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Abstract In this paper a partial answer to the fourth open problem of Bethuel-
Brezis-Helein [1] is given. When the boundary datum has topological degree 1, the
asymptotic behavior of minimizers of the Ginzburg-Landau functional with variable

cocflicient == 15 given. The singular point is located.
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1. Introduction

Recently, Bethuel-Brezis-Hélein [1-3] have studied the asymptotic behavior for the
minimizers wu, of the following Ginzburg-Landau functional in H; (Q:R%) = v €
H'(Q, R?),u |an= g},

A [ |1vul + 551~ Py (L.1)

where {} is a simply connected, star-shaped and bounded smooth domain in B2, ¢ :
d) — S' is a smooth map, £ is a small parameter. They proved that there is a
subsequence £, | 0 such that

Ug, —F Us 1D Gltﬁtu{ﬁl'\{ﬂh' -+, ajg }) and in Gfirziﬂ]: Vk e N

where d = deg (g,9f2) denotes the winding number, u, : Q\{ay,- - yagp — S is a
smooth harmonic map, aq,--- » @1q are the limit positions of the zeros of Ug, lzeros of
U, are called vortices which correspond to the normal points in superconductor) which
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minimize the so-called renormalized energy W(b) (sce [1]). This problem is related to
the phase transition in superconductivity (see [4]).
In their proofs, a key estimate

5 [ A-hePi <o (12)

is derived from the global Pohozaev identity. From (1.2), for £ small enough, one
can obtain the uniform upper bound on the number of zeros of u.. Then the pre-
cise lower and upper bounds on the energy Le(uc) lead to a priori estimate for w, in
Hy (2, - @41 1)- Finally, they obtained the convergence of wu, _, subsequence of
minimizers, in various norms.

In [5], based on a local version of (1.2), M. Struwe got a similar result to (1] without
the restriction of star-shapedness on . There are also some other generations (see
[6-10]).

In this paper, we discuss open Problem 4 in [1]. That is,

i Efp_ E[wusj + (1~ fuel?) (1.3)

where @ = {(21,22) € B|(z1 - 1)°+ 2} < R20< R< 1), u, € H} (2, R?), g is as
above. We intend to study the behaviour of minimizers Ug,, a8 £ L 0. This problem
15 related to the model of superconducting thin films having variable thickness (see
[11]). In contrast with [1], we call our problem Ginzburg-Landau model with variable
coeflicient.

In our case, some arguments in [1] or [5] do not work. As a try, we only cousicder
a special situation, Le., deg(g, Q) = 41, By a different way, we prove that t. has

unique zero (in Section 3). To get a uniform estimate, we use Lemma 4.4 to prove that

Ug| = 2 in 2 Te,2¢M), 0 < B < 1 2, z. is the unique zero of u,. This is much
5 : q

different from [1] in which they prove lz| > % in O\ B(z,, Age). Next, we prove that
Te =+ a = (1 + R,0) and for any sequence i, , there is a subsequence, still denoted by
Ug,, such that u., = u, in C¥(K), Yk € N, VK ccC €2, where wu, is a harmonic map
from 2 — S'. The Euler equation of (1.3) is

1

H 1 ,
{ — Al + —ugp, = Eug{l — |u|?) in

T (1.4)

Ue [an=g
This paper is organized as follows. In Section 2, we shall discuss the case deg (g, #02) =
0 which is the base of the case |deg (9,0€)| = 1; In Section 3, we prove the existence
and uniqueness of the zero of te; In Section 4, through a series of a priori estimates,

we establish the asymptotic behavior of g, Le., Theorem 4.1, our main result.
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2. Results for deg (g,00) =0

In this section, we assume 2 C R? is a simply connected bounded smooth domain
and star-shaped with respect toa point z, € Q,b> 2 > ¢ > Oforany z = (z1,22) € O
(a, b are constants), g : 0 — S is smooth and

deg (g, 881) =0

Let 1, be the minimizers of &, (u) in H;[ﬂ B2, dey

1 1 1 ;
E = inf —f—[? 2 =1 - 3.2])
(12¢) Ve i (2 sz ||l o (1~ ul) (2.2)
We have the following lemma.

Lemma 2.1

(2.1)

Let (2.1) hold. We have

ue —+ ug strongly in H' (0, %)

(2.3)
; 3 . 1 1 2
where uy satisfles Elug) = inf — f — |V u|“dxdzry

L3

-ul.'—_'Hs,t[ﬂ,.Hi:I 2 Ty
Proof There is a smooth function g : 802 — K such that

g=¢€"% ondn

since £ is simply connected and deg (g, 80) = 0. It is clear that one cah minimize
1 1

= | —|Vul* in H}

2 Ja ﬂ}i' | 'q

(£2, 5') by some ug in which similarly to 2], wo = " in Q, where
w1 uniquely solves

{ —div (l?tpi) =1 in {2
I

1 = o1 L2
Therefore

1 1 1 1 1 1
™ —‘F :2 —f e L3 2,2 = _f St =
il :I:I| '11-_| 9 A2 o T “— |'U-E| } =5 ﬂi“l’?uﬂl < o0

(2.4)
and then there iz a subsequence £,, | 0 such that

e, — 1 weakly in H'

(2.4) and lower semi-continuity imply

I (] Tl
= —vﬂﬂ_f—t? 2
2f”ml| Ul £ | Vg

On the other hand, we also have

Ly
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which implies |u| =1 a.e andu e H ;{ﬂ, 51}, Moreover, from the minimizing property
and (2.4) we deduce that

: 1 1
lim [ —[Vue, P = [ —[Vuol?
n I J0 T

T =

and u, —+ ug in H'(Q) since 0 < a < 7 < b. The convergence of the full sequence is
a consequence of the uniqueness of wuy.
By modifying the proofs of Lemmas A.1 and A.2 in [2], one can prove

Lemma 2.2 Under the assumptions of this scction we have

.
[uel 1, [Vue| £ = in @ (2.5)

The following two lemmas can be proved by the same method as in [1].
Lemma 2.3 Let u. be o mintmizer of (2.2). Then

LFE

Lemma 2.4 There exist positive constants Ay, o depending only on g and £} such

2

< C = 0(g,9) (2.6)

it

&

that of u, 15 as ebove salisfying

1

{
= (1—|uel?)® < po when = = X, 151 (2.7)
£° Jang,, E

then

lug(z)| = Yo € 0N 6 (2.8)

1

5

where By is a boll with radius [ > 0.
Proof See the proof of Theorem II1.3 of [1].

Corollary 2.5 There exists gy > 0 such that for e < g

|| = é in (1 (2.9)
Proof Since u, — uy in H1, we have
1 7. 242
Efﬂ (1 — huel2)? = 0 (2.10)

and (2.9) follows from Lemma 2.4.
Now, we can prove the following theorem by the same method as that in [2)].

Theorem 2.6 We have, as e — 0,

ue = ug i CVTEID, Ya € (0,1) (2.11)
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| At || poory = C (2.12)
ue, 2+ u, in C*K), VkeN, YK ccn (2.13)

We now turn to the minimization problem (2.2) with ¢ replaced by g. where gz
80 — R? and g, — ¢ uniformly on 99 as well as

1<l oo fany < 1
llgllzrijany < €

L 19:1%)? < Ce? (2.14)

It is clear that |g| = 1 on 90 and deg (g, 992) is well defined. In what follows, we denote

by ue the corresponding minimizers. We still assume deg (g, 8Q) = 0. Then g can be
written as

g=¢e" on a0

(2.15)
where ¢ : 3 — R is a continuous function and @y € H(85). Let
g = gt
1
-% - (—?t,::q) =0 inQ
2 (2.16)
#1 |an= @y
We have
Theorem 2.7  Under the above assumptions, there hold
u. — ug, strongly in H'(Q) (2.17)
e — g, uniformly on 0 (2.18)
us =+ ug, in CE (), WkeN (2.19)

Proof  The method proving Theorem 2 in [2] now can be applied.

3. Zeros of Minimizers

In this section, we discuss the zeros of the solutions of (1.4). Assume deg (g, afl) =

£1, we prove that the solution u, minimizing (2.2) has unique zero. The argument is
similar to that of [12].

Let ¥(s) (0 < s < 2rR) be a one-to-one parameterization of 82 with arclength.
Consider Dirichlet data, g, in C*7*(8Q, R?). In polar coordinate, we have

g(¥Y(s)) = (cosf(s),sind(s)) (3.1)
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and we assume that
#(3)#0for 0 <s <2xR, |0(2rR)—0(0)| =27 (3.2)

Thus g(Y (s)) crosses each ray # =  exactly once as s increases from zero to 2nR. In
the following, we set 41 = 1 — 1, 2 = 72 and still denote them by 1, .

Lemma 3.1 There exists at least one minimizer for E.(-) in H (0, R?) which
must be a weak solution of

{ —Au+ X Uy = ig-ul[l — |ul?) in £

1+ 2 £ (3.3)
U =g o (81

Moreover, any weak solution i of (3.3) in H'(Q, R?) is of class C*2 (02, R?) and

ill cevegm m2y < CUIEN 2oy, llgll c2re o ) (3.4)

Proof The general theory of variational problems ([13, Chapter 1]} implies the
existence of a minimizer u in H;[Q,HE]. In addition, © € LP(Q, R?) follows from
imbedding theorem for any p < +oo since 2 © R?. And clearly, u solves (3.3).

Equation {3.4) follows from standard elliptic estimates.

For o € R, u = (w1, u2), & minimizer of E.(-) in Hj{ﬂ,ﬂg], set

'T.IL',-_-E{X:I = =1 {I} sin v + 'EL;:{X} COS o
No = {z € Q| wa(X) =0}

Lemma 3.2 For each o, N, is a O imbedded curve in @, which contacts 9% at
twer chistinet points.

Proof First, consider N, N 8L,

From (3.2) we have N, Nd2 = {p;,pa}. Let ¥ (s1) = p1, Y (s2) = p» we can assume,
without loss of generality, that 8(s1) = o+ 7, #(52) = @, then

Wa (Y (s)) = [— cos#(s)sin o + sin#(s) cos

Hence

2 (¥ ()) o= O'(s1) 0

¥,
(Y (5)) lsy= 0'(s2) £ 0

3
Therefore, there are neighborhoods O and Oy of p; and ps, respectively, such that
No MOy and Ny N Oy are C* curves intersecting 88 at p; and ps.
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Note that w, is a €2+ splution of
R, o ) +i{l—]uJ2j =0 inQ
A T e g2 bt o :

1 1
d —(1—|ul|)?,
ezt el 1+ 21
results ([14, Th1-2 and Cor. 1]) that the set K, = {x e |w, =0, Vg, = 0} is locally

finite. Our previous analysis near 40} then implies that K, is either empty or a finite

are continuous. It follows from Hartman and Wintner's classical

subset of £2. It also follows from [14] and our analysis near 40 that Ny consists of a
finite number of ¢! arcs along which Yy, £ () except at their endpoints in moreover,
the arcs may intersect only at these (interior) endpoints. Exactly two endpoints of these
arcs are at df?, and the rest make up H,.

Finally, we note that at least four distinct arcs in N, meet at each point in K.
This follows from Hartman and Wintner's analysis of w, near Ty in Ky indeed, they
show that for some integer i there is a homogeneous harmonic polynomial, H,, of order
n 80 that

We(z) — Hy(x — Ty) = G“I s 5'3u|n:|'

and
Ve (#) = VHp (2 — z0) = of|z — xo|™)

(sce {3) and (5") of Section 1 in [14]). This demonstrates that. the nodal set of w, has
the same structure near Ty as that of the harmonic function & {1 — zq).

Now, the proof left over is just the same as that in [12], we omit it.

With the help of Lemmas 3.1 and 3.2, we can prove as in [12] the following

Theorem 3.3  Under conditions (3.1), (3.2), the minimizer u. of E. in H 4 has
untque zevo o € 81, (for0 < e < 1 J with sign (deg (g, 80)) as its degree.

4. Main Result and Its Proof

In this section, we prove our main result of this paper under the conditions (3.1)
and (3.2).

Theorem 4.1 Let (3.1) and (3.2) be fulfilled. Then Te =+ a = (1+ R,0) (as
e—0). And, for any K CC Q, we have, for some e, | 0,

Us, > uy in CHK), VkeN (4.1)

where ., is the minimizer of (2.2), and u, satisfies

— ¥ (i?u.) = l-'a.ﬂ,..|"'7.?"i.a,t[ir i £
I Iy (42]
[us] =1 in £
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To prove this theorem, we need several lemmas. We first give an upper bound for

E.(-).
From now on, we always assume that (3.1) and (3.2) hold. For simplicity, we assume
deg (g, 002) = 1.

Lemma 4.2 For any op € (0,1), there is a constant Cy = C1(82, g, o¢), such that
for i< e=1

1
inf  E.lu) <
uEH:Hn,R?j e(u) 1+ R—oy

Proof Given gg € (0,1), we may find a ball B,(xq) CC 2 such that z; € (1 +
Ry —op, 1+ R), ¥z = (31, z2) € By(zp). Consider new domain 2 = Q4 B,(g) and new
BT dB,(zp). Then

& — @ol’
deg (g, 80) = 0 since deg (g, Q) = 1. This implies that there is a map @ € H%{E'J!,_ S1y.

Therefore

7| logg| + C) {4.3)

boundary data §(z) : g(z) = g(z) on 95, g(z) = q1(z) =

E.(i,Q) < Clp, g)
On the other hand, for £ = 0, p > 0 small enough, let v, be the minimizer of

1 1 TY
I(g,p) = inf [—f vu?+—.~f 1—Juf)*

It follows from [1] that
I{e, p) < 7|loge| + Clp)
i inQ

Therefore, taking v = 1 as a comparison function, we have
v, in Byzg)

.f EE {EE !ﬂ =EEN;|'ﬁ _[_E :E .
uEffﬁn,Rﬂ} (1) < Exv, 1) (%, §2) + Ee(vp, Bolxn))

1
<
1
< T :
<o e I:rﬂ:r'| log | + C1(12, g, o0)

Lemma 4.3 Any critical point u. € HJ(Q, R?) of E-(-) satisfies
ltie] €1, |Vuel £ Cfe, . in (4.4)

with a uniform constant C' depending only on g and §2.
Proof BSee the proof of Lemma 2.2
For each £ > 0, any minimizer u, has exactly one zero z. € . We denote for p = 0,
1
8B, (x)n0 T1

; 1
flp) =p ll?n.ﬂ‘l + F{l — }*u,5|2}2 do
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where do denotes the arc-length measure,
Lemma 4.4 For 0 < e < e™!, there exists 8, € cv, 2] for some o € (0,1) such

that
W [ [wuﬁ it g |u|E]2]dﬂ
1+ R 8B _g, N0 2e2
1 1
By by S 7 R Sy TR PO 4 ¥
= Lﬁ‘:ﬁmﬂ T [!?u| 22 =) ]dﬁ
< Cle) (4.5)

Proof From Fubini’s theorem we have
1 ER e dp
Belue) > 5 [ 1)

> Slloge| _ inf f(p)

g2 Cpen
= 5llogel f ()

and (4.5) follows from Lemma 4.2.
One of the key steps in the following discussion is to prove
1
Proposition 4.5 For0 < 4 < 1 let Sty = Q\Bo s, (z:). Then

L=
| ()] = 3 n . (4.6)

1

- £ < il s
for 0 < e < gg Elh?{lﬂ-ﬂ}h

e~ !, where €, is determined in the following, x. is the
unique zero of u..
The proof of this proposition is based on the following two lemmas.

Lemma 4.6 Let 4. be a minimizer of the functional

1 1

Flu) == | ———
{u]l 2Jg g+ P,

[wmﬁ E 21?{1 = |ﬁ12}2}, 0<A<1

with 4 = g, on 4B, where B = B, (0). Suppose

1 o
- 2 2 2
— — <
[, 1Prac + 5o5(ai = 17 < @7)
for some constant Ch, and 0 < & < L L IR 1 Then, for all
: 1:? 2{1+R}} 1+R ﬂ 1_&"’ Ekﬂ:"

sufficiently small £ > 0 (depending only on Ci), we have

Fel(te) < Cy = C2(Ch, R) (4.8)

whenever deg (g, B) = 0.
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Proof From (4.7) it follows that g. € CY2(8B) and |g.| = 1—Cel/% for a constant
C' depending on €. We may assume g, — g uniformly on 853, In particular, deg (g, 35)
is well defined. Taking a special comparison function Vi = n.e™* where 1. and . are
determined by

{ —?Ang.+n.=1 onB

e = |ge| on 48
{ — A =0 on B
We = tpg on 9B

respectively, in which . : 9B — R is defined by €™ = g./|g.|, we may choose ¢, such
that @. — o uniformly on @B, where " = g on #B. We then deduce

1 1
Fo(ta) s = of ——Gon :

1 1
& 5 fhpa 2
< E[H%!?%' + Ce

— Gg

Lemma 4.7  With the same hypothesis as that of Lemma 4.5 and deg (g, d8) =0,

there holds
in B

| L

|t ()| =
whenever 0 < € < g1 for some g1 depending only on I
1
+ > 1+R‘: Top < 1__‘ﬁ:mﬂ1-a_*$ﬂ
(n — oo0), and a sequence of minimizers #,, = i, with boundary data in satisfying
(4.7) and deg (gn, B) = 0. Moreover, i%ﬂﬁﬂ_l < 3/4.

Proof If not, we may have a sequence £, | 0,

! e 4 3
Since |g,| — 1, ||gﬂ||31;z{ﬁm < C, we see that [i,| > E s E whenever 1—|z| < Chey,
for some (. Indeed, the function ﬁn{:c] = Up(enx) satisfies
- " ; 7
(a) [Va(z) — Valy)l < Clz —y|Y3, for |z —y| < 1, 7,y € —B,

W
1
(b) [VVo| < C/R for Re (0,1) and |z| < — — R,
Both (a) and (b) follows from the standard elhptlc estimates.
Hence, if |&,(z)] < g, then there is a ball {z : |z — | < ne,} C B, for some 5 > 0

o 4
with |ir,(z)| < : for all & : |z — z,| < 9e,,. Therefore

1 1 1e
f —— -5 (1- |u,,1|2)?d:::
B zop + T1En ©n

= Ly o e
e S A
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= Cn, R)
>0

By Lemma 4.6, E; (U,) < B¢, (V.,) < C». Since gn —+ g = e'¥° weakly in HY(8B),

f —-I—] |?;.-';,,|Eﬂi.'rx: converges to f i|‘ﬁ'ﬂ£}g|2, where w3y 18 the harmonic extension
B ¥in + &nd B Tp
of :p.;;ﬂ, thus ; ; 1
ImE. (V..)<= [ =|Vigl3dz 4.9
1171 E.n'[ snj B 2L$D| 'ﬁ"ﬂl [ }

On the other hand, @, — @ weakly in H'(B) with % = g on dB and |u| = 1 a.e. in B,

we have

1 1 3
lim E, (i) 2 C(n, R) +lim | Vil |

2 =) :E:l:ln -+ Endn

= i 2
> Cln, ) + 5 fﬁ ~ [Vl

therefore, we obtain a contradiction since C(n, B) > 0.
Remark Both Lemma 4.6 and Lemma 4.7 remain true when we replace B by a
bounded Lipschitz domain with Lipschitz constant independent of &,
Now we prove Proposition 4.5.
For any zg € Q: = 8\ By_s, (z:), consider a functional on B g, (2¢)\ B.zs, (z0) = D.
It follows from (4.5) that there exists A, € [¢2%1, £P1] such that

1 1 5
A |:~?u2+—~.-1-u2 ]EE‘
£ 3B, (o) s 21 El 453{ I E| ] (ﬁl)

and A-1(D N — xg) is a Lipschitz domain with Lipschitz constant independent of &.
On A7YDNQ, — xg) = Dy, function u.(A-z + zp) minimizes the functional of the form

L8 89 a2
fﬂ: To1 + A=T1 J"r;"ej

with boundary data g, on 8D, satisfying

1 A
f 2 [iﬂrysﬁ T SRR \9e[*) ] < C(p1) (4.10)

Since |ue| > 0 on £ N D, one has deg(gs,d0;) = 0. Then Lemma 4.7 leads to
lue(z)] = %ﬂ in DM §, for ¢ < 1 since g/, < el=2% = 0.
For 0 < ¢ < &7 and minimizers u. of F., consider the set X, = {.T. e |u(x)| <
%},Ehen
viTilE B[EE,Eﬁl
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The same proof in [6, Theorem 2] gives
Lemma 4.8 There exists a number Jo € M such that for any collection of disjoint

balls B(z5,e/5), i€ Q,1<7<J, with Jﬂg{.a;;][ < %: there holds J < J.

- 3 e 4 :
Now consider the cover { B (:z.', E)} 2y of £.. By Vitali's covering Lemma, we can
Tl

find a collection of disjoint balls B(25, 7), 25 € %, 1 < j < J such that

J
B0E A B(z%, e)
J=1

By Lemma 4.8, we have J < J, with Jp independent of &,
T J
As in [1], we may find A > 1 such that Y B(z5,e) C Ile B(x5, Xe) with J; < J and
_'il: j=
B(z3,2)e) disjoint where ) is independent of &,

Lemma 4.9 ([, Theorem 2]) There is a constant C = C(SY, g) such that

E%fﬁ{l_[uﬁrﬁf e (4.11)

uniformly in 0 < & < &1, for some £, > 0.
Now, we prove the first claim in Theorem 4.1, i.e., for the unique zero ., of U .

Z: +a=(14+R,0) asz—0

We argue by contradiction. If the claim fails, then for some op > 0, there exists a
subsequence g, — 0 such that z, — a; # @, @y € L1,

In order to make use of Theorem 4 in [15] and Corollary II.1 in [1], we proceed as
follows since a; may belong to 99,

Extend g to g defined on ' = Br((1,0)) (R < R < 1) such that g :2\Q - 51
g len= g and 7 satisfies (3.1) and (3.2) as well as deg (g, 60) = 1. . and s:i are also
extended such that u, = g on '\ 1

Hence

B, (ue,, ¥\Q) < C

with C' independent of n.
From the assumption on a1, we may find p > 0 small such that for some oo > 0,

— > in B(ay,p). Since z., — a1, we have g5 — a1 (n = oo). Then
| 1+ R —2ay s
B [mj“,.lsn} C Blai,p), j=1,---, .1y, for n large enough. Applying Theorem 4 in [15]

and Corollary IL.1 in [1], we have

EE Eutg ﬂf} = EE{H'-E!I B{ﬂ'l: .l':}”
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1 o
> log £ — ¢t
S R e

Hence,

B |:.""-4'Js~.- ﬁ} =2 E&{un ﬂxj - E, {“:’, 1 ﬂn‘nﬁ}

1 4
> Gar
s B £ Rk &

Combining this with (4.3) it is led to a contradiction:
cgo|lne,| < €, independent of n

Now, we prove the convergence in Theorem 4.1.
We should keep in mind that we have found disjoint balls BlziAe), L < 7 < Jy,
J1 < Jy such that

{ jus(z)| > 1} Yz & ﬂ\ é.l B(z5, Ae), JE={1,---, h}
|: _-;'1’:I"E}HB{$£ :] IEI H'i:jzlf”ﬁ‘-rl} E?EJ
Define w; = B(zf, Ae), and

(4.12)

Ol — ”\\jgz ’
ﬁg = ﬂ\jgﬁw_?

where K = {t € J* : 92 Nw; # 0}, L = J5\K.
Note that, if we write locally on Q, u. = p.e™*, with p. = |u.|, then we have
div (Elrpg'?i,bg) =1 in £,
11 i ; (4.13)
-V- (lﬁ?‘ﬂf) + apen + pe| Vibe|* = o Pe(l=p2)  inQ
However, we must note that we cannot write (4.13) globally since p. vanishes at some

point in ), the corresponding . then need not be defined as a single-valued function.
To overcome this difficulty, we proceed as follows.
Let @, be the solution of the linear problem

div (%?@3) —0 inD, (4.14)

P, =constant =¢; on dw;, ie L {4-15:|

®. =0 ond, (4.16)
I 3'@"5 = L :

faw = G =m0, 0= deg(us,0w), i€ L (4.17)
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We recall that p. = % in £2. by (4.12), hence (4.14) is elliptic and @®. exists and is

unigue.

It is obwvious that

a 1 a 1
5111 25| £ dza \ p? 1 T

T 1 1
D=(—[—-u x(-—u) + Per. |, [‘L!-E (-——u) + P })
i Tl e e

then, by (4.14) and (4.18)
divD =0 and f D=0
Bty

By Lemma I.1 in [1], there is a function H, defined in £2, such that

L;:(_% 356)

dxs ' 81,
that is, 1 ; 1
:E_]_us X Uegz; + @E.T.i == :E_F?EH-EH
. 11 in Q. (4.19)
Eﬂz A Uggy — 'q?’-::xj = Epgjfszg
We have from the fact div (E- ‘Fug) * e = 0 that
1
: 1 :
div ( T-"H ) 0 in £, (4.20)
From (4.19) it follows that
|we # V| < |V |+ |VH,| in Q. (4.21)
Finally, we claim that
1
|Vue| < |Vpe| + EIHE X V| (4.22)

Indeed, if we locally write u. = p.e'¥, we easily see that
e X vu}: = Pg]??}rf| (4‘23]

and
|Wue| < |Vpe| + pe| Vil

These imply (4.22). Furthermore, from (4.21) and {4.22) we deduce

[Vue| < 4[|V | + |VH,| + |Vpel]] in £, (4.24)
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To get estimates on |V, |, it suffices to estimate V&, |, |VH,| and |Vp.| respectively.
This is what we are to do in the following.

Lemimna 4.10- ([1], Lemma X.7]) Let 1 < p < 2. There is a constant C = Clp, R)
such that

Sl |—

(fﬂ lv@slﬁ)wp < Clp, R)|Q:|7~

Lemma 4.11 ([1], Lemma X.13]) For 1 < p < 2, there are constants o and C
independent of £ such that

(4.25)

f IVp:]? < Ce® (4.26)
{1,
Lemma 4.12  For any K CC Q, there exists a constant C'x independent of £ such

that
f [VH|*> < Ck (4.27)
K

Proof Recall that H. satisfies
1 Joen
div (—pﬁvHE) = [)iina 00
T

we claim that f —1-92 4.
B T du
Recall also that
; 1 ‘
i(u. X iug,) + o (fu x —uzg) =0 in £
drg

dxy T T

Integrate it over w; to obtain

=0, 1 € L. For simplicity we drop «.

-/' 1 du
i — ===
;e T1 O

On the other hand, by (4.19) and %’? = 0 on dw; because of (4.15), we obtain

1 du 1 ,8H

UK — — = —
iy O .-:r:;~'|rjl G

the claim follows. Invoke Lemma X.4 in [1] to assert that

on dw;, i€ L

sup H — '151{ H < C independent of &
n, .

Set Hy = isgng, peCPN),0<p<1l,p=1in K,p =0 in Q\K', where K CcC

K' CC @ and K' CC €2, for £ small enough, multiply (4.20) by (H — Hy)p? and
integrate over 1., we get

1 1
f 0’ —p*|VH|? = ~2f p—p°(H — H))VH - Vo
e, X1 . L1
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On the other hand, since sup H — igf < (', we have
0, e

1
f o—p*VH -V (H — Hp)
2. I

1 1 1
<3| P—AIvHE O [ Livep
Q. I 1, o1

Therefore,

> [ e Lovme <o
2 o by

ie.,
/ [VH|* < Cx
K

Hence, we get
f Vel < Cx, YK CCQ, Wi<p<2
i

Then, we may extract a further subsequence, still denoted by &, — 0, such that

— u, weakly in WP

Ue loe

T

Irom Lemma 4.2 we know
fﬂ (1— |ue/?)? < Ce2(1 + | loge]) = 0
therefore u,,| = 1in L? and |u.| = 1 ae., ie.,
us € Wp'(R,8") foralll <r <2

Note that &, and H. are only defined on 0., we extend them in O by setting

Qe = C; in wi, 1€L
3 (4.28)
'1},5 = in ﬂllﬁlﬂg
and 1 = ;
"‘T" . (_?HE-) = D in lalg
g MR i€ L (4.29)
L= on dw;,
We still denote them by ®, and M
It is clear that ©. = 0 on & and
fﬂ [VEJP < Cp, V1< p<?2 (4.30)

By the trace theorem together with Lemma, 4.12, and definition of H, we see (as in
Lemma 3 in [15]) that

f VH.2<C, ieL
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where ' depends only on g and £2. Combining this inequality with Lemma 4.12, we
still have
f IVH.? <€, YK cCQ and e small enough (4.31)
K

In view of (4.30)-(4.31), we may extract a further subsequence £, — 0 such that

., — &, weakly in WP(Q), 1<p<?2

H. — H, weakly in H._(£) (4.32)
and o H
Us XK Uspy T L1 Pug, = 11s
{ i L1 wap T1 [433}
e ¥ Uspe -1 iﬁl{ptx! = H*IE
where u,, ., H, are smooth in £2.
Lemma 4.13  For any K CC £2, we have
e, —+ w, strongly in H'(K) (4.34)
1 1
— N (—?u;) = — |V, in 0 (4.35)
| a5
Proof We only need to prove,
$., — ., strongly in H'(K) (4.36)
H. — H, strongly in H'(K) (4.37)
Pe, — 1 strongly in H'(K) (4.38)

Let £ € CfF(2), £ =1 in K. For n sufficiently large, the support of £ is in £}, and
therefore we may multiply (4.14) by £(®. — @.) and integrate over {2 to obtain

1 " 1
L 7 PEIV e+ (B, — 2.V, - VE

En
= [ Zleve, Ve, (4.39)
a P2,
However, (4.32) and Sobolev imbedding theorem guarantee
[|[®c, — Puflpe = 0, asn—o00, ¥g<+00 (4.40)
hence,
f J:TI{@ER — § )V, -VE 30, asn— +oo (4.41)
nLe

On the other hand, we have

f L evs,, Ve, o f £1E[V8,[?, asn — +oo (4.42)
n pE e
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Hence, we obtain

f — 5, £|VD,, | -+f:r E|VE,|* (4.43)
Pz,
Since p., < 1, it follows that
[ 218198, < [ :£[9%, 2 + o(1)
0 Y
And therefore, by lower semi-continuity and x; > ag > 0, we deduce that
V@, — Vo, strongly in LEEI{]

Similarly, using the equation (4.20), we have

1
f =02, gijEnP—}fﬂHﬂvH,F a8 11 — o0 (4.44)

G _
[ 2 eV - HOP = [ 2 VA,

1 | :
-2 [ = eV, VH, + [ =2 (VA (4.45)
] N
Note that
- 12 evm, . va, —}f —E[VAL (4.46)
L)

Combining (4.44)-(4.46), we obtain (4.37).
Finally, testing (4.13)2 by £(1 — p..) and using (4.23), we obtain

1

P

f _élvf‘}ﬁﬂl [ {1 -} P{?ﬂ}vlﬂ-_‘?n = v‘f
nm 1T

(1-— B
_[E#“jluE*‘ '::'q:";'?t'[-ﬁ:u.l-g IEIIH (1_»‘:%“}[1_'_!0'551}
En I
a o
{pfn ]T]l: T ﬁfﬂ} [4"4'?}
q T
Since p, = 1 in WL, we are led to (apply (4.21))
L V0P S C [ €0 pe JIVHL P+ VO D) o) (448)

Using (4.36), (4.37), the fact p., — 1, a.e. and Lebesgue’s dominated convergence
theorem, we see that the right-hand side of (4.48) tends to zero as n —+ +oo. This

proves f £|Vpe,.|* = 0 and henee (4. (4.38).
Now, we prove (4.1) and (4.2).
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Step 1 For any K CC 01, we have
Ug, — ts  in A (K) (4.49)
Proof By (4.36)-(4.38), (4.19) and {4.33), we know
ug, X Vue, — u, x Vu, in L2(K) (4.50)
On K we may write locally
Us, = pe, e'¥ and u, = ™ (4.51)

s0 that
Ue, X Ve, = pfn Ve, e X Vu, = Vb, (4.52)

Hence, by (4.50) and (4.38) we have
Vb, — Vb, in L*(K) (4.53)

and (4.49) follows from (4.51), (4.53) and (4.38).

Step 2 Finally, (4.1) follows from Step 1, Fubini’s Theorem and theorem 2.7 by
the method in [1].

Step 3 (4.2) follows from above estimates and convergence as well as the fact

-V . (i"?—”uﬁ * uE) =1k
|
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