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Abstract We prove partial regularity for minimizers of degenerate variational

integrals / Fz,u, Du)dz with obstacles of either the form
Y

ol py = {u € HV@ RN > fi(ud, - ud=1) + fi(z) ae.}

ur

(ii) py = {u € H'™(Q,R") | wi(z) 2 hi(z), ae;i=1,---,N}

The typical mode of variational integrals is given by
/ [ﬂﬂﬁ(iﬂaujbﬁ{f{-‘,ﬂ}ﬂquiﬂmf] I=IrLuf!::n; m > 2
o
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1. Introduction

Let £ be a bounded open set in B®, u = (u!, -, u™) be in general a vector valued

function, &V > 1 and Dy = {Dau?}, a=1, o,y i =1,---, N, stands for the gradient
of u. We deal with variational ntegrals

Flu, 0) = fﬂ F(z,u, Du)dz (1.1)

where the integrand F(z,u,p) grows polynomially like lo|™.
More precisely we assume that

F(z,u,p) = g(z, u,a® (2, u)bg (=, u)pip}) (1.2)

N
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where (a®®) and (b;;) are symmetric positive definite matrices and satisfies
H.1 For some positive A, A and for all z, u, p we have

Apl™ £ Fz,u,p) < Alp™ (1.3)

where m = 2.
H.2 F(x,u,p) is of class C* with respect to p and

| Fyp(@, ;)| < Culpl™

gy m=X_ g
|ij:{53:'u-~..13} e Fpp[ﬁ‘—::u-rq}l = Gﬂ{lﬂz 1= E‘Ilg} T ~%|p— q|®
for some positive o.
H.3 The integrand F(z,u,p) is elliptic in the sense that

Fos ohiountt0 8 2 [P 1ER, ¥ e RPY (1.4)

H.4 The function |p|"™F(z,u,p) is Holder-continuous in (x,u) uniformly with -
respect to p, i.e.

|F(z,u,p) — F(y,v,p)| < Clp™n(|u], |z — ¢ + Ju—2])

where 5(t, s) = K{¢) min(s%, L) for some 4,0 < é < 1, and L > 0 and where K(t) is an
increasing function. Without loss of generality, we may assume that 7(t, 5) 1s concave
15 5 for fixed f.

H.5 We assume that ¢(z,u,t) is an increasing function in ¢ for each fixed (x,u) €
0= RY.

A particular example of the above functional is given by the p-energy functional
sy 51, = f (0% (2, w)bs; (2, w) Do D] dzz, m > 2 (1.5)
0l

where {a®®) and (b;;) are symmetric positive definite matrices.
We recall that a minimizer for the functional (1.1) is a function w € Loy R
such that
Flu:9) < Flu+ ¢;9)

for all ¢ € Hy™ (0, BRY).
The functional (1.5) denotes the p-energy of maps between two Riemannian mani-
folds which the images lie in a single chart (with p = m). The critical point of (1.5) is

called a p-harmonic map. When m = 2, the partial regularity of minimizing harmonic
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maps between Riemannian manifolds was obtained by choen and Uhlenbeck in [1],
independently by Giaquinta and Giusti ([2], [3]) for the case where the images lie in
a single chart. For m = p > 2, the regularity of minimizers of a special functional,
in which the integrand does not depend on x and u, was first obtained by Uhlenbeck
in [4]. Later the regularity results of p-harmonic maps which minimize the p-energy
functional were obtained in [5-8].

Definition A minimizer for the functional (1.1) with an obstacle u is o function
uec H lﬁm{ﬂ._ ?_'{‘h"} M sueh that

F(u;supp ¢) < Flu + ¢ supp ¢)

for all ¢ € Hr}'m{!l,_ﬂ‘h'r} such that the suppd CC Q and u+ ¢ € p where u is a given
obstacle.

In this paper we shall prove the regularity of minimizing the functional (1.1} with
the following two kinds of obstacles: either (i)

pr = {uwe B2 QR > fi(ul ooy u¥ )+ fale) teei i ~up € HL7 (0, RY))
or (ii)
uy = {u € H'*(Q,RM)u'(2) > hi(z) ae. i =1, ,N;u— up € HY(Q,RY))

where fi(y',---,4V1) is a given function on EY-1, £ and hi(z) (i=1,-- V) are
given functions on 2 and wug is a given boundary value function.

The main results of this paper is roughly described as follows: Assume that the in-
tegrand F(z, u, p) satisfies assumptions H.1-H.5 and has the form (1.2), then each min-
imizer of the functional (1.1) with the obstacle type (i) or (ii) belongs to C%2(€, BY)
for some 0 < o < 1 where Qg C 0 is open and H™™7(€2\0) = 0 for some g > . where
H™™ denotes the n — ¢ dimensional Hausdorfl measure. Moreover when p = 2, the
minimizer v € C2(Q, RY).

Minimizing a functional with an obstacle we only obtain variational inequalities,
not the Euler-Lagrange equation. For example, minimizing the functional (1.5) with
an obstacle i, we obtain corresponding weak variational inequalities in the following

form:

f [0°% (2, u)by; (2, u) Dot Dgud]) *F* 0% (z, w)lyy (0, w) Do Dg el > 0
L7

for all ¢ e Wt;:m[ﬂ; RY) such that u + ¢ € .
The regularity of the minimizing problem with the graphic obstacle of the form (i)
was studied in [9-14] only for m = 2, but comparatively little is known for the regularity
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theory of minimizers of the non-quadratic growth functional with the obstacle. The
obstacle of the form (ii) is naturally extended from scalar case to vector case. Some
results in vector case were mentioned by Giaquinta in his book (see PP.241-243 in
[15]) by using variational inequalities to treat the problem minimizing a functional
with obstacle (ii). In general the problem of regularity for solutions of variational
inequalities is greatly open. The only results in [16] have been obtained in vector case
only for diagonal variational inequalities in which the method is based on one in scalar
case [17]. It will be more difficult to deals with the regularity of solutions of variational
inequalities than to do Euler-Lagrange equations. In this paper, we deal directly with
the functional (1.1) instead of working with variational inequalities. This technique is
called the “Direct method”. By proving a existence theorem (see Theorem 2.2}, we
consider a obstacle problem of minimizing a functional

Fv; Q) = j F(xq,ug, Du)dz
Bp(zo)

with the obstacle of the form either (i) or (ii). For the obstacle problem of the degenerate
functional of the form like p-energy, another key point is to extend the Uhlenbeck’s
theorem (see [4]) to the obstacle problem. We prove a regularity theorem (Theorem
3.3) by a induction method. Finally, comparing FO(w, Q) with F(u,€) and using LP-
estimates we prove our main results,

Notation We adopt the standard notations of Giaquinta’s book [15]. Moreover
we use the following notations:

1

TIE ='L!-1$ ...u‘h'r_lg T — T Al
i) = (! (), - u" @), and @ar =g

hiz)dz

where h(z) is any function on x.

2. IP-Estimates

In this section we discuss the LP-estimate for minimizers of the obstacle problem,
compared with [18], [14].
Now let us define a (}-minima of the functional F with an obstacle j.

H.1' We assume that for some positive constants A, A and for all z,u, p we have
A—6™ + |p|™) < F(z,u,p) <A™ + |p[™) (2.1)

where 8 = (0 and m = 2.
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Definition 2.1 Consider the functional (1.1) and assume that the assumption
H.1' holds. We say that u € HL™(Q,BY) Ny is a Q-minima for F with an obstacle p
in 1 (with a constant Q) if

Flu;supp ¢) < QF (u + ¢;supp ) (2.2)

for all ¢ with supp¢ CC 8, and u+¢ € p.

Then we have

Theorem 2.2 Let u € Hy™ (9,RY) be a Q-minima for the functional (1.1) with
a graphic obstacle py of the form (i). Suppose that the function fi(t) and foz) are
C-continuous function with |Dfy| < L and |Dfa(z)] < L for some constant L > 0.
Then there exzists an exponent g > m such that u € H]tf[ﬂ, RY ). Moreover for all
zp € 11 and R < dist (zg, 90) the following estimate holds: :

(1+ |Du|)%de %5{? (1+ |Du|)™dz - (2.3)
EE‘{EUJ Br(za)

where C' = 0 is a constant in (1.1).
Proof For simplicities, we denote f(z,%) = fi (i) + fz(z). Choose as test function
in (2.2)
¢(z) = —n(ilz) — ir)
¢V = —n(u"(z) = uR) + f(z,6+ ¢} = (1 - n)f(=, @) - n{f([@)]r

C
where 7 € C§°(Bg), 0€n<l,n=lon B; (t < R), [Vn| < FreT
It is easy to check that w + ¢ € py. Setting

$=(1-n)(u-ug), ¥ =u"-uf+4"

we have
@w—tp = —d+ P

where @ := (®, ®).
Then we obtain from the definition of a QJ-minima

f |Dg|™dz = f |Du - D®™dg
Br ' JBg
<C f \Du|™dz + C [ D[ ds
Br Br

< 0Q fBH D(u + )["dz + r::fa ID®|™d + (A + A)6™|Bx
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<c [ |D3"dz+C f ID®N " dg + ™| Bg) (2.4)
Eg By

From the definition of the test function ©, we have
[ |D &N | de = f |D(u® + ¢7)|"dz
Bn By
= [ 1D — ("~ uF) + £@+ 9) - (1 - ) (@) - nf (@) da
Fy

< [, 1P(0 =)t~ — 1@ + @#l"dz+C [ DI+ §)"do

e ¢ N N o preyom
<C [ o WP = f@I"de+ e [ Y — @) ~ [ - f@ )" do
+C f \D[f (@ + &)™ dx (2.5)
Br
Using the assumption of f; and f2, we have
fB D@z < 0 fﬂ g, DIz + OR? (2.6)
f DIf (i + §)]|™de < s::f D@ + §)[™dx + CR™ (2.7)
By Br

Then from (2.5), (2.6) and (2.7) we have

f |DEN Mg < r:ff | Du|™dz + f:*f D& [™de
Br - HR"H,B# BR

C

T Goom

[ WY =@ -l - f@alde (28)
Noticing D® = (1 — 1) D — (i — ig) Dy, we have

|DE|™ < CIDH™(1 - )™ + Cléi — Gg|™|Dn|™
By the definition of 7, we obtain from (2.4)-(2.8)

f D uf™da < f \Dé|™dz
Bz -ER
< C’lf | Du|™dx + Lf |G — g™ dz
HHI'I,.EE {R_' t]fﬁ- BE
Ch

S fﬂ N = f () ~ wf + f(@)p["d + C|Bal (2.9)

Now we fill the hole, i.e. we sum g (2.9) C; times the left-hand side and obtain

'
Du”"dﬂ:iﬂf Du|™dz + f R e
J,,1puiraz <or [ 1pumds + Z [ -
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'

MR

LR ™ — f(i) —uf + f(@r™+ C|Br| (2.10)

)

1.
14 Gy
We would like to eliminate the first term on the right-hand side of (2.10) to have

5

where Hl =

\Du|™dz < CR™™ f N — f(@) = wll + f(@)r|do
& T
+CR™ fH @ — Gig|™dz + C(6) R (2.11)
K

by means of Lemma 3.1 of Chapter V of [15]. Then, through simple application of the
Sobolev-Poincare ineguality, (2.11) gives

|2

1
|Bz|

7 T

1
{1—':—|Du|jmﬂ’m£5(—f (1+|ﬂu|;¢dz) . g=
|BR| Br-

i
Then the result follows from proposition of Chapter V of [15].

In a similar way we have

Theorem 2.3 Let u € Hli':‘[ﬂ,]ﬂ‘""j be a Q-minima for the functional (1.1) with
a graphic obstacle ug of the form (ii). Suppose that the function hi(x),i=1,---, N in
the obstacle (i) belong to the space C! and |Dh;| < L for some constant L > 0. Then
there erists an ezponent ¢ > m such that u € Hﬂ;ﬁ{ﬂ,]ﬂ”]. Moreover for all zy € §2
and R < dist (zp, 8Q) the following estimate holds:

('/Bg.{r-:ﬂ{l + |ﬂu|}qd—$)% = Er([ﬂ,q[:m]{l + |Du|}mdf)# (2.12)

where O > 0 15 a constant.
Next we prove the existence of minimizers for the functional F with the obstacle of
type (i) or (ii). Let us first state a semicontinuity theorem due to Acerbi-Fusco [19].
Theorem 2.4 Let F(z,u,p) be a Caratheodary function. Assume that

P(z,u.p)] < (1+ [ul™+ [pI™), m>1, A>0

and that F be quasi-convez. Then F(u;§Y) is weakly sequentially lower semicontinuous
in HY9(Q,BY) for g > m.

Then we prove a existence theorem for the obstacle problem.

Theorem 2.5 Let F(z,u,p) be a Caratheodary function. Assume that (2.1) holds
and that F be quasi-convez. Then there ezists a minimum point for the functional (1.1)
with the obstacle of either py or py. Moreover the minimizer u € Hlll:;g for g > m.
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Proof The proof of theorem is almost derived by the work of Marcellini and
Sbordone in [20]. Let us sketch the proof here. Let V = {v € H'™(Q,EY) | v €
p, v —ug € Hy™(Q,RY)} where pu = ps or gy and Let d(u,v) = f |Du — Duldz, then
obviously JF is lower semicontinuous in {u € HUM{0) :u = up m%ﬂ}. Let {ug} be a
minimizing sequence, and let {u;} be the corresponding (minimizing) sequence given
by Ekeland’s Variational principle

Flug; ) < Fluw: Q) + s f |Duy. — Diwldez
LY

where w € V. Hence the function wg which we obtain is a Q-minima for a functional
of the same type with the obstacle u where the constant () is independent of 5 by
choosing ;. small enough. More precisely there exists a minimizing sequence {ug} of
(}-minima with uniform constant ¢}. Theorem 2.2 implies

||“’f!iH1»c(ﬁ,]R""} < const

for any €} CC 2, with g > m where the constant depends on £, but it is independent
of k. Noticing that 4z — u a.e. on 2, we have u € . Then by means of theorem 2.3
we obtain the results required.

3. An Extension of the Uhlenbeck’s Theorem

First, we collect some results and Lemmas from [7].
It is not difficult to show that there exist two positive constants Cq(d), C1(d) such
that

1
fn [ta + (1 — t)b|*dt

Cal(d) < o Ib[i}ﬁi < C1(6) (3.1
fl lta + (1 — £)b|°dt
Co(d) < ﬂ[|ﬂ-|9 b o)} < Ci(9) (3.2)
for a,b e B*.
For 4 > 0, p € B*, define the vector valued function

Vi(p) := |pl’p

Then by using (3.1) and (3.2) it is not difficult to show that there exist positive constants
Cy(d), C3(d) such that

(Io* + lg*)zp — g
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for all p, g € RE,
We shall write

Vip)=Ip|"Tp
We shall also use the standard notation
1
Pz R = m Ba(zo) pdz

for the average over the ball Bp(zg) in E" of the vector valued function ¢ : Br(xg) —
RY.
For any p > 1 there exists a constant Cy such that for any A € ™V

|BE| f (0) |Vf‘?5 V{*i'::n H}lpdi{: < Cy—— |.E I ]H{m] } 1= V({;ﬁ'}'xn,ﬁlpdﬂ?

e At p ;
< Cs |B| oy VO VP (3.)

where Cs(4d) is also constant.
We have the following very interesting results due to K. Uhlenbeck [4], or see [7]:
Theorem 3.1 Letu e Hﬂ{;r_f"'{ﬂ, RY) be a minimizer of the functional

Folu; 2) =LF.;;{DMJ{1’I
where the integrand Fy satisfying assumptions H.1, ... ,H.5 and moreover
Fy(Du) = g(a®bij Dou’ Dgu?)

where (a®?), (bij) are symmetric positive definite constant matrices. Then Du is locally
Hilder-continuous function with some exponent, 0 < § < 1. Moreover for every zy € §2,
forall p, R. 0 < p < R < dist (zy, 2) we have

B;ima) jj; p |Du|"‘der (3.5)

(zg, p) < c(%)  $(x0.R)

sup |Du|™ <
B g{Iu]

1

[Br(z0)| /B, (o)
Lemma 3.2 Assume that A = (a®”), B = (b;) are symmetric positive definite

where &(zo,7) := V(D) = V(Du)sy - dz.

constant matrices, Then we have

b1

N—=1 fyd N
N % a“%fuﬂﬂwﬂﬂw Y Y oy DaViDgVI

c’ﬁ:l?}f:l a,f=11,j=1
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Proof Setting B = (br~)v—1,5-1 and H = (b1, bvw—-1), we have

BN T
B=|_

I N RS S SN 1B 0
—ETE_]' 1 E-T I!}Nﬁ ] 1 & 0 IEJ'F.;N

where by = byvw — HTB='H > 0 is a constant.

I 0 ’ —1 e TR Tl
Let Zf = (_ﬁqu 1), and let V* = (V... . V¥=Ly*N) = (V,¥*N)

Where V*Y = V¥ _ (FTB-1)V. Thus

Hence

n

T N
3 N ™oy DaViDgVi = Y 0D, VT BDRV

ay8=1 i,5=1 e, d=1 ;
- afd x N ¥ % yij T E 0 x
= 3 G DV BA DV = N a¥ DV : DgV
o, f=1 afi=1 0 -EININ
it MN=1 L T
= >, > ahsDoVIVI Y 0¥y DaVH DV
ﬂ!llﬂ:!'?:j:-:l a =1
n MN-1 T
2 ¥ Y, eFe DtV
{'Jﬁ=l?3-=:[

Now, we extend the Uhlenbeck’s theorem to the obstacle problem.

Theorem 3.3 Suppose that U is a minimum for the functional 7y in 0 with the
obstacle py of the form

1 = {u e HY(Q,BM)|u — up € HY™(Q,BY), u" > BY qe.
H { H il ¥ ¥ e

where the integral Fy is defined as in Theorem 3.1 and ug is o given boundary function
with wg € p1. Lel Fy satisfy the same assumptions of Theorem 3.1 and assume that

|DR™| € LMA=mima yherg [Mi=mima denotes the Morrey space ([15]). Then the

minimizer U € C22(Q,RY) and we have

£y Nym
H(DU)dz < ¢((£)" + f H(DU)dz + C DAN["dz (3.6
[, BOV < ()" +¢) e TOE O [ DR (30
where H(p) := |p|™.

Proof LetV € H'*(B & (o), R™) be a minimizer of the functional

/ Fo(Du)dz
Bg (zo)
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for all v — U € Hy?(Bg,RY).
Then we have from [15] and [4]

sup H(DV}) <

Y H(DV)dxz
B_E{:m] |B%{ED]E E‘,ﬁ:fi‘u} ( ]

R
Hence for all 0 < p < 7 we obtain

]E PEED}H{BVM&: < G(%)ﬂ /H gm}H{DV]a‘m (3.7)

|
Therefore for all p < EE’ we have

pan .
H(DU)dz < C'| = f Hﬂi!’fdﬂc+ﬁf DU — V)| "dx 3.8
[, o, EO0<0(8)" [ HDO) g Bt i

In fact
H(DU) = [H= (DV) + Hu (DU) — Hw (DV)]™
< C(m)H(DV) + C(m)[H=(DU) — Hw= (DV)]™

Next we estimate the last term in (3.8). Setting V¥ v A" := max{VV AV} = (VI —
R 4 BY, we denote
VE = (Wl VL N o g2

We know that V* € u; and
2 131&@&”}-‘- U |E.?E'§[m;.}: 4 IEB_E»‘[:D}

Using the formula

9(p) — 9lg) = gpla)(p —q) + []1{1 — t)app((1 — t)g + tp)di(p — gl(p — q) (3.9)

taking the ellipticity into account, and applying estimate (3.1)—(3.3) and the Euler-
Lagrange equation for V

/ Fop(DV — DU )dz =0
Bg.(in]l

we obtain

fB - ID(U — V)[™dz < C fB g{mjwﬂfﬂm _ Fy(DV)]da
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SF f [Fo(DU) — Fo(DV¥))dz + C f [Fo(DV*) — Fy(DV)]ds
{}fTD]‘ g.{ﬂull

=h+ 15

It is easy to get

I =<0
Moreover we have
,;r'=f FDV*—FDV&&::] Fo( DV*) — Fy(DV)dzz
2= Jf o(DVT) — Fo(DV)] Hg(mﬁ}ﬂ{%’”}h”[}[ o(DV™) — Fy(DV)]

AR
Fo(DV*) — Fp(DV)]dx
+ o OOV = (DY)

= IH. i Ll

Notice that D(V¥vhY) = DVN forz € B (w0)N{V¥ > hV} and D(VNVAY) = DAY
for x € B#[T{}J N{¥VY < AN}, Hence we hzwe Is =0 and

L =[ Fy(DV*) — Fy(DV)]d
; B g (zo)N V""{_h'-’}[ ol ) o(DV)]dz
4
= Fo(DV*) — g(a®Pb-~D ViDgV7
j.:ﬁ’g_t:zu:lﬂ{vﬁghm}[ m:: } _I‘_.',I'{{I et [ :'I]
+ afp. D V?ﬂ ‘Lr'._i'r — FiDV
Lg(m}ﬁ{l’”gh”] lota s, B ) of )]dx
= Iﬁ + Iﬁ,

By assumption H.5 and Lemma 3.2 we have

Jyes f (a**b=~Do ViDVI — Fy(DV))dz < 0
B g (z0)n{VN <hV) i

By the definition of V*, we have

I, =f By D VDV + 2a%8b:p D VD RN
J B g (zo)n{VN <h¥} 4 S 2 & 4

+ ﬂ,a'ﬁhﬂwﬂahﬁﬂﬁhﬁj — y{ﬂ.ﬂﬁbg}fﬂn V-;Dﬁv';}]dm
<C f (IDV|™2| Dh¥|dz + | DAY |™)dz
BEI:EU:I

<ef pvrdz+c DAY g
BE_{EU} ngm}
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Concluding the above estimates, we have

f |IVU|dz < C[(E)nf VU™ da + €| + O Rh-mtme
B.I:'I::':D:' R HR{I{L:I

Through Lemma 2.1, Chapter III of [15], we obtain the results required.
Theorem 3.4 Suppose that U is a minimum for the functional Fy n (0 with the
ghstacle puy of the form

un{u € HV,RY)|u— Up € Hy™(,RY),«* 2 b aej i=1,---,N}

where the integral Fy is defined as in Theorem 3.1. Let Fy satisfy the same assumptions
of Theorem 3.1 and ug € uy. Let [Vh| € prn—mrma () with h = (hl, .- hY). Then
the minimizer U € Gﬁ;ﬁ_' (Q, ") and we have the same estimate (3.6) for U.

Proof LetV € HI-EEB%{muj, BY) be a minimizer of the functional

f Fo{ Dv)dx
Bg {za)

forallv —u € H&’E{Blﬂ,R”}. We denote obstacles
i = {uw e HV{Q, RV Y7+ 2 BVt G =1, 1,1}

for 1 <¢< N. We know that uy C --- C .
Let Up;) be a minimizer for the functional in B a () with the obstacle p;. We prove
that for 1 <2< N

f II{DU[I']:ME < G[(%)ﬂ i E] f HI:DUm:I{lri‘ + O |Dhimﬂf:£-' [:31':'}
Bulzo) Brlzo) Bg[*ﬂ]

where £ is a small constant and

f DUy~ V)|™da < C f DU ™2 Dhf?da+C [ \DA[™dz (3.11)
B g (x0) B g (o) B g (o)
§ 3 3

Now we use the induction method to prove (3.10) and (3.11).

From Theorem 3.2 we know that (3.10) and (3.11) holds for ¢ = 1. Suppose that
(3.11) is true for 1 < j < i. We shall prove that (3.11) holds for j = i + 1. By the

definition of the minimum Uy, we have

f Fop(DUi)) (DU41y — DUy Jda = 0
B g (zo)
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Combining this inequality with (3.9) and the assumption H.4, we have

f ID(U1y = Ugy)[™dz < C f
BE‘.{IUJ {

Bg(xa)

=G./;:§{:u] [Fo(DUji 1)) — Fo(DV, ) lda
+[ o0 PP DYii) = FoDUy e (3.12)

Setting
¥ Ei 1 WN—=a—1 (A —1i) N =i-p1 N
H’Hlj . EU{-E,}? S :U{i:. U 1) :-U{a_;} e U(gj]
we know that E’T{?-H} € pi+1- Using (3.12) and H.4, we repeat the similar proof as in
Theorem 3.2 to obtain

f DU ~ Ugyn)™ds < f \DU|™2|Dh|de + C [ \Dh|™dz
B g (o) E;}E-’m} BJ,}':EU:'

"This proves that (3.11) holds for 7 = ¢4 1. Then (3.10) is also true for 1 =44 1.
Theorem 3.5 Let m = 2. Let u be a minimizer of the functional

B fﬁ a3 Dot Dy

with the obstacle py. Assume that (a®® and (by;) are symmetric positive definite con-
stant matrices. Suppose that Dh € CY2(Q) for some o > 0 where h = (!, ... A,
Then the minimizer u € C-’If;gl[ﬂ, RN,

Proof We use the induction method to prove this theorem. Assume y; be obsta-

cles defined in Theorem 3.4
We first prove the case of £ = 1. For each v = (v!,- -+, v"), we transform v into o*

by
o

— M T
des N ¥ g

then the obstacle problem :
F (1, 12) = min F(v, )

Ve Ly

15 equivalent to the following new obstacle problem

F*(u*, Q) — min F*(v*, Q)
vEpy

where T = / . [ﬂﬁﬁbfjﬂ ot D ﬁ“*j & Eﬂ&ﬂbﬁjﬂ&ﬂﬁﬂﬁhﬁ +a®P by Do hY Dﬁlii!-hl]ifl‘ and
1
o = {v € H'2(Q,RY)|u* — v € Hy (0, RY), oV > 0).
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For the sake of simplicity, we still denote F,u* and py by F, u and p;. Define

F (v, Br(zo)) = f FO(Dv)dz

Brizn)

= el [f;ﬂﬂbgjﬂauiﬂ_ﬁt:j -+ Eﬂaﬂbﬂ’iﬂaﬂi[DﬁhNJ%‘R +ﬂﬁﬁbwﬁﬂﬂ:h”ﬂﬁhmldﬂ;
riT

Let Uy be a solution of the following obstacle problem
FU(Uy, Brlzo)) = Inin F(v, Br(zo))

Let [/, be a minimum of the functional F°(v, Br(zo)). By the standard theory of

regularity, we have

f+2r
[ DUz~ (DU2)zy,l?de < O(F) | DU = (D) rl'dz
B, (z0) B

r(To)

Then

R

n f |Duw|?de
Br(zo)

; n+ie
[ DU~ (DU)agldz <C(£)™ [ DU~ (DU)eo,nfde
By(zn) Br(zo)

where w = U, — Us.
Using the Euler-Lagrange equation and the ellipticities and Uy |spqiz0= U2 laBgize)
we have

fﬁ " }|D=m|2dir < FO(Uy, Br(zo)) — F*(Us, Br{zo))
RED
= Bl j[ﬂnﬁfl;jﬂnﬂf.ﬂﬁ”f S &u'ﬂbgjﬂ&UéDﬂUg]dm
RLZ0 :

Using the same proof in Theorem 3.3 we obtain

f | Dw|?dz = 0
Bg(xa)

This implies that
’ Ilrlr?u‘ :
DU, — (DUY) gy pl%dz < C( £ f DU, — (DU 2
/H,,{I.;.}| 1 — (DU ) gy 0l d = (R) EH{:ﬂjl 1 — (DU1) gkl
Then
L :1+E{rf 5
Du — (Dut)gy pl*dz <C( 5 Dt — (Du J
ﬁﬂ‘;l{:gj' 1} |: L}:l:u..ﬁ'l o (R) B‘nlimu}l '-r. }:ﬁ'n,Rl

+f |D(u — Uh)|dz (3.13)
Brlzo)
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On the other hand,

j;_} o 1D~ DUy |2dx < F°(u, Br(zo)) — F(Ur, Br(za))

<[ o [°(Dw) — Fla, Du)ldz + /

Bglxn

}[F{I,DH]I — F{z, DUY)|dx

- fﬂ 5 [F(x, DU,) = FY(DU,)|dz

=h + I 1Is (3.14)

where for all v*, we define

F(z, Du*) := a®b;; Do + 20%Pby; Dgu*i Dgh™ + a®Pbypn Doh™ Dgh
Since 1* is a minimizer of F*, we have that I, < 0. Noticing

f (DAY — (DRYV ), mldz = 0
Brlzo)

we have

Fis f 2a° By ;Daw*[(Dsh™),. p — Dyh"de

Br(zn) :

= Eﬂnﬂﬁ.ﬂ;;‘[ﬂuu* = [Dnﬂ*}m,ﬁi[(ﬂﬁhﬁjzu,R - *Dﬁhﬁ]dm
Bg(xn)

< Ce f Du* — (Du)ey pl?dz + f IDRY — (DY), alfdz (3.15)
Brirg) Brlza)

Similarly, we have
L< [ 2 g(Dul = (DaUi)e | (DF)zon ~ DAY ds
Fr s

< C'E.‘f |Dw* — (Du*)ay gl dz + GE[ |Dw* — DU |2 da
Brilzg) B

RiLo}

+C |DR™ — (DR™) ., gl dz (3.16)
Br(zo)

Using (3.13)-(3.16) and Lemma 2.1 of [15, p. 86] together with Campanato’s char-
acterization of Holder-continuous function [15, p.70] we have that Du is locally Holder

continuous. Using the same method in Theorem 3.4, we obtain the result required.

4. Partial Regularities for the Obstacle

In this section, we consider the functional of the form (1.1). Assume that the
integrand F(z, u, p) satisfies assumptions H.1, - - -, H.5 and is of the special form (1.2).




No.1 Repularity Results for Minimizers of - - - : 81

We have the following results

Theorem 4.1 Letu e HY(Q,EY)Np i be a minimizer of the functional (1.1)
with the graphic obstacle (i). Suppose that the integrand Fz,u,p) satisfies the main
assumptions H.1, .- H.5 and (1.2). Assume that the funcfion fi(it) and fa(z) in the
obstacle (1) belongs to space CH{RM),|Dfi(v)| < L and |Dfs| < L for some L > 0.
Then there exists an open set Qg C  such that v € C% () for any 7 € (0,1).
Moreover O\fly C £ NEy where

Y= {‘I € 2:supluy g| = +ﬂc}
R

o, = {3 €0 : R”"‘“f | Du|™dy > n}
Br(z)
In particular H* ™5 (0\ ) = 0 for some positive £ > (.
Proof For each v = (v!,---,v"), we transform v into v* by
=3, vV =v" - f(@® (4.1)

Then the obstacle problem

Flu; ) — min Flv; 1)
VEMf

is equivalent to the following new obstacle problem

FH(uw*; ) = min F*(v*; Q) (4.2)

1"-:‘:’;1}

Where the integrand F* satisfies the same main assumptions H.1, - .-, H.5,

F*(z,u,p) = g(z,u, a®(z, u)by; {I,ﬂjj}iﬂpi}
and
wh={ve RY VN > fae, v—u'€ W&’m[ﬂ,]ﬂ”}}

Therefore, we shall discuss the new obstacle problem (4.2) instead of the obstacle
problem (4.1). For the sake of simplicity we still denote u*, F*, F and p} by u, I, F
and .

Let zp € 2, R < dist (g, I0), ug = Uy B and

FO(p) = F(xo,u0,p) = g(x0, 10, a% (0, uo)bi; (o, uo)phry)

using Theorem 2.5, there exists a v € HV™(B & (zg); BY) such that it is a minimizer of
the following obstacle problem

f FY(DV)dz — min f FYDV)dz
Bg[ﬂ-'u} BE‘.EEU}

VEMN
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where iy = {v € H'™(Bg (ao), RY)l" 2 fo,0 - u € Hy™(By(zo),RV)} and F¥(p)
satisfies the hypothesis of Theorem 3.1.
F'rom Theorem 3.3 we have

P i
H(DU)dz < C( = H({DU)dz
'[}3:'-{"-'1}] B7) (R)

B gilzal
.rET.'Iu,

R
for 0 < p < 5 Then we get

f H(DU)dz < O(2)" f H(Duw)dz + C f \D(u — U)["de
Bolza) R7 /B g (x) B g (o)

Using the formula (3.9), the ellipticity assumption and variational inequalities, we ob-

tam
[ \D(u—U)["dz < C [F%(Du) — FO(DU)]dx
By{zo) By(za)
< f [FO(Du) — F(z,u, Du)]dz + f (F(,u, Du) — F(z, U, DU))dz
H_G.[::'.E'D:I B;.{Iﬂ]

f [F(z,U, DU) — F*(DU))dz
B, ()
In a similar way as done in [7], we conclude that

];j_!”{mu] H(Du)dz < C’[(%)H + ;{[mg,ﬂ}] fﬂ H{Du)dz

riTa)

1
where x(xg,R) = 7 (G’ |tbgg |, B+ C (R“"l—“ f ( :Iif.}-u,|md£)'“)m. Then result re-
Bglzo

quired follows from (4.5)—(4.6) in a standard way, see e.g. [15, pp. 170-171, 105-106].

Theorem 4.2 Let u € H'™(Q,RY) np® be a minimizer of the functional (1.1)
with the obstacle u™ of the form (ii). Suppose that the integrand F(z,u, p) satisfies the
main assumpiions H.1, - -+, H.5 and (1.2). Assume that the function h(z) in the obstacle
(ii) 18 C'l-continuous and |Dh| < L for some constant L > (. Then there exists an open
sel §1p 8 sueh that w € CV(Qg) for any 7 € (0,1). Moreover {1\8ly C £y Ny, where

= {,1: € 8 :sup |ug.r| = +c::-c::u}
"

P = {’L g1 .ﬁ'.m_n[

HE[:"':I

| Du|™dy > ﬂ}

In particular H* 77500 82) = 0 for some positive £ > 0.
Theorem 4.3 Whenm — 2, lef

F[:t:,u,p]l — ﬂ“ﬁ(:ﬂlu}bﬁ{jﬁ;,ﬂjj‘?;}%
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Suppose that all assumptions of Theorem 4.2 hold and Dh & % Then Du &
Gﬂ’ﬂ(ﬂm RNJI
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