603 B+ ) drde (3.27)

where # denotes the convolution

Pulv,€) = d(v + |€]) H(u, &) €] 5

and

$x(v,8) = d(v — |€)G (N, €)J¢| 8

L(u, \)dudA
nseir) [f L) - (3.28)
(1+ )51+ )

50 we getf
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where

L2(u, ) = ([ (r+ €D B # B (r )t (329)
It follows from the part (ii) of Theorem 1 of [3] that

L(u,A) < CllH(u, )l 221G (As )| 2 (3.30)

Therefore, the desired conclusion follows from Holder’s inequality.

We now prove the part (i1) of Theorem 2.1. This would follow from Lemma 3.2 and
Poincare’s inequality.

Lemma 3.2 Consider the space time norms (2.9) and Fourier Integral operators
(2.4), we have

Mg;‘.g—% {F:‘tl:r!l ':FJ,} E Gﬂ' Z Ms,g-}%{Fﬂ:Fij E M315—% EFil:l':]} {3311]
i +
where
Iy = (8 F V—1|Da|)T (3.32)

Proof Asin the proof of Lemma 3.1, we only estimate Ms.s—%{F+ (T-¢)) and we
may assume i < 0 and v > 0 in the support of T'(x, &) and (7, ¢). We shall prove

M, , 1 (Fr(T @) < CoM,,y 1 (FrD4)M, 1 (F-p) (3.33)

By duality, we only need to prove that
[T pdudt < M_, s (OM,, y(FTOM,, y(Fp)  (3.3)

Let

e B+ 1L O+ |+ 1D 8 ol
F(r,() o (3.35)
_ SO+ A= S
G = N Tl G
H(u, €) = T(u — €1, €)1 + |u))7*3 (21€] — w) (1 + [u] + |€])° (3.37)

Then it follows from Parseval identity that we only have to prove

K- (L4 DT (1 + N + 1)* (7, € = GO, m) H (w, E)duddgd
(14 IADZ™*(1 4+ ful)+2 (21&] — w)(1 + ful + [ED* (1 + |7] + € — nl)*
< CIFI Gl IH] (3.38)

where
THE—nl=u—[{-(A=In} =0 (3.39)
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without loss of generality, we assume |A| < |7|, otherwise, if |A| = ||, then

K < [ DL D P8 = GO I H  dudhdy o
(L )+ 2 (€] + Ful) L+ [l + € (L + I + |€ = )

50 the desired conclusion follows from Lemma A of [1] Therefore

K < [/‘ 1+ |T|J3+'5 (14 [Al +Inl)° Fir, &£ — n)G(A, n)H (u, &) dudAdédn (3.41)
(14 [ADZH (L4 Jul)o 2 (1€] + [ul) (1 + Ju] + €D + |7] + € = n])*

By (3.39), we have

7€ = al < |72l —nl + )| = (7 + | = nl)” - € 0l _
= =2[(u — [ENA = [nl) + & n] + [(w = [ED? = [€1%] + [(A = [n)* = [nf?] (3.42)

Thus,

1+ I+ 16 —nl) < 200+ |7]) + 1€ — nl] + 208 + [(Jee] + 211 |wl] + [IAI([A] + 2in])]

where
b= (u— |ENA = [nl) + €7
50 Wi get
(1 + )5+ < @Ide 20 ] + Je = e
L i fa | (1+ | —n|)zte
o 1] + 2/€[)uf]2 + [ALAL + 2lml]E+e
A+lE=nhit* . (1+|¢=-n)it
Therefore

K <K +HKa+ Ks+ Ky

where Ky, Ko, K3 and K, are defined in an obvious way. It is easy to estimate K5, K3
and Ky by Lemma A of [1], so we only need to estimate

[B12 51 + |A| + |9i)° P(7, € = m)G(A, m) H (w, €)dudAdédn
f[ (14 ADE (L + )7+ 2 (1] + Jul)(1+ fuf + €)1+ € — n)ETe(1+ |7] + |€ — n)s
This can be estimated in the same way as I in (3.22).
Finally, the part (iii) of Theorem 2.1 can be proved in the same way as that in
Lemma 5.4 of [2]. This completes the proof of Theorem 2.1.
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