ON THE ZEROS AND ASYMPTOTIC BEHAVIOR OF MINIMIZERS TO THE GINZBURG-LANDAU FUNCTIONAL WITH VARIABLE COEFFICIENT

Ding Shijin

(Department of Mathematics, Suzhou University, Suzhou 215006, China)

Liu Zuhan

(Department of Mathematics, Normal College, Yangzhou University, Yangzhou 225002, China) (Received Jan. 14, 1995; revised Oct. 19, 1995)

Abstract In this paper a partial answer to the fourth open problem of Bethuel-Brezis-Hélein [1] is given. When the boundary datum has topological degree ± 1 , the asymptotic behavior of minimizers of the Ginzburg-Landau functional with variable coefficient $\frac{1}{x_1}$ is given. The singular point is located.

Key Words Ginzburg-Landau functional; asymptotics; vortices.

Classification 35J55, 35Q40.

1. Introduction

Recently, Bethuel-Brezis-Hélein [1-3] have studied the asymptotic behavior for the minimizers u_{ε} of the following Ginzburg-Landau functional in $H_g^1(\Omega; \mathbb{R}^2) \equiv \{v \in H^1(\Omega, \mathbb{R}^2), u \mid_{\partial\Omega} = g\},$

$$E_{\varepsilon}(u) = \frac{1}{2} \int_{\Omega} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 \right] \qquad (1.1)$$

where Ω is a simply connected, star-shaped and bounded smooth domain in R^2 , $g: \partial \Omega \to S^1$ is a smooth map, ε is a small parameter. They proved that there is a subsequence $\varepsilon_n \downarrow 0$ such that

$$u_{\varepsilon_n} \to u_* \text{ in } C^{1+\alpha}_{\text{loc}}(\overline{\Omega} \setminus \{a_1, \cdots, a_{|d|}\}) \text{ and in } C^k_{\text{loc}}(\Omega), \quad \forall k \in \mathbb{N}$$

where $d = \deg(g, \partial\Omega)$ denotes the winding number, $u_* : \Omega \setminus \{a_1, \dots, a_{|d|}\} \to S^1$ is a smooth harmonic map, $a_1, \dots, a_{|d|}$ are the limit positions of the zeros of u_{ε_n} (zeros of u_{ε_n} are called vortices which correspond to the normal points in superconductor) which

minimize the so-called renormalized energy W(b) (see [1]). This problem is related to the phase transition in superconductivity (see [4]).

In their proofs, a key estimate

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \le C \tag{1.2}$$

is derived from the global Pohozaev identity. From (1.2), for ε small enough, one can obtain the uniform upper bound on the number of zeros of u_{ε} . Then the precise lower and upper bounds on the energy $E_{\varepsilon}(u_{\varepsilon})$ lead to a priori estimate for u_{ε} in $H^1_{\text{loc}}(\Omega \setminus \{a_1, \cdots a_{|d|}\})$. Finally, they obtained the convergence of u_{ε_n} , subsequence of minimizers, in various norms.

In [5], based on a local version of (1.2), M. Struwe got a similar result to [1] without the restriction of star-shapedness on Ω . There are also some other generations (see [6–10]).

In this paper, we discuss open Problem 4 in [1]. That is,

$$E_{\varepsilon}(u_{\varepsilon}) = \frac{1}{2} \int_{\Omega} \frac{1}{x_1} \left[|\nabla u_{\varepsilon}|^2 + \frac{1}{\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right]$$
 (1.3)

where $\Omega = \{(x_1, x_2) \in R^2 | (x_1 - 1)^2 + x_2^2 < R^2, 0 < R < 1\}$, $u_{\varepsilon} \in H_g^1(\Omega, R^2)$, g is as above. We intend to study the behaviour of minimizers u_{ε_n} as $\varepsilon_n \downarrow 0$. This problem is related to the model of superconducting thin films having variable thickness (see [11]). In contrast with [1], we call our problem Ginzburg-Landau model with variable coefficient.

In our case, some arguments in [1] or [5] do not work. As a try, we only consider a special situation, i.e., $\deg(g,\partial\Omega)=\pm 1$. By a different way, we prove that u_{ε} has unique zero (in Section 3). To get a uniform estimate, we use Lemma 4.4 to prove that $|u_{\varepsilon}| \geq \frac{1}{2}$ in $\overline{\Omega} \backslash B(x_{\varepsilon}, 2\varepsilon^{\beta_1})$, $0 < \beta_1 < 1/2$, x_{ε} is the unique zero of u_{ε} . This is much different from [1] in which they prove $|u_{\varepsilon}| \geq \frac{1}{2}$ in $\overline{\Omega} \backslash B(x_{\varepsilon}, \lambda_0 \varepsilon)$. Next, we prove that $x_{\varepsilon} \to a = (1 + R, 0)$ and for any sequence u_{ε_n} , there is a subsequence, still denoted by u_{ε_n} , such that $u_{\varepsilon_n} \to u_*$ in $C^k(K)$, $\forall k \in \mathbb{N}$, $\forall K \subset\subset \Omega$, where u_* is a harmonic map from $\Omega \to S^1$. The Euler equation of (1.3) is

$$\begin{cases}
-\Delta u_{\varepsilon} + \frac{1}{x_{1}} u_{\varepsilon x_{1}} = \frac{1}{\varepsilon^{2}} u_{\varepsilon} (1 - |u_{\varepsilon}|^{2}) & \text{in } \Omega \\
u_{\varepsilon} \mid_{\partial \Omega} = g
\end{cases}$$
(1.4)

This paper is organized as follows. In Section 2, we shall discuss the case $\deg(g, \partial\Omega) = 0$ which is the base of the case $|\deg(g, \partial\Omega)| = 1$; In Section 3, we prove the existence and uniqueness of the zero of u_{ε} ; In Section 4, through a series of a priori estimates, we establish the asymptotic behavior of u_{ε} , i.e., Theorem 4.1, our main result.

2. Results for deg $(g, \partial \Omega) = 0$

In this section, we assume $\Omega \subset R^2$ is a simply connected bounded smooth domain and star-shaped with respect to a point $x_* \in \Omega$, $b \ge x_1 \ge a > 0$ for any $x = (x_1, x_2) \in \Omega$ $(a, b \text{ are constants}), g : \partial\Omega \to S^1$ is smooth and

$$deg (g, \partial \Omega) = 0 (2.1)$$

Let u_{ε} be the minimizers of $E_{\varepsilon}(u)$ in $H_g^1(\Omega, \mathbb{R}^2)$, i.e.,

$$E(u_{\varepsilon}) = \inf_{u \in H_g^1(\Omega, R^2)} \left(\frac{1}{2} \int_{\Omega} \frac{1}{x_1} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (1 - |u|^2)^2 \right] \right)$$
(2.2)

We have the following lemma.

Lemma 2.1 Let (2.1) hold. We have

$$u_{\varepsilon} \to u_0 \text{ strongly in } H^1(\Omega, \mathbb{R}^2)$$
 (2.3)

where u_0 satisfies $E(u_0) = \inf_{u \in H^1_g(\Omega, S^1)} \left(\frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u|^2 dx_1 dx_2\right)$

Proof There is a smooth function $\varphi_0: \partial\Omega \to R$ such that

$$g = e^{i\varphi_0}$$
 on $\partial\Omega$

since Ω is simply connected and $\deg(g,\partial\Omega) = 0$. It is clear that one can minimize $\frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u|^2$ in $H_g^1(\Omega, S^1)$ by some u_0 in which similarly to [2], $u_0 = e^{i\varphi_1}$ in Ω , where φ_1 uniquely solves

$$\begin{cases} -\operatorname{div}\left(\frac{1}{x_1}\nabla\varphi_1\right) = 0 & \text{in } \Omega\\ \varphi_1 = \varphi_0 & \text{on } \partial\Omega \end{cases}$$

Therefore

$$\frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u_{\varepsilon}|^2 + \frac{1}{4\varepsilon^2} \int_{\Omega} \frac{1}{x_1} (1 - |u_{\varepsilon}|^2)^2 \le \frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u_0|^2 < \infty \tag{2.4}$$

and then there is a subsequence $\varepsilon_n\downarrow 0$ such that

$$u_{\varepsilon_n} \rightharpoonup u$$
 weakly in H^1

(2.4) and lower semi-continuity imply

$$\frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u|^2 \le \frac{1}{2} \int_{\Omega} \frac{1}{x_1} |\nabla u_0|^2$$

On the other hand, we also have

$$\int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \le C \varepsilon^2$$

which implies |u| = 1 a.e. and $u \in H_g^1(\Omega, S^1)$. Moreover, from the minimizing property and (2.4) we deduce that

$$\lim_{n \to \infty} \int_{\Omega} \frac{1}{x_1} |\nabla u_{\varepsilon_n}|^2 = \int_{\Omega} \frac{1}{x_1} |\nabla u_0|^2$$

and $u_{\varepsilon_n} \to u_0$ in $H^1(\Omega)$ since $0 < a \le x_1 \le b$. The convergence of the full sequence is a consequence of the uniqueness of u_0 .

By modifying the proofs of Lemmas A.1 and A.2 in [2], one can prove

Lemma 2.2 Under the assumptions of this section we have

$$|u_{\varepsilon}| \le 1, \quad |\nabla u_{\varepsilon}| \le \frac{C}{\varepsilon} \quad \text{in } \Omega$$
 (2.5)

The following two lemmas can be proved by the same method as in [1].

Lemma 2.3 Let u_{ε} be a minimizer of (2.2). Then

$$\int_{\partial\Omega} \left| \frac{\partial u_{\varepsilon}}{\partial n} \right|^2 \le C = C(g, \Omega) \tag{2.6}$$

Lemma 2.4 There exist positive constants λ_0 , μ_0 depending only on g and Ω such that if u_{ε} is as above satisfying

$$\frac{1}{\varepsilon^2} \int_{\Omega \cap B_{2l}} (1 - |u_{\varepsilon}|^2)^2 \le \mu_0 \quad when \quad \frac{l}{\varepsilon} \ge \lambda_0, \quad l \le 1$$
 (2.7)

then

$$|u_{\varepsilon}(x)| \ge \frac{1}{2}, \quad \forall x \in \Omega \cap B_l$$
 (2.8)

where B_l is a ball with radius l > 0.

Proof See the proof of Theorem III.3 of [1].

Corollary 2.5 There exists $\varepsilon_0 > 0$ such that for $\varepsilon \leq \varepsilon_0$

$$|u_{\varepsilon}| \ge \frac{1}{2} \quad in \ \overline{\Omega}$$
 (2.9)

Proof Since $u_{\varepsilon} \to u_0$ in H^1 , we have

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \to 0 \tag{2.10}$$

and (2.9) follows from Lemma 2.4.

Now, we can prove the following theorem by the same method as that in [2].

Theorem 2.6 We have, as $\varepsilon \to 0$,

$$u_{\varepsilon} \to u_0 \quad in \ C^{1+\alpha}(\overline{\Omega}), \quad \forall \alpha \in (0,1)$$
 (2.11)

$$\|\Delta u_{\varepsilon}\|_{L^{\infty}(\Omega)} \le C \tag{2.12}$$

$$u_{\varepsilon_n} \to u_* \quad in \ C^k(K), \quad \forall k \in \mathbb{N}, \quad \forall K \subset \subset \Omega$$
 (2.13)

We now turn to the minimization problem (2.2) with g replaced by g_{ε} where g_{ε} : $\partial\Omega \to R^2$ and $g_{\varepsilon} \to g$ uniformly on $\partial\Omega$ as well as

$$||g_{\varepsilon}||_{L^{\infty}(\partial\Omega)} \leq 1$$

$$||g_{\varepsilon}||_{H^{1}(\partial\Omega)} \leq C$$

$$\int_{\partial\Omega} (1 - |g_{\varepsilon}|^{2})^{2} \leq C\varepsilon^{2}$$
(2.14)

It is clear that |g| = 1 on $\partial\Omega$ and $\deg(g, \partial\Omega)$ is well defined. In what follows, we denote by u_{ε} the corresponding minimizers. We still assume $\deg(g, \partial\Omega) = 0$. Then g can be written as

$$g = e^{i\varphi_0}$$
 on $\partial\Omega$ (2.15)

where $\varphi_0: \partial\Omega \to R$ is a continuous function and $\varphi_0 \in H^1(\partial\Omega)$. Let

$$u_0 = e^{i\varphi_1}$$

$$\begin{cases}
-\nabla \cdot \left(\frac{1}{x_1} \nabla \varphi_1\right) = 0 & \text{in } \Omega \\
\varphi_1 \mid_{\partial\Omega} = \varphi_0
\end{cases}$$
(2.16)

We have

Theorem 2.7 Under the above assumptions, there hold

$$u_{\varepsilon} \to u_0$$
, strongly in $H^1(\Omega)$ (2.17)

$$u_{\varepsilon} \to u_0$$
, uniformly on $\overline{\Omega}$ (2.18)

$$u_{\varepsilon} \to u_0, \quad in \ C_{\text{loc}}^k(\Omega), \quad \forall k \in \mathbb{N}$$
 (2.19)

Proof The method proving Theorem 2 in [2] now can be applied.

3. Zeros of Minimizers

In this section, we discuss the zeros of the solutions of (1.4). Assume deg $(g, \partial\Omega) = \pm 1$, we prove that the solution u_{ε} minimizing (2.2) has unique zero. The argument is similar to that of [12].

Let Y(s) $(0 \le s < 2\pi R)$ be a one-to-one parameterization of $\partial \Omega$ with arclength. Consider Dirichlet data, g, in $C^{2+\alpha}(\partial \Omega, R^2)$. In polar coordinate, we have

$$g(Y(s)) = (\cos \theta(s), \sin \theta(s)) \tag{3.1}$$

and we assume that

$$\theta'(s) \neq 0 \text{ for } 0 \le s < 2\pi R, \quad |\theta(2\pi R) - \theta(0)| = 2\pi$$
 (3.2)

Thus g(Y(s)) crosses each ray $\theta = \theta_0$ exactly once as s increases from zero to $2\pi R$. In the following, we set $y_1 = x_1 - 1$, $y_2 = x_2$ and still denote them by x_1, x_2 .

Lemma 3.1 There exists at least one minimizer for $E_{\varepsilon}(\cdot)$ in $H_g^1(\Omega, \mathbb{R}^2)$ which must be a weak solution of

$$\begin{cases}
-\Delta u + \frac{1}{1+x_1}u_{x_1} = \frac{1}{\varepsilon^2}u(1-|u|^2) & \text{in } \Omega \\
u = g & \text{on } \partial\Omega
\end{cases}$$
(3.3)

Moreover, any weak solution \widetilde{u} of (3.3) in $H^1(\Omega, \mathbb{R}^2)$ is of class $C^{2+\alpha}(\overline{\Omega}, \mathbb{R}^2)$ and

$$\|\tilde{u}\|_{C^{2+\alpha}(\overline{\Omega},R^2)} \le C(\|\tilde{u}\|_{H^1(\Omega)},\|g\|_{C^{2+\alpha}(\partial\Omega)})$$
 (3.4)

Proof The general theory of variational problems ([13, Chapter I]) implies the existence of a minimizer u in $H_g^1(\Omega, \mathbb{R}^2)$. In addition, $u \in L^p(\Omega, \mathbb{R}^2)$ follows from imbedding theorem for any $p < +\infty$ since $\Omega \subset \mathbb{R}^2$. And clearly, u solves (3.3).

Equation (3.4) follows from standard elliptic estimates.

For $\alpha \in \mathbb{R}$, $u = (u_1, u_2)$, a minimizer of $E_{\varepsilon}(\cdot)$ in $H_q^1(\Omega, \mathbb{R}^2)$, set

$$w_{\alpha}(X) = -u_1(X) \sin \alpha + u_2(X) \cos \alpha$$

 $N_{\alpha} \equiv \{x \in \overline{\Omega} \mid w_{\alpha}(X) = 0\}$

Lemma 3.2 For each α , N_{α} is a C^1 imbedded curve in $\overline{\Omega}$, which contacts $\partial\Omega$ at two distinct points.

Proof First, consider $N_{\alpha} \cap \partial \Omega$.

From (3.2) we have $N_{\alpha} \cap \partial \Omega = \{p_1, p_2\}$. Let $Y(s_1) = p_1$, $Y(s_2) = p_2$ we can assume, without loss of generality, that $\theta(s_1) = \alpha + \pi$, $\theta(s_2) = \alpha$, then

$$w_{\alpha}(Y(s)) = [-\cos\theta(s)\sin\alpha + \sin\theta(s)\cos\alpha]$$

Hence

$$\frac{\partial}{\partial s} w_{\alpha}(Y(s)) \mid_{s_1} = \theta'(s_1) \neq 0$$

$$\frac{\partial}{\partial s} w_{\alpha}(Y(s)) \mid_{s_2} = \theta'(s_2) \neq 0$$

Therefore, there are neighborhoods O_1 and O_2 of p_1 and p_2 , respectively, such that $N_{\alpha} \cap O_1$ and $N_{\alpha} \cap O_2$ are C^1 curves intersecting $\partial \Omega$ at p_1 and p_2 .

Note that w_{α} is a $C^{2+\alpha}$ solution of

$$\Delta w_\alpha - \frac{1}{1+x_1} w_{\alpha x_1} + \frac{1}{\varepsilon^2} (1-|u|^2) w_\alpha = 0 \quad \text{in } \Omega$$

and $\frac{1}{\varepsilon^2}(1-|u|)^2$, $\frac{1}{1+x_1}$ are continuous. It follows from Hartman and Wintner's classical results ([14, Th1-2 and Cor. 1]) that the set $K_{\alpha} = \{x \in \Omega \mid w_{\alpha} = 0, \nabla w_{\alpha} = 0\}$ is locally finite. Our previous analysis near $\partial\Omega$ then implies that K_{α} is either empty or a finite subset of Ω . It also follows from [14] and our analysis near $\partial\Omega$ that N_{α} consists of a finite number of C^1 arcs along which $\nabla w_{\alpha} \neq 0$ except at their endpoints in Ω ; moreover, the arcs may intersect only at these (interior) endpoints. Exactly two endpoints of these arcs are at $\partial\Omega$, and the rest make up K_{α} .

Finally, we note that at least four distinct arcs in N_{α} meet at each point in K_{α} . This follows from Hartman and Wintner's analysis of w_{α} near x_0 in K_{α} : indeed, they show that for some integer n there is a homogeneous harmonic polynomial, H_n , of order n so that

$$w_{\alpha}(x) - H_n(x - x_0) = o(|x - x_0|^n)$$

and

$$\nabla w_{\alpha}(x) - \nabla H_n(x - x_0) = o(|x - x_0|^n)$$

(see (5) and (5') of Section 1 in [14]). This demonstrates that the nodal set of w_{α} has the same structure near x_0 as that of the harmonic function $H(x-x_0)$.

Now, the proof left over is just the same as that in [12], we omit it.

With the help of Lemmas 3.1 and 3.2, we can prove as in [12] the following

Theorem 3.3 Under conditions (3.1), (3.2), the minimizer u_{ε} of E_{ε} in H_g^1 has unique zero $x_{\varepsilon} \in \Omega$, (for $0 < \varepsilon < 1$) with sign (deg $(g, \partial \Omega)$) as its degree.

4. Main Result and Its Proof

In this section, we prove our main result of this paper under the conditions (3.1) and (3.2).

Theorem 4.1 Let (3.1) and (3.2) be fulfilled. Then $x_{\varepsilon} \to a = (1 + R, 0)$ (as $\varepsilon \to 0$). And, for any $K \subset\subset \Omega$, we have, for some $\varepsilon_n \downarrow 0$,

$$u_{\varepsilon_n} \to u_* \quad in \ C^k(K), \quad \forall k \in \mathbb{N}$$
 (4.1)

where u_{ε_n} is the minimizer of (2.2), and u_* satisfies

$$\begin{cases}
-\nabla \cdot \left(\frac{1}{x_1} \nabla u_*\right) = \frac{1}{x_1} u_* |\nabla u_*|^2 & \text{in } \Omega \\
|u_*| = 1 & \text{in } \Omega
\end{cases}$$
(4.2)

To prove this theorem, we need several lemmas. We first give an upper bound for $E_{\varepsilon}(\cdot)$.

From now on, we always assume that (3.1) and (3.2) hold. For simplicity, we assume $deg(g, \partial \Omega) = 1$.

Lemma 4.2 For any $\sigma_0 \in (0,1)$, there is a constant $C_1 = C_1(\Omega, g, \sigma_0)$, such that for $0 < \varepsilon \le 1$

 $\inf_{u \in H_q^1(\Omega, R^2)} E_{\varepsilon}(u) \le \frac{1}{1 + R - \sigma_0} \pi |\log \varepsilon| + C_1 \tag{4.3}$

Proof Given $\sigma_0 \in (0,1)$, we may find a ball $B_{\rho}(x_0) \subset \Omega$ such that $x_1 \in (1 + R_0 - \sigma_0, 1 + R)$, $\forall x = (x_1, x_2) \in B_{\rho}(x_0)$. Consider new domain $\widetilde{\Omega} = \Omega \backslash B_{\rho}(x_0)$ and new boundary data $\widetilde{g}(x) : \widetilde{g}(x) = g(x)$ on $\partial \Omega, \widetilde{g}(x) = g_1(x) = \frac{x - x_0}{|x - x_0|}$, on $\partial B_{\rho}(x_0)$. Then $\deg(\widetilde{g}, \partial \widetilde{\Omega}) = 0$ since $\deg(g, \partial \Omega) = 1$. This implies that there is a map $\widetilde{u} \in H^1_{\widetilde{g}}(\widetilde{\Omega}, S^1)$. Therefore

$$E_{\varepsilon}(\widetilde{u}, \widetilde{\Omega}) \leq C(\rho, g)$$

On the other hand, for $\varepsilon > 0$, $\rho > 0$ small enough, let v_{ρ} be the minimizer of

$$I(\varepsilon, \rho) = \inf_{v \in H^1_{g_1}(B_{\rho}(x_0), R^2)} \left[\frac{1}{2} \int_{B_{\rho}(x_0)} |\nabla v|^2 + \frac{1}{4\varepsilon^2} \int_{B_{\rho}(x_0)} (1 - |v|^2)^2 \right]$$

It follows from [1] that

$$I(\varepsilon, \rho) \le \pi |\log \varepsilon| + C(\rho)$$

Therefore, taking $v = \begin{cases} \tilde{u} & \text{in } \tilde{\Omega} \\ v_{\rho} & \text{in } B_{\rho}(x_0) \end{cases}$ as a comparison function, we have

$$\inf_{u \in H_g^1(\Omega, R^2)} E_{\varepsilon}(u) \leq E_{\varepsilon}(v, \Omega) = E_{\varepsilon}(\tilde{u}, \tilde{\Omega}) + E_{\varepsilon}(v_{\rho}, B_{\rho}(x_0))$$

$$\leq C(\rho) + \frac{1}{1 + R - \sigma_0} I(\varepsilon, \rho)$$

$$\leq \frac{1}{1 + R - \sigma_0} \pi |\log \varepsilon| + C_1(\Omega, g, \sigma_0)$$

Lemma 4.3 Any critical point $u_{\varepsilon} \in H_g^1(\Omega, \mathbb{R}^2)$ of $E_{\varepsilon}(\cdot)$ satisfies

$$|u_{\varepsilon}| \le 1, \quad |\nabla u_{\varepsilon}| \le C/\varepsilon, \quad in \ \Omega$$
 (4.4)

with a uniform constant C depending only on g and Ω .

Proof See the proof of Lemma 2.2.

For each $\varepsilon > 0$, any minimizer u_{ε} has exactly one zero $x_{\varepsilon} \in \Omega$. We denote for $\rho > 0$,

$$f(\rho) = \rho \int_{\partial B_{\rho}(x) \cap \Omega} \frac{1}{x_1} \left[|\nabla u_{\varepsilon}|^2 + \frac{1}{2\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right] do$$

where do denotes the arc-length measure.

Lemma 4.4 For $0 < \varepsilon < e^{-1}$, there exists $\beta_1 \in [\alpha, 2\alpha]$ for some $\alpha \in (0, 1)$ such that

$$\frac{1}{1+R} \varepsilon^{\beta_1} \int_{\partial B_{\varepsilon^{\beta_1}} \cap \Omega} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (1-|u|^2)^2 \right] do$$

$$\leq f(\varepsilon^{\beta_1}) = \varepsilon^{\beta_1} \int_{\partial B_{\varepsilon^{\beta_1}} \cap \Omega} \frac{1}{x_1} \left[|\nabla u|^2 + \frac{1}{2\varepsilon^2} (1-|u|^2)^2 \right] do$$

$$\leq C(\alpha) \tag{4.5}$$

Proof From Fubini's theorem we have

$$E_{\varepsilon}(u_{\varepsilon}) \ge \frac{1}{2} \int_{\varepsilon^{2\alpha}}^{\varepsilon^{\alpha}} f(\rho) \frac{d\rho}{\rho}$$

$$\ge \frac{\alpha}{2} |\log \varepsilon| \inf_{\varepsilon^{2\alpha} \le \rho \le \varepsilon^{\alpha}} f(\rho)$$

$$= \frac{\alpha}{2} |\log \varepsilon| f(\varepsilon^{\beta_1})$$

and (4.5) follows from Lemma 4.2.

One of the key steps in the following discussion is to prove

Proposition 4.5 For $0 < \beta_1 < \frac{1}{2}$, let $\Omega_{\varepsilon} = \Omega \backslash B_{2\varepsilon^{\beta_1}}(x_{\varepsilon})$. Then

$$|u_{\varepsilon}(x)| \ge \frac{1}{2} \quad in \ \Omega_{\varepsilon}$$
 (4.6)

for $0 < \varepsilon \le \varepsilon_0 = \varepsilon_1 \wedge \frac{1}{2(1+R)} \wedge e^{-1}$, where ε_1 is determined in the following, x_{ε} is the unique zero of u_{ε} .

The proof of this proposition is based on the following two lemmas.

Lemma 4.6 Let \tilde{u}_{ε} be a minimizer of the functional

$$F_{\varepsilon}(\widetilde{u}) = \frac{1}{2} \int_{B} \frac{1}{x_0 + \varepsilon^{\beta} x_1} \left[|\nabla \widetilde{u}|^2 + \frac{1}{2\varepsilon^2} (1 - |\widetilde{u}|^2)^2 \right], \quad 0 < \beta < 1$$

with $\tilde{u} = g_{\varepsilon}$ on ∂B , where $B = B_{\rho_0}(0)$. Suppose

$$\int_{\partial B} \left[|D_T g_{\varepsilon}|^2 + \frac{1}{2\varepsilon^2} (|g_{\varepsilon}|^2 - 1)^2 \right] \le C_1 \tag{4.7}$$

for some constant C_1 , and $0 < \varepsilon < \frac{1}{2(1+R)}$, $\frac{1}{1+R} < x_0 < \frac{1}{1-R}$. Then, for all sufficiently small $\varepsilon > 0$ (depending only on C_1), we have

$$F_{\varepsilon}(\tilde{u}_{\varepsilon}) \le C_2 = C_2(C_1, R)$$
 (4.8)

whenever $deg(g_{\varepsilon}, \partial B) = 0$.

Proof From (4.7) it follows that $g_{\varepsilon} \in C^{1/2}(\partial B)$ and $|g_{\varepsilon}| \ge 1 - C\varepsilon^{1/4}$ for a constant C depending on C_1 . We may assume $g_{\varepsilon} \to g$ uniformly on ∂B . In particular, $\deg(g, \partial B)$ is well defined. Taking a special comparison function $V_{\varepsilon} = \eta_{\varepsilon} e^{i\psi_{\varepsilon}}$ where η_{ε} and ψ_{ε} are determined by

$$\begin{cases}
-\varepsilon^2 \Delta \eta_{\varepsilon} + \eta_{\varepsilon} = 1 & \text{on } B \\
\eta_{\varepsilon} = |g_{\varepsilon}| & \text{on } \partial B \\
-\Delta \psi_{\varepsilon} = 0 & \text{on } B \\
\psi_{\varepsilon} = \varphi_{\varepsilon} & \text{on } \partial B
\end{cases}$$

respectively, in which $\varphi_{\varepsilon}: \partial B \to R$ is defined by $e^{i\varphi_{\varepsilon}} = g_{\varepsilon}/|g_{\varepsilon}|$, we may choose φ_{ε} such that $\varphi_{\varepsilon} \to \varphi_0$ uniformly on ∂B , where $e^{i\varphi_0} = g$ on ∂B . We then deduce

$$\begin{split} F_{\varepsilon}(\widetilde{u}_{\varepsilon}) &\leq \frac{1}{2} \int_{B} \frac{1}{x_{0} + \varepsilon^{\beta} x_{1}} |\nabla \psi_{\varepsilon}|^{2} + C\varepsilon \\ &\leq \frac{1}{2} \int_{B} \frac{1}{x_{0}} |\nabla \psi_{0}|^{2} + C\varepsilon \\ &\equiv C_{2} \end{split}$$

With the same hypothesis as that of Lemma 4.5 and deg $(g_{\varepsilon}, \partial B) = 0$, Lemma 4.7 there holds

$$|\widetilde{u}_{\varepsilon}(x)| \geq \frac{3}{4}$$
 in B

whenever $0 < \varepsilon \le \varepsilon_1$ for some ε_1 depending only on R. **Proof** If not, we may have a sequence $\varepsilon_n \downarrow 0$, $\frac{1}{1+R} < x_{0n} < \frac{1}{1-R}$, $x_{0n} \to x_0$ $(n \to \infty)$, and a sequence of minimizers $\tilde{u}_{\varepsilon_n} = \tilde{u}_n$ with boundary data g_n satisfying (4.7) and deg $(g_n, \partial B) = 0$. Moreover, $\inf_{R} |\tilde{u}_n| \leq 3/4$.

Since $|g_n| \to 1$, $||g_n||_{C^{1/2}(\partial B)} \le C$, we see that $|\tilde{u}_n| \ge \frac{4}{5} > \frac{3}{4}$ whenever $1 - |x| \le C_0 \varepsilon_n$, for some C_0 . Indeed, the function $\tilde{V}_n(x) = \tilde{u}_n(\varepsilon_n x)$ satisfies

(a)
$$|\tilde{V}_n(x) - \tilde{V}_n(y)| \le C|x - y|^{1/2}$$
, for $|x - y| < 1$, $x, y \in \frac{1}{\varepsilon_n}B$,

(b)
$$|\nabla \widetilde{V}_n| \le C/R$$
 for $R \in (0,1)$ and $|x| \le \frac{1}{\varepsilon_n} - R$.

Both (a) and (b) follows from the standard elliptic estimates.

Hence, if $|\widetilde{u}_n(x)| \leq \frac{3}{4}$, then there is a ball $\{x : |x - x_n| \leq \eta \varepsilon_n\} \subset B$, for some $\eta > 0$ with $|\widetilde{u}_n(x)| \leq \frac{4}{5}$ for all $x : |x - x_n| \leq \eta \varepsilon_n$. Therefore

$$\int_{B} \frac{1}{x_{0n} + x_{1} \varepsilon_{n}^{\beta}} \cdot \frac{1}{\varepsilon_{n}^{2}} (1 - |\widetilde{u}_{n}|^{2})^{2} dx$$

$$\geq \frac{R+1}{2} \int_{B} \frac{1}{\varepsilon_{n}^{2}} (1 - |\widetilde{u}_{n}|^{2})^{2} dx$$

$$\geq C(\eta, R)$$

> 0

By Lemma 4.6, $E_{\varepsilon_n}(\tilde{u}_n) \leq E_{\varepsilon_n}(V_{\varepsilon_n}) \leq C_2$. Since $g_n \to g = e^{i\varphi_0}$ weakly in $H^1(\partial B)$, $\int_B \frac{1}{x_{0n} + \varepsilon_n x_1} |\nabla \psi_n|^2 dx$ converges to $\int_B \frac{1}{x_0} |\nabla \psi_0|^2$, where ψ_0 is the harmonic extension of φ_0 , thus

$$\overline{\lim} E_{\varepsilon_n}(V_{\varepsilon_n}) \le \frac{1}{2} \int_B \frac{1}{x_0} |\nabla \psi_0|^2 dx$$
 (4.9)

On the other hand, $\tilde{u}_n \rightharpoonup \tilde{u}$ weakly in $H^1(B)$ with $\tilde{u} = g$ on ∂B and |u| = 1 a.e. in B, we have

$$\underline{\lim} E_{\varepsilon_n}(\widetilde{u}_n) \ge C(\eta, R) + \lim_n \frac{1}{2} \int_B \frac{1}{x_{0n} + \varepsilon_n^{\beta} x_1} |\nabla \widetilde{u}_n|^2$$

$$\ge C(\eta, R) + \frac{1}{2} \int_B \frac{1}{x_0} |\nabla \psi_0|^2$$

therefore, we obtain a contradiction since $C(\eta, R) > 0$.

Remark Both Lemma 4.6 and Lemma 4.7 remain true when we replace B by a bounded Lipschitz domain with Lipschitz constant independent of ε .

Now we prove Proposition 4.5.

For any $x_0 \in \Omega_{\varepsilon} = \Omega \backslash B_{2\varepsilon^{\beta_1}}(x_{\varepsilon})$, consider a functional on $B_{\varepsilon^{\beta_1}}(x_0) \backslash B_{\varepsilon^{2\beta_1}}(x_0) \equiv D$. It follows from (4.5) that there exists $\lambda_{\varepsilon} \in [\varepsilon^{2\beta_1}, \varepsilon^{\beta_1}]$ such that

$$\lambda_{\varepsilon} \int_{\partial B_{\lambda_{\varepsilon}}(x_0) \cap \Omega_{\varepsilon}} \left[\frac{1}{2} |\nabla u_{\varepsilon}|^2 + \frac{1}{4\varepsilon^2} (1 - |u_{\varepsilon}|^2)^2 \right] \le C(\beta_1)$$

and $\lambda_{\varepsilon}^{-1}(D \cap \Omega_{\varepsilon} - x_0)$ is a Lipschitz domain with Lipschitz constant independent of ε . On $\lambda_{\varepsilon}^{-1}(D \cap \Omega_{\varepsilon} - x_0) = D_{\varepsilon}$, function $u_{\varepsilon}(\lambda_{\varepsilon}x + x_0)$ minimizes the functional of the form

$$\int_{D_{\varepsilon}} \frac{1}{x_{01} + \lambda_{\varepsilon} x_{1}} \left[|\nabla u|^{2} + \frac{1}{2(\varepsilon/\lambda_{\varepsilon})^{2}} (1 - |u|^{2})^{2} \right]$$

with boundary data g_{ε} on ∂D_{ε} satisfying

$$\int_{\partial D_{\varepsilon}} \left[|D_T g_{\varepsilon}|^2 + \frac{1}{2(\varepsilon/\lambda_{\varepsilon})^2} (1 - |g_{\varepsilon}|^2)^2 \right] \le C(\beta_1) \tag{4.10}$$

Since $|u_{\varepsilon}| > 0$ on $\Omega_{\varepsilon} \cap D$, one has $\deg(g_{\varepsilon}, \partial D_{\varepsilon}) = 0$. Then Lemma 4.7 leads to $|u_{\varepsilon}(x)| \geq \frac{1}{2}$ in $D \cap \Omega_{\varepsilon}$ for $\varepsilon \ll 1$ since $\varepsilon/\lambda_{\varepsilon} \leq \varepsilon^{1-2\beta_1} \to 0$.

For $0 < \varepsilon < \varepsilon_0$ and minimizers u_ε of E_ε , consider the set $\Sigma_\varepsilon = \left\{ x \in \Omega : |u_\varepsilon(x)| \le \frac{1}{2} \right\}$, then

$$\Sigma_{\varepsilon} \subset B(x_{\varepsilon}, \varepsilon^{\beta_1})$$

The same proof in [6, Theorem 2] gives

Lemma 4.8 There exists a number $J_0 \in \mathbb{N}$ such that for any collection of disjoint balls $B(x_j^{\varepsilon}, \varepsilon/5)$, $x_j^{\varepsilon} \in \Omega$, $1 \le j \le J$, with $|u_{\varepsilon}(x_j^{\varepsilon})| < \frac{1}{2}$, there holds $J \le J_0$.

Now consider the cover $\left\{B\left(x,\frac{\varepsilon}{5}\right)\right\}_{x\in\Sigma_{\varepsilon}}$ of Σ_{ε} . By Vitali's covering Lemma, we can find a collection of disjoint balls $B\left(x_{j}^{\varepsilon},\frac{\varepsilon}{5}\right)$, $x_{j}^{\varepsilon}\in\Sigma_{\varepsilon}$, $1\leq j\leq J$ such that

$$\Sigma_{\varepsilon} \subset \bigcup_{j=1}^{J} B(x_{j}^{\varepsilon}, \varepsilon)$$

By Lemma 4.8, we have $J \leq J_0$ with J_0 independent of ε .

As in [1], we may find $\lambda \geq 1$ such that $\bigcup_{j=1}^{J} B(x_j^{\varepsilon}, \varepsilon) \subset \bigcup_{j=1}^{J_1} B(x_j^{\varepsilon}, \lambda \varepsilon)$ with $J_1 \leq J$ and $B(x_j^{\varepsilon}, 2\lambda \varepsilon)$ disjoint where λ is independent of ε .

Lemma 4.9 ([6, Theorem 2]) There is a constant $C = C(\Omega, g)$ such that

$$\frac{1}{\varepsilon^2} \int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \le C \tag{4.11}$$

uniformly in $0 < \varepsilon \le \varepsilon_1$, for some $\varepsilon_1 > 0$.

Now, we prove the first claim in Theorem 4.1, i.e., for the unique zero x_{ε} of u_{ε} .

$$x_{\varepsilon} \to a = (1 + R, 0)$$
 as $\varepsilon \to 0$

We argue by contradiction. If the claim fails, then for some $\sigma_0 > 0$, there exists a subsequence $\varepsilon_n \to 0$ such that $x_{\varepsilon_n} \to a_1 \neq a, a_1 \in \overline{\Omega}$.

In order to make use of Theorem 4 in [15] and Corollary II.1 in [1], we proceed as follows since a_1 may belong to $\partial\Omega$.

Extend g to \overline{g} defined on $\Omega' = B_{R'}((1,0))$ (R < R' < 1) such that $\overline{g} : \Omega' \setminus \Omega \to S^1$, $\overline{g} \mid_{\partial\Omega} = g$ and \overline{g} satisfies (3.1) and (3.2) as well as $\deg(\overline{g}, \partial\Omega') = 1$. u_{ε} and $\frac{1}{x_1}$ are also extended such that $u_{\varepsilon} = \overline{g}$ on $\Omega' \setminus \Omega$.

Hence

$$E_{\varepsilon_n}(u_{\varepsilon_n}, \Omega' \backslash \Omega) \le C$$

with C independent of n.

From the assumption on a_1 , we may find $\rho > 0$ small such that for some $\sigma_0 > 0$, $\frac{1}{x_1} \ge \frac{1}{1+R-2\sigma_0}$ in $B(a_1,\rho)$. Since $x_{\varepsilon_n} \to a_1$, we have $x_j^{\varepsilon_n} \to a_1$ $(n \to \infty)$. Then $B(x_j^{\varepsilon_n}, \lambda \varepsilon_n) \subset B(a_1, \rho), j = 1, \dots, J_1$, for n large enough. Applying Theorem 4 in [15] and Corollary II.1 in [1], we have

$$E_{\varepsilon}(u_{\varepsilon}, \Omega') \geq E_{\varepsilon}(u_{\varepsilon}, B(a_1, \rho))$$

$$\geq \frac{1}{1 + R - 2\sigma_0} \pi \log \frac{\rho}{\varepsilon_n} - C$$

Hence,

$$E_{\varepsilon}(u_{\varepsilon}, \Omega) = E_{\varepsilon}(u_{\varepsilon}, \Omega') - E_{\varepsilon}(u_{\varepsilon}, \Omega' \setminus \Omega)$$

$$\geq \frac{1}{1 + R - 2\sigma_0} \pi \log \frac{\rho}{\varepsilon_n} - C$$

Combining this with (4.3) it is led to a contradiction:

$$|\sigma_0| \ln \varepsilon_n \le C$$
, independent of n

Now, we prove the convergence in Theorem 4.1.

We should keep in mind that we have found disjoint balls $B(x_j^{\varepsilon}, \lambda \varepsilon)$, $1 \leq j \leq J_1$, $J_1 \leq J_0$ such that

$$\begin{cases}
|u_{\varepsilon}(x)| \geq \frac{1}{2}, & \forall x \in \Omega \setminus \bigcup_{j \in J^{\varepsilon}} B(x_{j}^{\varepsilon}, \lambda \varepsilon), & J^{\varepsilon} = \{1, \dots, J_{1}\} \\
\overline{B(x_{j}^{\varepsilon}, \lambda \varepsilon)} \cap \overline{B(x_{i}^{\varepsilon}, \lambda \varepsilon)} = \emptyset, & \forall i, j = 1, \dots, J_{1}, \quad i \neq j
\end{cases}$$
(4.12)

Define $\omega_j = B(x_i^{\epsilon}, \lambda \epsilon)$, and

$$\Omega_{\varepsilon} = \Omega \Big\backslash \bigcup_{j \in J^{\varepsilon}} \omega_j$$

$$\widetilde{\Omega}_{\varepsilon} = \Omega \Big\backslash \bigcup_{j \in K} \omega_j$$

where $K = \{i \in J^{\varepsilon} : \partial \Omega \cap \omega_i \neq \emptyset\}, L = J^{\varepsilon} \backslash K$.

Note that, if we write locally on Ω_{ε} , $u_{\varepsilon} = \rho_{\varepsilon} e^{i\psi_{\varepsilon}}$, with $\rho_{\varepsilon} = |u_{\varepsilon}|$, then we have

$$\begin{cases} \operatorname{div}\left(\frac{1}{x_1}\rho_{\varepsilon}^2\nabla\psi_{\varepsilon}\right) = 0 & \text{in } \Omega_{\varepsilon} \\ -\nabla\cdot\left(\frac{1}{x_1}\nabla\rho_{\varepsilon}\right) + \frac{1}{x_1^2}\rho_{\varepsilon x_1} + \rho_{\varepsilon}|\nabla\psi_{\varepsilon}|^2 = \frac{1}{x_1}\rho_{\varepsilon}(1-\rho_{\varepsilon}^2) & \text{in } \Omega_{\varepsilon} \end{cases}$$
(4.13)

However, we must note that we cannot write (4.13) globally since ρ_{ε} vanishes at some point in Ω , the corresponding ψ_{ε} then need not be defined as a single-valued function. To overcome this difficulty, we proceed as follows.

Let Φ_{ε} be the solution of the linear problem

$$\operatorname{div}\left(\frac{x_1}{\rho_{\varepsilon}^2}\nabla\Phi_{\varepsilon}\right) = 0 \quad \text{in } \Omega_{\varepsilon} \tag{4.14}$$

$$\Phi_{\varepsilon} = \text{constant} = c_i \quad \text{on } \partial \omega_i, \quad i \in L$$
(4.15)

$$\Phi_{\varepsilon} = 0 \quad \text{on } \partial \widetilde{\Omega}_{\varepsilon}$$
(4.16)

$$\int_{\partial\omega} \frac{x_1}{\rho_{\varepsilon}^2} \frac{\partial \Phi_{\varepsilon}}{\partial\nu} = 2\pi \delta_i, \quad \delta_i = \deg(u_{\varepsilon}, \partial\omega), \quad i \in L$$
(4.17)

We recall that $\rho_{\varepsilon} \geq \frac{1}{2}$ in Ω_{ε} by (4.12), hence (4.14) is elliptic and Φ_{ε} exists and is unique.

It is obvious that

$$\frac{\partial}{\partial x_1} \left(\frac{x_1}{\rho_{\varepsilon}^2} u_{\varepsilon} \times \left(\frac{1}{x_1} u_{\varepsilon} \right)_{x_2} \right) - \frac{\partial}{\partial x_2} \left(\frac{x_1}{\rho_{\varepsilon}^2} u_{\varepsilon} \times \left(\frac{1}{x_1} u_{\varepsilon} \right)_{x_1} \right) = 0 \quad \text{in } \Omega_{\varepsilon}$$
 (4.18)

If set

$$D = \left(\frac{x_1}{\rho_{\varepsilon}^2} \left[-u_{\varepsilon} \times \left(\frac{1}{x_1} u_{\varepsilon}\right)_{x_2} + \Phi_{\varepsilon x_1} \right], \frac{x_1}{\rho_{\varepsilon}^2} \left[u_{\varepsilon} \times \left(\frac{1}{x_1} u_{\varepsilon}\right)_{x_1} + \Phi_{\varepsilon x_2} \right] \right)$$

then, by (4.14) and (4.18)

$$\operatorname{div} D = 0 \quad \text{and} \ \int_{\partial \omega_i} D \cdot \nu = 0$$

By Lemma I.1 in [1], there is a function H_{ε} defined in Ω_{ε} such that

$$D=\left(-rac{\partial H_arepsilon}{\partial x_2},rac{\partial H_arepsilon}{\partial x_1}
ight)$$

that is,

$$\begin{cases}
\frac{1}{x_1} u_{\varepsilon} \times u_{\varepsilon x_1} + \Phi_{\varepsilon x_2} = \frac{1}{x_1} \rho^2 H_{\varepsilon x_1} \\
\frac{1}{x_1} u_{\varepsilon} \times u_{\varepsilon x_2} - \Phi_{\varepsilon x_1} = \frac{1}{x_1} \rho_{\varepsilon}^2 H_{\varepsilon x_2}
\end{cases} \quad \text{in } \Omega_{\varepsilon} \tag{4.19}$$

We have from the fact div $\left(\frac{1}{x_1}\nabla u_{\varepsilon}\right) \times u_{\varepsilon} = 0$ that

$$\operatorname{div}\left(\frac{1}{x_1}\rho_{\varepsilon}^2 \nabla H_{\varepsilon}\right) = 0 \quad \text{in } \Omega_{\varepsilon} \tag{4.20}$$

From (4.19) it follows that

$$|u_{\varepsilon} \times \nabla u_{\varepsilon}| \le |\nabla \Phi_{\varepsilon}| + |\nabla H_{\varepsilon}| \quad \text{in } \Omega_{\varepsilon}$$
 (4.21)

Finally, we claim that

$$|\nabla u_{\varepsilon}| \le |\nabla \rho_{\varepsilon}| + \frac{1}{\rho} |u_{\varepsilon} \times \nabla u_{\varepsilon}|$$
 (4.22)

Indeed, if we locally write $u_{\varepsilon} = \rho_{\varepsilon} e^{i\psi}$, we easily see that

$$u_{\varepsilon} \times \nabla u_{\varepsilon} = \rho_{\varepsilon}^{2} |\nabla \psi| \tag{4.23}$$

and

$$|\nabla u_{\varepsilon}| \le |\nabla \rho_{\varepsilon}| + \rho_{\varepsilon}|\nabla \psi|$$

These imply (4.22). Furthermore, from (4.21) and (4.22) we deduce

$$|\nabla u_{\varepsilon}| \le 4[|\nabla \Phi_{\varepsilon}| + |\nabla H_{\varepsilon}| + |\nabla \rho_{\varepsilon}|] \quad \text{in } \Omega_{\varepsilon}$$
 (4.24)

To get estimates on $|\nabla u_{\varepsilon}|$, it suffices to estimate $|\nabla \Phi_{\varepsilon}|$, $|\nabla H_{\varepsilon}|$ and $|\nabla \rho_{\varepsilon}|$ respectively. This is what we are to do in the following.

Lemma 4.10 ([1], Lemma X.7]) Let 1 . There is a constant <math>C = C(p, R) such that

$$\left(\int_{\Omega_{\varepsilon}} |\nabla \Phi_{\varepsilon}|^{p}\right)^{1/p} \leq C(p, R) |\Omega_{\varepsilon}|^{\frac{1}{p} - \frac{1}{2}} \tag{4.25}$$

Lemma 4.11 ([1], Lemma X.13]) For $1 , there are constants <math>\alpha$ and C independent of ε such that

$$\int_{\Omega_{\varepsilon}} |\nabla \rho_{\varepsilon}|^{p} \le C \varepsilon^{\alpha} \tag{4.26}$$

Lemma 4.12 For any $K \subset\subset \Omega$, there exists a constant C_K independent of ε such that

$$\int_{K} |\nabla H_{\varepsilon}|^{2} \le C_{K} \tag{4.27}$$

Proof Recall that H_{ε} satisfies

$$\operatorname{div}\left(\frac{1}{x_1}\rho_{\varepsilon}^2\nabla H_{\varepsilon}\right) = 0 \text{ in } \Omega_{\varepsilon}$$

we claim that $\int_{\partial \omega_i} \frac{1}{x_1} \rho^2 \frac{\partial H_{\varepsilon}}{\partial \nu} = 0$, $i \in L$. For simplicity we drop ε . Recall also that

$$\frac{\partial}{\partial x_1} \left(u \times \frac{1}{x_1} u_{x_1} \right) + \frac{\partial}{\partial x_2} \left(u \times \frac{1}{x_1} u_{x_2} \right) = 0 \quad \text{in } \Omega_{\varepsilon}$$

Integrate it over ω_i to obtain

$$\int_{\partial \omega_i} u \times \frac{1}{x_1} \frac{\partial u}{\partial \nu} = 0$$

On the other hand, by (4.19) and $\frac{\partial \Phi}{\partial \tau} = 0$ on $\partial \omega_i$ because of (4.15), we obtain

$$u \times \frac{1}{x_1} \frac{\partial u}{\partial \nu} = \frac{1}{x_1} \rho^2 \frac{\partial H}{\partial \nu}$$
 on $\partial \omega_i$, $i \in L$

the claim follows. Invoke Lemma X.4 in [1] to assert that

$$\sup_{\Omega_\varepsilon} H - \inf_{\Omega_\varepsilon} H \leq C \quad \text{independent of } \varepsilon$$

Set $H_0 = \inf_{\Omega_{\varepsilon}} H$, $\varphi \in C_0^{\infty}(\Omega)$, $0 \le \varphi \le 1$, $\varphi \equiv 1$ in K, $\varphi \equiv 0$ in $\Omega \setminus K'$, where $K \subset K' \subset \Omega$ and $K' \subset \Omega_{\varepsilon}$ for ε small enough, multiply (4.20) by $(H - H_0)\varphi^2$ and integrate over Ω_{ε} , we get

$$\int_{\Omega_{\epsilon}} \varphi^2 \frac{1}{x_1} \rho^2 |\nabla H|^2 = -2 \int_{\Omega_{\epsilon}} \varphi \frac{1}{x_1} \rho^2 (H - H_0) \nabla H \cdot \nabla \varphi$$

On the other hand, since $\sup_{\Omega_{\varepsilon}} H - \inf_{\Omega_{\varepsilon}} \leq C$, we have

$$\left| \int_{\Omega_{\varepsilon}} \varphi \frac{1}{x_1} \rho^2 \nabla H \cdot \nabla \varphi \cdot (H - H_0) \right| \leq \frac{1}{2} \int_{\Omega_{\varepsilon}} \varphi^2 \frac{1}{x_1} \rho^2 |\nabla H|^2 + C \int_{\Omega_{\varepsilon}} \frac{1}{x_1} |\nabla \varphi|^2$$

Therefore,

$$\frac{1}{2} \int_{\Omega_{\epsilon}} \varphi^2 \frac{1}{x_1} \rho^2 |\nabla H|^2 \le C_K$$

i.e.,

$$\int_K |\nabla H|^2 \leq C_K$$

Hence, we get

$$\int_{K} |\nabla u_{\varepsilon}|^{p} \leq C_{K}, \quad \forall K \subset\subset \Omega, \quad \forall 1$$

Then, we may extract a further subsequence, still denoted by $\varepsilon_n \to 0$, such that

$$u_{\varepsilon_n} \to u_*$$
 weakly in $W^{1,p}_{\mathrm{loc}}$

From Lemma 4.2 we know

$$\int_{\Omega} (1 - |u_{\varepsilon}|^2)^2 \le C\varepsilon^2 (1 + |\log \varepsilon|) \to 0$$

therefore $|u_{\varepsilon_n}| \to 1$ in L^2 and $|u_*| = 1$ a.e., i.e.,

$$u_* \in W^{1,r}_g(\Omega,S^1) \quad \text{for all } 1 < r < 2$$

Note that Φ_{ε} and H_{ε} are only defined on Ω_{ε} , we extend them in Ω by setting

$$\begin{cases} \Phi_{\varepsilon} = C_i & \text{in } \omega_i, \quad i \in L \\ \Phi_{\varepsilon} = 0 & \text{in } \Omega \backslash \widetilde{\Omega}_{\varepsilon} \end{cases}$$

$$(4.28)$$

and

$$\begin{cases} \nabla \cdot \left(\frac{1}{x_1} \nabla \tilde{H}_{\varepsilon}\right) = 0 & \text{in } \omega_i, \\ \tilde{H}_{\varepsilon} = H_{\varepsilon} & \text{on } \partial \omega_i, \end{cases} i \in L$$

$$(4.29)$$

We still denote them by Φ_{ε} and H_{ε} .

It is clear that $\Phi_{\varepsilon} = 0$ on $\partial \Omega$ and

$$\int_{\Omega} |\nabla \Phi_{\varepsilon}|^p \le C_p, \quad \forall 1$$

By the trace theorem together with Lemma 4.12, and definition of H_{ε} we see (as in Lemma 3 in [15]) that

$$\int_{\omega_i} |\nabla H_{\varepsilon}|^2 \le C, \quad i \in L$$

where C depends only on g and Ω . Combining this inequality with Lemma 4.12, we still have

$$\int_{K} |\nabla H_{\varepsilon}|^{2} \leq C, \quad \forall K \subset \subset \Omega \quad \text{and } \varepsilon \text{ small enough}$$
(4.31)

In view of (4.30)–(4.31), we may extract a further subsequence $\varepsilon_n \to 0$ such that

$$\Phi_{\varepsilon_n} \rightharpoonup \Phi_*$$
 weakly in $W^{1,p}(\Omega)$, $1
$$H_{\varepsilon_n} \rightharpoonup H_* \text{ weakly in } H^1_{\text{loc}}(\Omega)$$
(4.32)$

and

$$\begin{cases} u_* \times u_{*x_1} + x_1 \Phi_{*x_2} = H_{*x_1} \\ u_* \times u_{*x_2} + x_1 \Phi_{*x_1} = H_{*x_2} \end{cases}$$
(4.33)

where u_*, Φ_*, H_* are smooth in Ω .

Lemma 4.13 For any $K \subset\subset \Omega$, we have

$$u_{\varepsilon_n} \to u_* \quad strongly \ in \ H^1(K)$$
 (4.34)

$$-\nabla \cdot \left(\frac{1}{x_1}\nabla u_*\right) = \frac{1}{x_1}u_*|\nabla u_*|^2 \quad in \ \Omega \tag{4.35}$$

Proof We only need to prove,

$$\Phi_{\varepsilon_n} \to \Phi_*$$
 strongly in $H^1(K)$ (4.36)

$$H_{\varepsilon_n} \to H_*$$
 strongly in $H^1(K)$ (4.37)

$$\rho_{\varepsilon_n} \to 1$$
 strongly in $H^1(K)$ (4.38)

Let $\xi \in C_0^{\infty}(\Omega)$, $\xi \equiv 1$ in K. For n sufficiently large, the support of ξ is in Ω_{ε_n} and therefore we may multiply (4.14) by $\xi(\Phi_{\varepsilon_n} - \Phi_*)$ and integrate over Ω to obtain

$$\int_{\Omega} \frac{1}{\rho_{\varepsilon_n}^2} x_1 \xi |\nabla \Phi_{\varepsilon_n}|^2 + \frac{1}{\rho_{\varepsilon_n}^2} x_1 (\Phi_{\varepsilon_n} - \Phi_*) \nabla \Phi_{\varepsilon_n} \cdot \nabla \xi
= \int_{\Omega'} \frac{x_1}{\rho_{\varepsilon_n}^2} \xi \nabla \Phi_{\varepsilon_n} \cdot \nabla \Phi_*$$
(4.39)

However, (4.32) and Sobolev imbedding theorem guarantee

$$\|\Phi_{\varepsilon_n} - \Phi_*\|_{L^q} \to 0$$
, as $n \to \infty$, $\forall q < +\infty$ (4.40)

hence,

$$\int_{\Omega} \frac{x_1}{\rho_{\varepsilon_n}^2} (\Phi_{\varepsilon_n} - \Phi_*) \nabla \Phi_{\varepsilon_n} \cdot \nabla \xi \to 0, \quad \text{as } n \to +\infty$$
 (4.41)

On the other hand, we have

$$\int_{\Omega} \frac{x_1}{\rho_{\varepsilon_n}^2} \xi \nabla \Phi_{\varepsilon_n} \cdot \nabla \Phi_* \to \int_{\Omega'} x_1 \xi |\nabla \Phi_*|^2, \quad \text{as } n \to +\infty$$
 (4.42)

Hence, we obtain

$$\int_{\Omega} \frac{1}{\rho_{\varepsilon_n}^2} x_1 \xi |\nabla \Phi_{\varepsilon_n}|^2 \to \int_{\Omega} x_1 \xi |\nabla \Phi_*|^2 \tag{4.43}$$

Since $\rho_{\varepsilon_n} \leq 1$, it follows that

$$\int_{\Omega} x_1 \xi |\nabla \Phi_{\varepsilon_n}|^2 \le \int_{\Omega} x_1 \xi |\nabla \Phi_*|^2 + o(1)$$

And therefore, by lower semi-continuity and $x_1 \ge a_0 > 0$, we deduce that

$$\nabla \Phi_{\varepsilon_n} \to \nabla \Phi_*$$
 strongly in $L^2(K)$

Similarly, using the equation (4.20), we have

$$\int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \cdot \xi |\nabla H_{\varepsilon_n}|^2 \to \int_{\Omega} \frac{1}{x_1} \xi |\nabla H_*|^2 \quad \text{as } n \to +\infty$$
(4.44)

$$\int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \xi |\nabla (H_{\varepsilon_n} - H_*)|^2 = \int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \xi |\nabla H_{\varepsilon_n}|^2$$

$$-2\int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \xi \nabla H_{\varepsilon_n} \cdot \nabla H_* + \int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \xi |\nabla H_*|^2$$
 (4.45)

Note that

$$\int_{\Omega} \frac{1}{x_1} \rho_{\varepsilon_n}^2 \xi \nabla H_{\varepsilon_n} \cdot \nabla H_* \to \int_{\Omega} \frac{1}{x_1} \xi |\nabla H_*|^2 \qquad (4.46)$$

Combining (4.44)-(4.46), we obtain (4.37).

Finally, testing $(4.13)_2$ by $\xi(1-\rho_{\epsilon_n})$ and using (4.23), we obtain

$$\int_{\Omega} \frac{1}{x_1} \xi |\nabla \rho_{\varepsilon_n}|^2 - \int_{\Omega} \frac{1}{x_1} (1 - \rho_{\varepsilon_n}) \nabla \rho_{\varepsilon_n} \cdot \nabla \xi$$

$$= \int_{\Omega} \xi \frac{(1 - \rho_{\varepsilon_n})}{\rho_{\varepsilon_n}^3} |u_{\varepsilon_n} \times \nabla u_{\varepsilon_n}|^2 - \frac{1}{\varepsilon_n^2} \int_{\Omega} \frac{\xi \rho_{\varepsilon_n}}{x_1} (1 - \rho_{\varepsilon_n}^2) (1 + \rho_{\varepsilon_n})$$

$$- \int_{\Omega} \frac{\xi}{x_1^2} (\rho_{\varepsilon_n})_{x_1} (1 - \rho_{\varepsilon_n}) \tag{4.47}$$

Since $\rho_{\varepsilon_n} \to 1$ in $W^{1,p}$, we are led to (apply (4.21))

$$\int_{\Omega} \frac{\xi}{x_1} |\nabla \rho_{\varepsilon_n}|^2 \le C \int_{\Omega} \xi (1 - \rho_{\varepsilon_n}) (|\nabla H_{\varepsilon_n}|^2 + |\nabla \Phi_{\varepsilon_n}|^2) + o(1)$$
(4.48)

Using (4.36), (4.37), the fact $\rho_{\varepsilon_n} \to 1$, a.e. and Lebesgue's dominated convergence theorem, we see that the right-hand side of (4.48) tends to zero as $n \to +\infty$. This proves $\int_{\Omega} \xi |\nabla \rho_{\varepsilon_n}|^2 \to 0$ and hence (4.38).

Now, we prove (4.1) and (4.2).

Step 1 For any $K \subset\subset \Omega$, we have

$$u_{\varepsilon_n} \to u_* \quad \text{in } H^1(K)$$
 (4.49)

Proof By (4.36)-(4.38), (4.19) and (4.33), we know

$$u_{\varepsilon_n} \times \nabla u_{\varepsilon_n} \to u_* \times \nabla u_* \quad \text{in } L^2(K)$$
 (4.50)

On K we may write locally

$$u_{\varepsilon_n} = \rho_{\varepsilon_n} e^{i\psi_{\varepsilon_n}} \text{ and } u_* = e^{i\psi_*}$$
 (4.51)

so that

$$u_{\varepsilon_n} \times \nabla u_{\varepsilon_n} = \rho_{\varepsilon_n}^2 \nabla \psi_{\varepsilon_n}, \quad u_* \times \nabla u_* = \nabla \psi_*$$
 (4.52)

Hence, by (4.50) and (4.38) we have

$$\nabla \psi_{\varepsilon_n} \to \nabla \psi_* \quad \text{in } L^2(K)$$
 (4.53)

and (4.49) follows from (4.51), (4.53) and (4.38).

Step 2 Finally, (4.1) follows from Step 1, Fubini's Theorem and theorem 2.7 by the method in [1].

Step 3 (4.2) follows from above estimates and convergence as well as the fact $-\nabla \cdot \left(\frac{1}{x_1}\nabla u_{\varepsilon} \times u_{\varepsilon}\right) = 0.$

Acknowledgements The authors would like to thank Professor Jiang Lishang for his helpful directions.

References

- [1] Bethuel F., Brezis H. and Hélein F., Ginzburg-Landau Vortices, Birkhäuser, 1994.
- [2] Bethuel F., Brezis H. and Hélein F., Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. PDE., 1 (1993), 123–148.
- [3] Betheul F., Brezis H. and Hélein F., Limite singulière pour la minimisation de fonctionelles du type Ginzburg-Landau, C. R. Acad. Sci. Paris 314, Sér., I (1992), 891–895.
- [4] Saint-James D., Sarma G. and Thomas E.J., Type II Superconductivity, Pergamon, 1969.
- [5] Struwe M., On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions, J. Diff. & Int. Equation, 7 (1994), 1613–1624.
- [6] Ding S., Liu Z., and Yu W., Pinning of vortices for the Ginzburg-Landau functional with variable coefficient, J. Univ. Appl. Math., (to appear)
- [7] Hong M.C., On a problem of Bethuel, Brezis and Hélein concerning the Ginzburg-Landau functional, Preprint.

- [8] Hong M.C., Asymptotic behavior for minimizers of a Ginzburg-Landau-type functional in higher dimensions associated with n-Harmonic maps, Preprint.
- [9] Struwe M., An asymptotic estimate for the Ginzburg-Landau model, C. R. Acad. Sci. Paris, 317 (1993), 667–680.
- [10] Lin F.H., Solutions of Ginzburg-Landau equations and critical points of the renormalized energy, Preprint.
- [11] Du Q. and Gunzburger M.D., A model for superconducting thin films having variable thickness, Physica D., 69 (1993), 215–231.
- [12] Bauman P., Carlson N.N. and Phillips D., On the zeros of solutions to Ginzburg-Landau type systems, SIAM. J. Math. Anal., 24 (1993), 1283–1293.
- [13] Giaquinta M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, 1983.
- [14] Hartman P. and Wintner A., On the local behavior of solutions of non-parabolic partial differential equations (I), Amer. J. Math., 75 (1953), 449–476.
- [15] Brezis H., Merle F. and Riviere T., Quantization effects, for $-\Delta u = u(1-|u|^2)$ in R^2 , Arch. Rat. Mech. Anal., 126 (1994), 35–58.