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problem for the equation of Benjamin-Ono type. A series of large-time global estimates
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1. Introduction

The equation, which describes the propagation of the internal waves in the stratified
filnid with great depth, can be expressed in the form [1=7]

Ut + 2uty + Hupe = 0 (1)

where H is the Hilbert transform

Hu(wt)=zp [~ W08, 2)

T Jeoo y—2
and P denotes the principle value of the integral. The equation (1) of deep water is
also called Benjamin-Ono equation. If the effect of the amplitude of the internal waves
is taken into account in the deep fluid, the equation (1) has an additional linear term
as follows

Ut + cptty + 2uuy + Huyy = () (3)

There are many investigations of the physical purpose for the nonlinear partial
differential equation (1) with singular mtegral term of deep water. The Backlund
transformations, the conservation laws, various soliton solutions and their interactions
for the Benjamin-Ono equation (1) are studied in [8-12].
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In [13] the initial value problem for the nonlinear singular integral-differential ecua-
tion
g+ 2utty + Hugp + bz, e, + ez, t)u = f(z,t) (4)

is studied by the method of fixed point and mtegral o priori estimates. The generalized
and classical global solutions are obtained. The classical solution of Cauchy problem
for the simple Benjamin-Ono equation (1) is also derived in [14] by the method of
semigroups. In [15] the global generalized and classical solution are considered again for
the original Benjamin-Ono equation (1) in the Hilbert spaces with half order derivatives.

The purpose of this work is to establish the solutions for the Cauchy problem of the
general equation

Uy + 2uny + aHu,, — SHu, + (i, ) Hu + b(x, )z + oz, thu = flx, t) (5)

of Benjamin-Ono type, where > 0 and 3 > 0 are constants. The term —3Hw, of the
equation (5) has special character, The change of the coefficient i shows the interesting
behavior of solution of the equation (5). This is & nonlinear partial differential equation
with singular integral operators. The solutions of the problem for the above equation
are approximated by the solutions of the Cauchy problem for the nonlinear paraholic
equation

e = Ellgg + 2uty + aHu,, — fHu, + Y&, ) Hu + bz, £)u, + e(z, thu = f(x,t) (6)

with Hilbert transforms terms, which is obtained by the addition of a diffusion term
€lUzz With small coefficient ¢ > 0 i the equation (5). The solutions of the Cauchy
problem (7} for the nonlinear equation (5) are established by the limiting process of
the vanishing of diffusion coefficient ¢ — 0. The convergence speed is estimated in order
of € > 0. And then in later part of this work, we are going to consider the large time
behavior of the global solutions of the Cauchy problem for the equation of Benjamin-
Ono type. A series of large-time global estimates for the solutions of the problems
for the nonlinear paraholic equations with Hilbert operators and the corresponding
nonlinear equations of Benjamin-Ono type are constructed. By means of these obtained
global estimates, the attractors of the Cauchy prablems for the mentioned nonlinear
¢quations are considered. And also the dimensions of the global attractor are estimated.

Let us state some fundamental properties of Hilbert transform [8-12], which are
used repeatedly in the further investigation as follows,

Lemma 1 fyy any f(z) and g(z) € L, (R), there are

'::]-} H-E.IF — _f 3 ;

{2) Hixafg] =H(HfHg) + fHg L e s

(3) f_mﬂmjﬂﬂ{i‘]dﬂ? =i _/:: 9lz)H f(x)dx,

hence th

/ glz)Hg(x)dr = 0

Lemma 2 For any differentioble function f(z) € HS(R) (s = 1,2), there are
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(1) (H)). = HF,,
o [ _fe(@)H (@)dz >0,

O el < ([ £e@8 @) ([ fuale)Efol)aa)

Proof Denote by f{.ﬁ} the Fourier transform of f(z). Since the Fourier transform

of Hf(x) is Hf(€) = isgné f(¢) and fo(€) = 2r£ f(¢€), then
HF,(€) = isgnt fo(€) = ~2mesgné fl€) = 2mic HF(€) = (HF)ale)
This shows H fa = (Hf)s by means of the inverse Fourier transformation. Hence (1)

is proved.
For {2}, we have

[ s@Es @ = [ RET@d = [ 2miei(erisameFErae
=or [ [¢l|fiPae > 0

For {3}, we have

La) ]

| ePR©PaE < (2x [ NFra)* (o [ repFePae)

5 (f‘“:' fszﬂ}Hffm}dm)% (f:} fEZ{I]Hf;;(iE::IEﬂI:)%

-

12112,y = ‘hzf fi

Hence the lemma is proved.

2. Equations with Diffusion Term

1. In this section we are going to consider the solution of the problem for the
nonlinear parabolic equation (6) in the domain Qr = {x € R0 <t < T} with the
initial value condition

u(x,0) = ¢{x) (7)

where () is a given initial function for s € Rand 0 < T < oo is & given constant.
We are finding the solutions of mentioned problems in the space of functions with
the derivatives of any order tending to zero as |z| — oo.
Let us begin with the initial value problems for linear parabolic equations.

&
Denote by Wik‘[“” (Qr) the functional spaces of functions flx,t), which have
derivatives forys(2,t) € La(Q7) for 2r + 5 < k where k = 0,1,---. Also denote
k
by WE'[?]}{QT} the functional spaces of functions flz,t), which have derivatives
fares(z,t) € Loo(Qr) for 2r + s < k where k = 0,1,---. For k — 0, Wit gp) =
Ly(Qr) and W (Qr) = Loo(Qr).
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We state the existence theorem of the initial value problem for the linear parabolic

equations as follows
(k[3]) Ak [5])
Theorem 1 Suppose that b(z,t) and c(x,t) € Wa, (Qr) and f(x,t) € W,
(Q1) and suppose that §(z) € H*(R). The initial value problem (7) in the domain

1 for the linear parabolic equation

Lt = g — €uze + b(z, thug + oz, t)u = f(z, 1) (8)

. : (k+2,[5]41)
has a unique global solution u(x,t) € W, (Qr).

2. Let us now investigate the initial value problem (7) for the linear parabolic
equation with singular integral operator

Low=Lu+ Ao = u; — EUzr + AeH Uy — ASHu, + Av(x, ) Hu
+ b(x, thue + elz, t)u = f(x, 1) (9)

where 0 < A < 1 is a parameter, & and 7 are constants and
Lu = aHuze — BHug +v(z, t)Hu (10)

It is evident that for A = 0, the initial value problem (7) of linear parabolic equation
Lou = f(x,) has a unique solution u(z, f) € Wf‘”(@ﬂ, under the assumptions that
bz, t), e(2,t) € Loo(Qr); fl,t) € La(Qr) and ¢(z) € H(R).

Let E be the set of values of A € [0,1], for which the initial value problem (7) of
the linear parabolic equation Lyu = f(z, ) containing singular integral operator ALu
has a unique global solution wuy(x, t) € Wég’]}(@}], then the set E is nonempty in the
segment [0, 1].

For the solutions uy(x,t) of the initial value problem (7) of the linear parabolic
equation (9), we can make some a priori estimations by the usual energy method.

Taking the scalar product of the solution u a(x,f) and the equation (9), we have

i)
E“H(-,fa}”ig{;ﬂ _’LE”“E':'-*HH%?[RJ %
1 ;
E{;Hﬁ“im({gﬂ + 2llell zwt@r) + 207 Lo iory + 1}||“':'1t]”izfﬁll T ”f':‘:t}”iﬂm

There is the estimation

sup ||u(:, )] £2(@r) = Crillélle,ry + 1l o000}

! + |l
i La(r) T |2

where C) depends on the norms ||b]| Leo(@r)r Nl Li@rys 1Tl Eos(@q)s the diffusion coef-
ficient ¢ > 0 and the constant 3 is independent of the parameter 0 < A < 1,
Then taking the scalar product of u,., (x,t) and the equation (9], we get

d : 4 45
E”ﬂi{uﬂ”i?{m + elltax (-, )17, 5y < (;”ﬁ”ich}ﬂ ar T)||ﬂr¢'[wﬂ||%3{;c]
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[ ]

1
+ Ielson 1 Ol + Iy DNy + 217G, 12,
This implies

ﬁz‘:&q e (. 2l Loy + [tzzllLy@r) < Co{lldllmagmy + I llzac@ry | (11)

where C; is a constant dependent on the norms |||!:||,5E_ﬂ.{@i,{|1 lell oo torys IVl 2w (@7
the constant # and the diffusion coefficient € > 0 are independent of the parameter
<A<,

Hence under given conditions, the solutions A, 1) for the initial value problem (7)
of the linear parabolic equation (9) with singular integral operator have the estimations

S0 s )l oy + Ntell pye0p) + el ai@ry < Callldll gy + Iflleagoem}  (12)

in other words
||ﬂffT,p:E:t.I:IE,;,T;I = Cs{lloll ey + £ Il Lagpy } (13)

where C' depends on the norms |5 Leo(@7)s ||€ll Lo (@r), the constant 3 and the diffusion
coefficient € > 0 are independent, of the parameter 0 < A < 1,

By means of these estimations, we can prove that the subset E is closed in [0, 1].
Suppose that A € [0, 1] is a limiting point of E, ie., there is a sequence {A\;} C F
such that ;E].:L M = A Let ug(x, ) be the unique generalized global solution of the
initial value problem (7) (9): Ly.w = fl=,1) corresponding to the parameter ) =
Ap (B =0,1,.-.). The set {ur(z,1)} is uniformly bounded in the space Wf‘”{@ﬂ.
Then there exist the subsequences of {Ai} and {up(z,1)}, still denoted by {Ax} and
{ur(z,t)}, such that as k — oo, then M — A and {ur(z, 1)} converges to i(z,t) €
Wg{z‘l}{QT] in the sense that {u(z,t)} converges uniformly to %(z,t) in any compact
domain of Q. {upe(x,t)} converges strongly to ti;(z,t) in L,(0,T; L2(R)) for 2 <
P < 00 and the sequences {ug,(x,t)} and {u(z,t)} converge weakly to i,.(z,t)
and wug(x,t) respectively in La{€r). Thus obtained function i(z,t) € Wf’” (1) i3 a
unique generalized global solution of the initial value problem (7) (9): Lyu = f(=,1)
with A = . This means that F is closed in [0, 1.

Let us now prove that F is open in [0,1]. Define A, a mapping of Wf‘”{@ﬂ into
itself as follows: for any v € Wéi’”{@'ﬂ C Wf’m{f&y], let ¥ = Ayv be the unique
generalized global solution of the initial value problem (7) for the linear parabolic
equation

Ut — €Uz + Ao(@H Uzz — SHuy + y(z, 1) Hu) + bz, t)us + e(z, t)u
=_f(ﬂf::. t':l =t {jl':l == A}{H-HF“E:: i ,EHT-‘;: + ’]"I':I1 i‘ﬁ}H'ﬂ.‘}

with singular integral operator, where Ay € E. For vy, v € WE{E‘U][QT-}? there are
Uy = Ayuy and us = A, belonging to I’I”E':?‘l]{QT]- Then u; — uy satisfies the linear
equation

(1 —22), — () — ug)ge + AploeH {1y — wug)pn — GH(uy — ug)s
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+ (@ ) H(uy — uz)) + bz, ) (u1 — ua)z + oz, ) () — up)
=I:a-1’|.|:| = A]I{ﬂrH{vi = '1.'2};1:1 ! ,ﬁ.HlftF-l s ’UEJI + ";-’{:IZ1 t]H[HI T 'Uz:'lj

and the homogeneous initial condition
w1(2, 0) ~ up(2,0) =0
From the estimation formula (12), we have

Il = wall 20y 5. < Caldo = Alor ~ 2/l 00,

< CsfAo = Al - U2l e

For the sufficiently small [Ag — A|, the defined A, : WE':E’”[:QT} —t WE':E‘”(QT] is a
contraction mapping. Hence there is a unique solution u(z, t) € Wf‘”{@g-j, such that
u = Ayu. This means A € E. Then E is open in [0, 1].

Therefore £ = [0, 1], i.e., for any A € [0,1], then for A = 1, the problem (7} and (9)
has a unique generalized global solution.

Theorem 2 Supgose that € > 0, 8 and o are constants and suppose that b(x, t),
e(z, t),y(z,t) € Loo(Qr); flz,t) € La(Qr) and @(x) € HYR). The initial value
problem (T) of the linear parabolic equation (9) has a unigue generalized global solution
u(z,t) € Wit (Qr).

Corollary  Under the conditions of Theorem 2, the generalized global solution
u(x,t) of the initial value problem (7) and (9) has the estimation

”H“W-;:E'”{QTJ < Ko{llélleemy + 1 lzaopm ) (13)q

where Ky is a constant dependent on the constants o and 8 and the norms 10l 2oty s
el zoet@rys IVllLaigyy and the diffusion coefficient e > 0.
k
3

k
Corollary  Suppose that b(z, ), (=, ), 7(z, £) € WS 2D(Qp), f(z,1) € wiHED
(Qr) and ¢(x) € H**(R) for k > 1 integer. Then the unigue global solution u(x,t) of

o[k
the initial value problem (7) and (9) belongs to the space W;(HE’[E]H}(QT].

3. Now we turn to prove the existence of the generalized global solution for the
initial value problem (7) of the nonlinear parabolic equation (6) with singular intepral
operator.

Theorem 3 Suppose that 3 and o are constants and assume that b(x, ), c(x, t), y(zx,
t) € Loo(Qr), f(x,t) € Lo(Qr) end $(z) € HYR). The initial value problem (7) of
the nonlinear parnbolic equation (6) with the Hilbert operators has a generalized global
solution u(x,t) € WE':E’I:'(QT], which satisfies the equation (6) in generalized sence and
the initial condition (T) in classical sence. Furthermore there is the estimation

JS0D: Il Ol ry + letwell Lag@ry + el ogory < Ko{lldllmomy + Il eztom}  (14)
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where Ky is a constant dependent on the constants o, 8 and the norms of the coefficients
bir,t), c(x, t) and v(x,t), the diffusion coefficient ¢ > 0 and T > 0.

Proof We want to prove the existence of the generalized global solution for the
present problem by the fixed-point technique.

We define a mapping T, : B — B of the functional space B = L., (Q7) into itself
with a parameter 0 < A < 1 as follows: For any v(z,t) € B, let u(z,) be the unique
generalized global solution of the linear parabolic equation

Up — Ellgy + OH Uy — SHu, + YHu + 2vu, + bug + cu = f (15)

with the initial condition
uf{x,0) = Ag(z) (16)

When v(z,t) € B, the obtained function u(z,t) € Wf’”[ﬁh}- We can prove that the
mapping T3 : B —+ B defined by u = Thv for v € B is completely continuous for any
QA=

As A =0, Ty(B) = 0.

In order to justify the existence of the generalized global solution of the original
problem (6) and (7), it is sufficient to prove the uniform boundedness in the base Space
I of all possible fixed point of the mapping T, : B — B with respect to the parameter
0 <A =<1,ie, it needs to give a priori estimations of the solutions wy(x, ¢) for the
initial problem (16) for the nonlinear parabolic equation

Ut = €y + cHure — SHuz + vHu + 2u, + bug +cu = Af (17)

with respect to the parameter 0 < ) < 1.
Taking the scalar product of the function u(x,t) and the equation (17} in Hilbert
Space, we get

':.‘:'::' .
f u(uy — €tzr + cHury — SHuz + vHu + 2un, + buy 4 cu — Af)dz =0
— (3

By simple calculations as before, this can be replaced by the inequality

i

Fatr) + Mzl )13, < CallluC, 2, 0ry + 1F Gt 1m0
Hence we have the estimation

S0 [1u( )llzar) + ol a@r) < Co{lléllzm) + 1/ 1lza(r)}

&

where Cy and 5 are dependent on ||b]| LoolQr)s
are independent of 0 < ) < 1.

Again multiplying the equation (17) by ., and then integrating the resulting prod-
uct with respect to x € [, we obtain

| Leot@r)s 17| Lec(@ry and € > 0, but

] Uzr(lts — €Upy + @Hupr — GHuy + vHu + 2un, + bu, + cu — Afidz =10

]
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Similarly, we get the estimation
e et (3 )l oy + etz | 2000y < Cotlléllary + ILF 1l pa00 )

where Cg is independent of 0 < } < 1.

This shows that all possible solutions of initial value problem (17) and (16) are
uniformly bounded in space Loo(0,T; HY(R)) hence in space B with respect to 0 < A <
b

Therefore the existence of generalized global solution u(z,t) WE"*E’”(QT} for the
initial value problem (7) for the nonlinear parabolic equation (6) is proved. Hence the
theorem is proved.

Suppose that there are two generalized global solutions u(z, ¢) and v(x, t) in Los(0, T
H?(R)) for the initial value problem (7) for the nonlinear parabolic equation (6). The
difference function w(z,t) = u(z,t) - u(x, t) satisfies the homogeneous linear equation

Wt — €Wy + aHwes — BHw, + vHw + (b+u + vwe + (e + e + vg)w =0
in generalized sense and the homogeneous initial condition
w(z,0) =0

From the estimation formulas of the generalized global solution, it gives w(z,t) = 0,
where for the coefficients of w, and w terms are bounded, since u. v € L (0, T H E{R}}.

Hence the generalized global solution u(z,t) € Lo (0,T; HX(R)) of the problem (6)
and (7) is unique.

3. A Priori Estimations

1. In order to obtain the global solution of the initial value problem (7) for the
nonlinear singular integral-differential equation (5) by the limiting process as the co-
efficient ¢ > 0 of the additional diffusion term tends to zero, we must derive a series
of @ priori uniform estimations for the solutions of the initial value problem (7) of the
nonlinear parabolic equation (6) containing the Hilbert operator with respect to the
coefficient ¢ > 0.

Lemma 3 Suppose that € > 0, 3 = 0 and o are constants and suppose thal
b(z, 8), b (2, 1), o, 1), (2, t) € Loo(Qr); f(2,t) € Lo(Qr) and é(z) € Ly(R). The
generalized global solutions u, € WE{E‘”{QT] of the initial value problem (7) for the
nonlinear parabolic equation (6) with Hilbert operators have the estimation

gletlfgﬂllu{{"‘ﬂlli"{m + Bllues Huell £, (07 < Kﬂ{”ﬁﬁ'”%gm} = ”-f”ig[c}r]} (18)

where K is a constant independent of € = 0, but dependent on the norms Hf-‘a:“Lm{r:;'T)r
lellwot@ry and |19l L (gry-
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Proof In the integral equality

- :
f wlug + 2uty + aH gy — SHuy + vHu — etpr + buy + cu — flde =0

—

Regarding
f buu.dr = —% f bouldz

— ol =

we have

i =
Tl Oy + 26l sy +28 [ unHude
= {i!-!’.:||im|:r.h~} + 2llell =i gpy + 2Vl Loty + 1}||1“f':ﬂ||iz|:ﬂ} + ||f'|:'¢tf|ﬁ:‘£,2{ﬁj

Hence the lemma is proved.

2. Now we turn to estimate ||uee(-, £)|| 1, R)-
By the direct calculations and by use of the behaviors of the Hilbert operator, we
can obtain a series of identities as follows.

At first,
I!’.I[ L o] L &)
— f ﬂidi = =2 f U U dT
dt — 30 —
o
=2 U [0ty + H e — SHuy + vHu — gy + btte +cu — flde =10
—

Here we have

f 'lI-;.;;;H'lI-;.;;;{ﬁﬂa' = []1 f I".II'I_.EHHQ:!E:E E ﬂ
::f 1 m_w ;

f btistipndt = — = beudz
e i

f yitpe Hudr = — f (yuzHuz + vzuHu)dz
oo —an

f CUL T = — f {-:m:i + eptitty )da
Ry B
[ Upp fill = —f U foda

—r —

Then we obtain the identity

d [ ) O L)
Ef ulde =4 Uty U dT — 2€||tes |l Lo m) — Eﬂf Upy Huodr
— — 5 — i
o

[n- n] -]
= f (by + 2c)uldr — 2 f Cptiitpdy 4+ 2 f Uy fodx
— — 0

—

i 2] vt Hupdx —E/ etz Hudz (19)
—a -0
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Secondly let us caleulate

PR o0
f ' Hugdr = f (2uw Hug + v’ Huyy daz
- — 0

dt J—co
[
=) f [wHu, + H{uu, )|ude
—
= —2/ [uHuy + H(uu,))[2uuy + aHuzy — Hu, + vHu — eugpy + b, + cu — fldz

From the fundamental property (3) of the Hilbert transform, we have evidently

f Ut H (U Jdx = 0

—Ed

and from Lemma 1, we have

(v o
f H(ue ) HUpodr = f Wik Ty AT
Here we also have
f uHupHugods = - f ul(Hue ] do = — j up (Huz)da

1 oD
= 2 f o H (1 e dat

From the property {2} of the Hilbert operator,
H(fHf) = HHfH )+ (Hf)* + fH*f

This shows : 1
H(fHS) = S(Hf) - - f*

Then

f T £y Y, f e Ho e — f ulde
(=] 2 -2 2 )

s X0
= - f uHu, . Hu o dx + / U U L0
— — O

Hence we get
et 1 £
/ HHHIH?.LIIdE = E f uifl;rum-::d:ﬂ

— — 0
Therefore we obtain the identity
d o 2 o 9 ] o o
- u Huzdr = —4 w iy Hu dr — —o Uy U (T — Ef bun, Hu..dz
dt J_ oo : d —o0

=X —io

_9 / bup H (wuz)dz + 28 f w Hug)2dz + 2¢ f (B 1 H (st
e — s —a
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+ 2,{3[ wutdy — Ef (wHuz + H(uug))(vHu + cu — f)dz (20
Thirdly, we have
% f buHu dr =f huHu.dx + f (bus Hur + buHuy)de

s f s — f (bH s + H(b):)[2uis
+ oH gy — BHu, + vHY — eupy + buy + cu — fldz

Here we have

20 i}
f ity H (btt) di = —f (bow + by ) H (1w, )dx

(] fes

[ bH e Htige = —2 be( Hue)2da
7 e o5 g

f H(bu) Huppdr = f (b)) pttgpede = — f (E:x;cuux - Ebwui)dm
— T — ] —

Then we get
d’ oo o2 [ ]
A f buHuzde = -2 f by Hudr + 2 f b, H (wuy )da
v o = — ] —

] )
-I—f btuHuId:a:+2f beuH (uu, )de

+% f bt B e o f e g.:g f bpuldz
e f (bHwp + H(bu) Vuseds
—_x
— f (bHuy + Hibu) ) —0Hu, +yHu + buy, + cu — fldx (21)

Similarly we can derive other two more identities as follows:

) [} [+ u}
if wldz =12ctf HEHEHHId$+4.Ef TR, I
. ] —g0 —co
il f w3 (= BHug +vHu + bug + cu— f)dz (22)

and
d 2=} P "]
- f butdr = 6o f buu, Hudr
at Jo o — o0
o0 [ ] L 4]
+f bou’ di — Ef buﬁuxdﬂ:-l—ﬂaf bou? Hu,dx
— —ia

—

+ 3¢ f butugedr — 3 f bu(—fHuz + vHu+ buy + cu— fldr  (23)
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In the derivations of these identities, we must notice that all the derivatives of the
global solution ue(x,t) tend to zero as |z| — oo and we have to use the fundamental
properties of Hilbert transform repeatedly in the calculations.

Now making the linear combination of the five identities (19)-(23), in order to
elimimate the four terms

f Uty i f HEH;Hﬂde} f by Hu.dax, f buz H{uw, )dr
o — o —o0 —
in the right parts of identities (19)-(23), we obtain the final equality:
& [ 2002 + 3uHuy + BbuHu, + Lot + Z 5] do + delluaa(-, 1)1
alt . Uy T Sz L = Yzz\ " UM Ly )
o o
— —4&;5‘/ umHuzd;r+ﬁ,ﬂ/ u[(Huy)? + ullde
—o0 —o0

oo 4 G
Te f [b(uHuz + H(uu,)) + 3(bHu, + H(bu),) + 4+ =0 ugada

— G

+ [ [(Geo+ 360~ dac)ul + (Zab. + 36) (r1u,)? - (387 + do)ug Hu, |dx
4f

a
2
+ (b — c)uH (uu.) — %ugum — yuHuu, — yHuH {uum}} dx

-+ LZ [ - 1’55!53153 + uaﬁum]dﬂ:—l—ﬂj:ﬂ; [(ﬁm + gﬁ — ::)HEHur

= 4ox
+ 3_[ [(:::Eim + Gb; — ——ﬂ;)uum + (—be + be)uHuy — bu, H(byu)
L 3

— cuH (bu,) — byHuHu, — gﬂ&ﬂ'uux — “fHuH{huI}] dr
= fm (cu® + yu*Hu)dz -+~fm [l{i’bt — 6bc)u® — %HEH'EL]CJI
X J_pe — o ROF O

+3 fm lcuH (byu) + vHuH (byu)|dz + 6 fm fluHuz + H(uu,)]dz

o e
+ f [F(8bHuz + 8H(buz)) + 4/ cuslde + = f futds

_'mﬂ'-':' o0 T
+6 f foulde + 3 f FH (byu)dz (24)

—o0 —ca

Denote by Ji (k=1,2,---,15) the k-th integral term on the right hand side of the
above equality (24).

3. Let us now suppose that the coefficients b(x,t), ¢(x,t) and +(z,t), the free term
f(z,t) and the initial function ¢(z) satisfy the following assumptions:

(1) f(z,t) € W (Qr),

(2) e, £),v(z,t) € WE(@Qr),

(3) bz, t) € WS (Qr),

(4) ¢ € H? (R).
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And also assume that o > 0 and 7 = 0.

Now we turn to simplify the equality (24).

At first let us consider the integral J3 of the right hand side of {24} with coefficient
e > 0. Denote by J{z,t) the expression in the curved parenthesis of this integral. Then

| [ Fueads] < Slteals Dy + o 1T D (25)
where
[T, )2, ) <Cr f_ Z (X (Hup)? + (H(uws))? + b2(Huy)?
+ (H{bus))? + ¥ + but}de (26)

Here we have

_/:m HE{HH:E:}Edi = ”u'[l':-t]”im{R}“Hﬂﬂi'?t)”izfﬁj
= [lu(-, ﬂ”lrﬂ[ﬁ]”ﬂr( t]”L;{R] < |tz ﬂ'”L;{R} + Ca(n)ljul-, f]‘”mfﬂ}
f (H(uuz))dz = —/; uuidz < '?’.’l'“"lbmf‘;t:'||gz[m + Ca(n)||ul-, t:'”L;{R}

/:: b} (Huz)?dz < |83 _ (o el 013,00
Sl NZ ey + Comell], . opllnt I, cry
{H[bu 2024z < ez ()13, my
+ Crol) JUbellZ o @ry + 1017 (gu yMHeCs I s

f_m wde = lul, Gy em) < nlleaCy OlIF 1) + Cra(mlaC 1y

f_ Vutde = lluss (- DII2, r + Cra(m)l[bl]? yllul Ol

T (o

Substituting these estimations into (26), we get

17, D%, r) < BCmluxs(-,t) Wzzer) + Cralmllul, )1,

where Ci3(n) depends on the norms ||a.’3||w[1,mmﬂ and sup [Jul-, )]z, k). Let us take
0 0<t<T

n so small that 6C%n = «. Hence

||j[:'!i}“1§_.g|:R} E": ﬂﬂllummf':ﬂ“ig{ﬂ} T Cri‘iiiu'{'rtj”ig[ﬂ}

and that i 1
| | Fuseds| < ollusa( D13,y + 5= Crallul D)3, (27)

0

where Cy4 is a constant dependent on the norms ”E‘“w:[,;-”} (@2) and ":5:1;:5 (s 2)ll £ag k)
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Using the interpolation formulas, we can estimate some of the remaining terms of
(24) as follows:

41 <305+ 303l + O81Bl 05y 4 el o

el (@r) + SIBIE_ gp ) lua(, DIIZ,
s <Cus ([1bllz (@) + )uu{ Ly lu= (s I3,y

[Je| <Cig (J]f?:n:”L (G} T ‘-”b”!m{@a‘-] + llellzion + I'I"}’||Lm[cgq~j

uanﬂmm )) ey )12,y + sty S, )

| 7| 53[{& B+ Dbl en g, + 18l 2@z el 1o gy

+ 20 Lot @z) + (102l

(@r)) + Z‘Effﬁr“mmﬂ + |7zl 2., [QT;IJ“]HI{':-]F'}”igfﬂj
a7 ,0m)

s <= fffﬂl],c,m.:@j;+||’1fh.m{@r] Ml () + Crrllu, a1y
o] <218

J(R))

{“ht”LW{QTJ + I[bllL“mﬂflﬂﬂmeﬂ O L e (@) 17| £ (@)

(s, ﬂ”L;(H} + [l ”“L {R}J

|F10] <3][b, 2l|zea(@ry (el s tor) + I £ gy Ml

where s are independent
fz(x, 1), we have

D)Ilz2(r)

of € > 0. For the terms containing the factors flx,t) o

izl < (Sl w(@r) = 2) 1l )2, +2Hf|f O3 my

1a] < (—-Hmf Mhairltal sy + S15C,)IZ,

[J14] < Eu'ﬁ'lle{Qﬂ{“uz{ t}”LE(RJ &z ]]u{ tJ”L 2(r)) + 3£ (-,

OEem)
|I Ilal S

||‘5F HLM(QF}“T*[ f"L:{R}"‘ ||f{ t)”Lg(Rj
and furthermore t"r:}r J11 we have

Jf:. Fuluads| < lu(,0)| a4 ﬂ“Lm[Qir}"H“:f Wl oty

EHH,:*: tJ”IE{R}-l_ ”f( 1% @mliul: )3, 2(R)

1
< gllual ﬂ“LE{H}'FCED"ff t) ”HJ{R}
and

)_/:foflfwz}dm] < HHffwt]'”LW{QTJ”H{wﬂllag{ﬁ.:}”'ﬂw:{u )l 2 my
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Jr=a

< =l l'f}HLi.{m + Caollu(-, 2) HLE[R]HHIE ||L2I:R}||Hfﬂ?('1tji|Lj{R}

= b

—”“u'..l',_enlz E}llij{ﬂj R Gﬂll[.f[':t]"i;;fl{ﬂj

where C'3y depends on  sup (s )l Logmy-
0<t<T

For Jy, by using Lemma 2, we have

|J2| = 12.3”“"['- t] “Lm{f}T} ”1:1!.‘,:{1 t} ”%g{.ﬂ}
1 1
< 1280wl ) L@y lltaz (s ) Huz (I E oyt (s ) Hul, I gy

< 2ol uze (- ) Hug (-, )| £ (r) + 135”“(‘:ﬂ”im{r;:ﬂ”ﬂz(':t]Hﬂf'efjlllej
Henee
Ji] ;
N+ T2 £ 208 vea(cy ) Hua (- 2)|| 1y o1y + CEEE”“E':ﬂ”ig{ﬂj“um{':tj”ig{}tj

Let us substitute all these estimations into right hand side of the inequality (24).
Then the equality (24) is simplified and can be replaced by the inequality

d 1 oA 2b 2
dtf (a + -&-u + 3buHu, + 3u° Hu, + 2o, )dm+3&6f|u:¢::||f,g(ﬂ}

+ dﬂﬁ”“x-’t(ﬁ UH?%('J]”LJ(R} < Cﬂﬂ;”u(': f}llﬁl[ﬁ,] + 1|f|::1 'ﬂt)”Hl[R]} (28}

where Chs is a constant dependent on @ > 0, § > 0 and the norms ”b”W{E'”[Q )
= T
HGHWEMEQT]‘ ”j‘”wéi,uj (Or) and D?;ET l1e(s £}l La¢ gy but independent of the diffusion

coefficient ¢ > 0.
Integrating the both sides of the inequality (28) with respect to the time variable
in the interval [0, ], then we have

R L 2 2
f (—u + —u’ + 3buHu, + 3u“Hu, + Eﬂﬂ.m)dﬂ:ﬁ
o L Ck

<Cu [ I |iL2m;.dr+cz4{||¢||Lz w+ 151 0o g )

+ f .;a- i b[:ﬂ 0)6° +3b(z, 0)H: + 362 Ho. + 2042 )dw  (29)

where Chy is independent of € > 0.
For the last integral, we have

|f ({lx.;,f.* 4 %a(;:;ﬁ}ﬁ + 3b(x,0) 6 H b + 3¢ Hp, + 2ﬂ¢i)dm|

: : 4 '
< Cos(llb(z, 0) Lo (@r) + Dl my + Coslléllz,my + 18117, ¢y + DISNTca)
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or simply that the last integral can be dominated by Ggﬁjjéfﬁf,{ ry» Where Cyg depends

on a, ||b(,0)||;_ () and Il Loy
By similar method of estimation, the first integral of the mequality (29) can he
dominated below by

olue(,, ﬂ_”:‘ta,zm}. = Carllul, 't:'”ij{m
where Chz is a constant dependent on & and the norms I1&|] Loo(@r)and sup |lu(., ¢} Lo )
0<t<T
and independent of € > 0. Hence the inequality (29) becomes

[x
oDl sy < s | Il a7 + Con{ 8y + 11y} (30)

where the constants Cyz and Cyg are dependent on o = 0. 8 = 0 and the norms

—_—

|H’”W£§-”{QT}* ||C”w£'“}{r;h-y ”",r'”wﬂ,ﬂ]{QTJ and DE?ETthtl[-,f}]lh,:R:, and independent of

€ > 0. From the inequality (30), we get the estimation

ez Oy < Coo {1131y + 11000 .0)

for any 0 <t < T where Cyg is independent of ¢ = (.
Lemma 4  Suppose that o > 0, 8 = 0 and assume that b(x, ) € IVE’”I{QT:I,E{:IH t) €

Wee 2(Qn)1fat) € W), 1z, 1) € W (0p) and #(z) € H'(R). The gen-
eralized global solutions ue(z,t) € WE':E'I}(QT] of the initial value probiem (7) for the
nonlinear parabolic equation (6) with Hilbert operator have the estimation

GE?ET [l2ex (4 2) “i;(ﬁ] + ﬂ"HcIIHHu”m{QT] < Ka{ll ¢l r) +ILFI fﬂfé]'ﬁ]{ﬁ'r]} (31)

where Ky is g constant independent of ¢ > (.
Lemma 5 Under the conditions of Lemma 4, the solutions of the inifial value
problem (6) and (7) U (2, t) £ Wf‘”[ﬂ}r}} have the estimation

”"u!c”.ﬂ:m{r:;iﬂ = K5 {llo]l g2 + ”ﬂlW;El'nj[Qf:-jl} (32)

where K is a constant independent of € > 0,

4. In order to estimate ttezz (-, )| Ly(R), We must to verify some necessary identities
as before. We obtain the following identity

E‘i [ (20u2, + 10u, He, + 502 Hu, )dz

+ daelaas ()17, gy + 408l usma(-, ) Huzo (1)1,
= 20 f (MUprtppr H 1 — Ut H Utz )dx — 20 f ujumH YUyl
—o0 —

o
+ 10 f [Bu( Huer)? + ,Euuﬁz =ty e bugr H (uttr, )] dx
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{5 o]
— f [(6by + dc)u? | — doyu,, H Uy |dT
—o0
+ Eﬂf [ - Euuf;uﬂ + it H e thpr + uuiﬂ'ﬂm + ue H(utty vz, |dr
— i
+ lﬂf [B(Huz) * trz + 200 tge — BH (uf)tpy — by Hugttny — bus H (uzites)|dr

[
— 10 f (b + cJuue Hruzy + yHu, H(uug,) + (by + e)tiy H (i)
= Yty Huze + YHUH (Urter) + cuH (Uptizs) — YHuHugtyy — cuH U U | el
fei
b f [(Baz + 2¢2) 0t + 272 Huptige]dz
—
— 10 f [:‘!muiff Upr + CotH (Ut ) + YouHuHuze + v HuH (tttge)]dx
e
- iaf (Coxlittyy + Yor Huu,.)dz
£
=10 [ [(ba + Jur H(2) + 7Hu, H(ul)|do
— 0

— lﬂf [eouH (u2) + o HuH (ul))dz — 1!]/ fHuzUze + Huguz,)|ds

[ ] o 2
+10 f feluHtzs + H(utes)]dz + 4o f Fostipzde +10 f foH(u2)dz (33)
— D =T —r

Denote by Ji (k = 1,2,---,16) the k-th integral term on the right hand side of
identity (33).
For J;, we have

Hes ]
J]_ — E[]Ef {H'.IE:I'HEIIH“ o ’LLILIEH'ILg:;,:x}{I::E
—30
Then

I'-_II| EEDE{”HT-'!-HLW(QT]FEEIE('? t) “L?{R] IIHIEI{H t)] Lo R)
el ci@epllees (s Ml Logmy | H ez (-, )l ey }

£
£4‘51'EIEHEII[':- f]“%&{ﬂ} 2y E’GEEHHIILMEQT) a5 ”Hﬂi]Lm{QT}”ﬂv’m{':f]’“%g[&}

where

Hull? = 3 Haul-, t)||?
[ LlLﬂ{QTj Dgltlng” ( }”LW{H]
s Cao sup ||Hul, )| yemyll Huz(, 8]l 1,0k
D<t<T

< Gao sup flu( )l pacry sup Nua( )l Ly
0<t<T 0<t=T

18 bounded with respect to € > 0,
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Similarly using the interpolation formulas, we can estimate the other integral terms
of (33). We obtain the following inequality in stead of the equality (33)

% f (2(u2, + 52 Hug + 10uu, Hugg)de

= Gaﬁ{nﬂmf':f}"%gmj + ”H':B(':-tj”i;p{ﬂ:l + |-, tjlli?[}ﬂ] + Hf(':f?}”iz(ﬁ}}

where Chg is a constant and independent of ¢ > 0. Integrating the both sides of
this inequality with respect to the variable ¢ in the interval [0,¢] and regarding the
estimations given in Lemmas 3 and 4, we have

L
2tz (- I 5 ) < Gﬂﬁﬁ lzz (- T)IF, rydT + Cao{ll @l Fr2(my + !If[ifvéemmﬂ}

where Cyg is independent of € > 0. This gives the following lemma.

Lemma 6  Suppose that o > 0, 8 = 0, b(x,t) € I{‘F(EI}[QI 3;oelz, 1), v(E 1) €
w2 Qr) and f(z.t) € Wzm ﬂ}(Q ) and assume that ¢(x) € H*(R). Then the gen-
eralized global solutions u.(z,t) € WE':E'I]{QT] of the initial value problem (7) for the
nonlinear parabolic equation (6) with Hilbert operators have the estimate

SUp ||tteze(:, E)ll o) < Kelll@llazcm + ||f||}{,-ct_§.n}mﬂ} (34)

0<t<T

where the constant Kg depends on the norms ||bl .z g 55 ”ﬂ”w[’*-mmﬂ’ 1l 20 .y
¢l (r) and is independent of € > 0.

5. By means of the equation (6) and the interpolation relations, we have the
following lemmas as the immediate consequences of the previous lemmas,

Lemma T Under the conditions of Lemma 6, the generalized global solutions
ue(z,t) € WS Qr) of the initial value problem () for the nonlinear parabolic equa-
tion (6) with Hilbert operator have the estimate

ui?g e (o )| o my S K7 {ll @l mr2emy + ||f1]w-ﬂ|:3~u‘.l{¢ﬂ} (35)

where K7 15 a constant dependent on the norms ||EJ||W[2,1}I,QT},. ”C“W'::"“]{{eﬂ’ ||T||Ha',£§'“:'(r.}g~]
and ||@| g1 gy but independent of € > 0. ;

Lemma 8 Under the conditions of Lemma 6, the generalized global solutions
wlx, f) € WE{LIJ(QT} of the initial value problem (6) and (T) have the estimate

ez (s EM| £ow 2y < K {ll Pl 2y + ||f||w§3-“3{@ﬂ} (36)

where Ka is independent of € > 0.
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4. Generalized Solutions

In the present section we are going to establish the generalized global solution of
the initial value problem (7) (5) under the conditions of Lemma 6.

From Lemmas 3-8, the set of functions {u.(x, )} is uniformly bounded in the func-
tional space Z = Lo(0,T; H*(R)) N W{ﬂ}[D,T;LgER}} with respect to the diffusion
coefficient ¢ > 0 of the nonlinear parabolic equation (6) with Hilbert operators. By
means of interpolation formulas for the functional spaces, we have the following lemma
of the uniform estimations with respect to € = 0.

Lemma 9  Under the conditions of Lemma 6, the set {u,(z,t)} of the generalized
global solutions of initial value problem (6) and (7) has the following estimates:

fue (F, t) — welm, £)| < Kyl|T — | (37)

lue(z, ) — ue(x, )| < Koli — #)7 (38)

|tex(F, £) = wer(,8)| < K0T — | (39)
and 1

|ﬂ¢-:|:{5!7:.ﬂ — Uz (1, t)| < Klﬂlg — &4 (40}

where T, x € R, £, € [0,T] and the constants K's are independent of € > 0.
Proof The estimation (37) is an immediate consequence of (36).
In the interpolation formula

|u(x,8) — ulz, t)] < Cyllu(-,T) - ‘*ﬂ['si}uigm}||“mf'sﬂ = Uze () t”[igm}

we have

s B) = (e, Oy = j " (e, D) ~ ula, s = f.m| [ it [

= A
<=t sup [lus(- )l pqem]
0<t<T :

and
”um::[':ﬂ i “-1?:1:{': E":I'”Lzl:.ﬁ',]l <2 sup .”ﬂl‘ﬂ:(‘: ﬂ”Lz[E}
0<t<T

Thus the relation (38) is valid.
The formula (39) follows directly from

[0(%,8) = wa(@ )] < | [ wal€, 0] < 7 = ol fune lacr)

The last formula (40) can be obtained from

- s 1 i 3
|zl t) — ua(, t)| < Callul-, 1) - u{‘?'!')lliiiﬂ]"um{‘rf] = Ugr(- tj”i;{ﬁj

i, L 1 3
< 203t —t|7 sup (-, )3 sup ||wee(-, )]I2
2| | *}Eﬂli'i" e ( :I"LEERJ' UEtET'” xz( H]Lg{ﬁj
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The lemma is proved.

Hence the constructed limiting funection w(zx, t} belongs to the functional space Z.

We can prove that the limiting function u(x, 1) satisfies the nonlinear singular
integral-differential equation (5) with Hilbert operator in generalized sense.

Theorem 4  Suppose that & > 0, § > 0, b(z,t) € WE']}{QTJ, e(z, t), v(z, 1) €
wﬁ-”?wﬂ and f(z,t) € Wf’n][ﬁ'y} and assume that ¢(x) € H(R). For the ini-
tial value problem with the initial condition (7) for the nonlinear singular integral-
differential equation (5) with Hilbert operator, there exists at least one generalized global
solution u(x,t) € Z, which satisfies the eguation (5) in generalized sense and satisfies
the initial condition (7) in clossical sense.

For the uniqueness of the generalized global solution of the mentioned problem, we
have the following theorem.

Theorem 5 Suppose that b(x,t) € Wﬂ'ﬂj{ﬂ}ﬂ and c(z,t),y(x,t) € Loo(Qr).
The generalized global solution u(x,t) € Z for the initial problem (7) of the nonlinear
singular integral-differential equation (5) is unigue.

2. Rate of Convergence

Theorem 6  Under the conditions of Theorem 4, as € — 0, the generalized global
solution u.(x,t) € Wf’”[@ﬂ of the initial problem (7) for the nonlinear parabolic
equation (6) with Hilbert operator converges to the unigue generalized global solution
u(x,t) € Z of the initial problem (7) for the nonlinear singular integral-differential
equation (5) in the sense that {u.(z,1)} and {tex(2,8)} are uniformly convergent to
u(z,t) and ug(z,t) respectively in any compact set of Qp and {Ueze(2,1)} and {ug(z, 1)}
are weakly convergent to uzo(z,t) and u(x,¢) respectively in Lo(0,T; Lo(R)) for 2 <
P <o

The following theorem is concerned to the estimation of the rate of convergence.

Theorem 7 Under the conditions of Theorem 4, for the generalized global solu-
tions ue(x,t) € WEE‘IJ(QT] and u(x,t) € Z of the initial problems (9) for the nonlinear
parabolic equation (8) and the nonlinear integral-differential equation (7) respectively,
there are the estimations for the rate of convergence in term of the power of the diffusion
coefficient € = 0 as follows:

SUup (-, 2) — ul-, )|l g, om) < Kaze (41)

0<t<T

a
ltte = ul|prop) < Kigel (42)
1

sup “uﬁﬂ{'! ﬂ i H’E{'r t” Lo R) < Kyge? HS]

D<t<T

G

ltee — Uzl (0r) < Kige? (44)

where K's are the constants independent of e > 0,
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Proof The difference 2(x, ) = u, (z,¢) — u(z,t) between these two generalized
global solutions satisfies the linear equation

ZttaHzy — BHze + vHz + (U, +u + b)zs + (Uex + sz + €)2 = e,
in generalized sense and the homogeneous initial condition
2(xz,0) =0

Since u,(z,t) € Z, the coefficients of 2, and 2 are all bounded. Multiplying the equation
by z and then integrating over the real axis with respect to variable z, we have

d ] o0 o
gl +26 [  2aHzdz + 2y f_ _2Hzdz+ f_ _(es + up + 20— by)22de
= EE/ IUerpdx

— o

Thus we have

d
E”i’(‘:ﬂ”igm} < Cill=(, ﬂ”igm} Gt EEll“EEE['#t”Figfﬁ]

This implies

sup |lz(, &)l L,y < Cae
0<t<T

This is the estimation (41). Then the estimations (42), (43) and (44) follow immediately
from the following interpolation formulas

3 1
126 Dllzat@r) < CallzC O, gy lzaa (- DI, gy

1 1
||3:r.{‘:ﬂ||.[.g|[ﬂ} < S-l"z[':ﬂ”f,ﬂﬁ}”zm{':ﬂ“i;[&}

arnd 3
260+ Ollze(@r) < CslloC )R oy llzaalc, DI

Hence the theorem is proved.

6. Remark on T = oo

In the previous discussions, the value T is the arbitrary given constant. Hence the
results obtained may be extended to the case of domain with infinite time intérval
Ry = [0,00). We have the theorem. |

Theorem 8 Suppose that the conditions of Theorem 4 are satisfied for any value
of T > 0. The initial value problem (7) for the nonlinear integral-differential equation
(5) has a unique generalized global solution u(x,t) € Logioe(Ri; HA(R)) N wginc{m;
Lay(R)) in the infinite domain Qo = {r e Rt e Ry}
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7. Remark on Regularity

Lemma 10 Suppose that o > 0, § > 0, bz, t) € WQ[GM'I:'{QTJ, e(z, t), v(z, 1) €
Wé;w'ﬂ}{':?:{‘] and flz,t) € WE(M’D:'[QTJI and suppose that $(z) € HM(R), for M > 2.
Then the generalized global solution u,(z, t) € WI':M‘”{ Q) of the initial value problem
(7) for the nonlinear parabolic equation (6) with Hilbert operators has the estimate

ﬂé?gpz" Ntz (-, D)l Lag iy < K {l|bll ey + ||f||¢¢;§H.ﬂJ[QT}} (45)

where Kig is a constant dependent on the norms HE:||W{M,J]{QT}, ||+::||W.;.u,n]mﬂ,

||T||W;M,HJ{QT} and ||¢'1]]H;.;_:,:R] but independent of € > 0,
Lemma 11 Under the conditions of above lernma, the generalized global solutions
ue(z,t) € WEEM’”(QT} of the initial value problem (6), (7) have the estimates

ﬂ;tlf_?ﬂ" Huﬁm-"‘f‘"’at('? t]”L:{R}# ”uem”—l FIILMI:'I:"T:I & ﬁrl'f"{”':'ﬁllﬂ"'{{}ﬂ] + ”f”WéM‘ﬂ:'{Q-;r-}} [46}
where K7 is independent of € > 0.
‘Thus we can state the theorem of regularity of the solutions for the mitial problem
(7) of the homogeneous equation

i — 2uuy + oHug, — BHu, + vHu + bug + cu = 0 (3)eo

of Benjamin-Ono type with the constant coefficients @, 8,7, b, ¢ as follows, where o > 0,
3 =0 : :

Theorem 9 Suppose that ¢(z) € HM (R) for M > 2. The initial value prob-
lem (7) for the homogeneous equation (5)co of Benjamin-Ono type with constant co-
efficients a > 0, 8 =20, v, b and ¢ has a unique global solution u(z,f) € Zy =

(M2 (k) M —2k : it -
kl';l’u W e R H (1)), which has the derivatives uyrys (Z,8) € Log joc(Ry; La(R))
for 0 <234+ < M.

Then as an immediate consequence, we have a theorem for the original Benjamin-
Ono equation as follows:

Theorem 10 Suppose that ¢(x) € HM (£) for M = 2. The initial value problem
(7) for the original Benjamin-Ono equation (1) has a unique global solution ul(z,t) €
£

For the nonhomogeneous equation (5)., with constant coefficients, we have the
following theorem for the regularity of the global solutions.

Theorem 11  Suppose that ¢(z) € HY(R) and flz,t) € W;EM‘“}{QT]I for M > 2,
The initial value problem (7) for the nonhomogeneous equation (5)eo of Benjamin-Ono
type with constant coefficients & > 0, 3> 0, v, b and ¢ has a unigue global solution

w(@,t) € Lootoc(Res HM(R)) n W, (Ry; HM-2(R))

which has the derivatives u.e (i, t) (k=1,2,--. + M) and u s (x,t) (k=0,1,-.. M —2).

a———
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8. Large-Time Global Estimate:

1.Let us now consider the equation
ue + 2wty + oHup, — SHug + ez, t)u = f(z, t) (5)g

of Benjamin-Ono type with the coefficients b = 0 and ¥ = 0, and the corresponding
nonlinear parabolic equation

e + 2Ly — Uz + el Uuzy — BHu, + o(x, t)u = f(z,t) (6)g

For the global solutions w.(a, t) of the Cauchy problem (7) (6)g, there is the estimate
as follows:

Lemma 12  Suppose that o > 0, § > 0, ¢(z,1t) € Wﬂ‘n}{QW], flz,t) € Loo(Ry;
HYR)) and ¢(z) € HYR) and again suppose that e(z,t) = cp > 0. Then the gen-
eralized global solutions u.(x,t) Wf’lj[@m} of the initinl value problem (7) for the
nonlinear parabolic equation (6)g with Hilbert operators have the estimates

ez (- M| pagry < I{EE{E_mt"‘#’”Hl[R] + sup ||uel:, D)z, 0m) + sup (o)l aemy} (47)
tER, tER,

where K33 is a constant independent of € > 0 and dependent on the norm of ¢(x, t) and
sup (s )l pogry-
ey

Proof From the equality (24), we have in the present case as
Saa [zmﬁ + 3u* Hu, + -l-u**].:ﬁs_r: + deve|[upe (-, £)||2
T 2 A Yo U Lo (R)

= O
— ---iﬂ:ﬁf Uge Hudx + ﬁ,ﬂf u[(Huz)® + ul]da
- —oQ

o 4 4 0o 43 [
+ Ef [ﬂ[uHuz + H(uuz)) + —u ]ﬂ.m{ﬂ:ﬂ - 4&[ culds + ——-[ u® Hu,dx
- L — 30 X J—og
OO £33 ¥ = ]
- 'E'r/ {{:ugHum — cuH (uu,))dz — -ir:t:f CrtiltodT — Ef cutdz
— i ot —
s} L w) ]
+ ﬁf fluHu, + H{uug)|dx + 4] frotdr + %f fuldz (24)q
— ] — 00

Denote by J? (k =1,2,--+,11), the k-th integral term on the right hand part of the
above equality.
Using the interpolation formulas, we estimate the integral terms as follows.

|JE?| < EQEHHIE{-1-¢}||E1{E] + fﬁl"“{':t}“iz[ﬁj

1921 + 15| < 208l uea(:, ) Hue(:, )|,y + BC2llul- )12, )
el =+ 17 + 181 < mllua(:, )13, p) + Cllu- )13, cr)
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where 7 > 0 and C(n) depends on nand sup |ju,(., Ol 2oty
LR,

18] + [0l + |79 | < nluy (-, 17,y + E(ﬂ”ff[:'ﬂf}”.ig{ﬁj
where 1 > 0 and C(5) depends on 7 and sup ey )l Loy
Taking 25 = cyer, we have

£ 1
2 2
o /:m {Emsx + dutHu, | Eu‘*] Az + 2a8||up. (-, t) Hug (-, Hlzr)

+ 20tz ()13, gy < 20c0]|un(-, 1% + Crllu, NI, p) + WFC M aragmy
where Cg depends on sup llae (-, £) Meymy-
tER

Hence the lemma is prmved

2. Lemma 13 Suppose o > 0, 820, c(z,t) e W D}{Qm}, flz,t) € Loo(Ry;
H*(R)) for the equation (6)o and ¢(z) € I::”{R] And further assume that clz, t) =
cp > 0. Then the solutions (1) € Fif"[? ”[Qm} for the Cauchy problem (7), (B)g have
estimate

Ntz (e, ) ooy
< fi’za{ﬂ_c”!“fﬁ"ﬂﬂmj & Bup ltte (- )l Loy Fiaup ”ff‘:ﬂ“ffﬂ(ﬂ}} (48)

where Kay depends on sup |lu.(-, ¢)( o(R) Gnd is independent of & > (0,
teR,

Proof For the equation (6)o, we have the following identities:

d ]
E./ ui—udm + EEHHJ::&::[:' tj”iﬂﬁj + Eﬁ”umﬁr{ tj'Hu-“l:x('r f}”_[.l[ﬂ} .
— —lﬂ/ ﬂ:r:ﬂmdl' 2/ {ﬂ'ﬂ- f}::::u;nzd:r [EE}D :

o = oo |
ﬂ]t/ Uty Hupodr = —%a/ Urtts, d + —Ec::xf e (Hugy ) dr .

]

(=5} e
— 2/ i umﬂumd:n: - Ef 70 Tt & Huwug) oz )ttppdr
o0 — 00

+ f‘f_m [u(Huze)® + Huge H (uny )] d

= f (cu = fo(uHten + H(uu,),)dz — 4 f wul Hu__dz (34)q

-0

E./ ul Hu,dz :mf Up (Huzz ) ds — D:f uyul_dz |

== o

+2 f Tl ~ H(Ustas))(~2€Uzs + BHuy + cu — f)de |

+ 4/ (vt (v, Hug), + Uz H (uthe Juy | da (35)q
-0
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d = &) 20
T 3 2
f u uydz = 2a j U Ugy Hlizzdr + 20y f vurHu -dx

TR o0 oo

e s
+ 2 f [unl + wlues|(2uny, — eugy — BHuz + cu — fldz (49)
—0
We can eliminate the integral terms

=0 Lo X3
f umuixﬂ.’x, / e Hugr )2dz, and f iy, Hu  dr
= — —&0
from the four identities (33)o, (34)o, (35)p and (49). Then we obtain the following
equality

d

]
E Lm (20%ul, + 100uus Huey 4 Sau? Hu, + 10u’u)dz

+ 4HEEHEIIT{'1- t;' ”%__E[:R} + "'lﬂgﬁllﬂmmﬂ["a t}HT!.g:_T_[:‘, t]”.ﬂ-i{'ﬁ']

2
= 20e f (Ot Uz U — Uz Htlyr — H]uuium + lﬂuﬂuiuxm}d:r:
— R

+ 1[!1:::,'5"[ [t Hitz ) — wnil_]de — Eﬂﬁf (wu? + uugg )dx

0
+ 10a8 f [(Hus)® + 2ul)dz
— 30

= 4] Lew)
— 4oy f m;ﬁzdm + 20ex ] [~ Euuium =+ EuniH Upe + VU HUzUrn

— D =
(5]

]
+ wp H (uny )z |de + fiﬂf WU dir — Iﬂctf lewite Higr + ctte H (Ut 2s
—oo o

O [ ]
+ et H (ugtter) — cuHuptiz,|de — 8a” f Crlizlizeds + 20 [ cu g dr
= =20

— 10cx f [exu” Hugy + couH (uug,)|dz — 4o f Corp Uil T

=

a0 i ==} 30
+ 40 f wrulde — 10a f cue H (ul)dx + 20 f cululdz

e o
- lﬂ&f czuH (ul)dz - lﬂctf FHtuztize + H(tuzuzz)]dz
o

_c‘:‘ f—

ol o0 £3
— 20 f futugadr + 10a f faluHuz, + H(uze)|dz + 40 f foatigede

=0

— 20 f B 10 f foH(u?)de (50)
—oo —co

Similarly let us denote the k-th integral term of the right hand part of the above
equality by J, where £ =1,2,--+,22,
For J}, we have

7| < 20 €lluaee (-, )17 ,cmy + €Crallul, )13 ,cm
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For J3, Ji and J}, we have
|21+ 5] + 5] < 20° 8] wgae (-, DHuze (s )l i) + BCasllul, )13, 5

By means of interpolation formulas, we can estimate some of the integral terms as
follows:

21 21

IG1 < nlluza(y Oy ) + ConluC, )1 gy lua s DI E

[I71 < alluez (5 0117,y + Con~ "l O 2oyl G Ly ey

1 < mlluac (5 12,y + Con™ 3 [l 012, oyt -,ﬂnifm

T3] < Bllwaz ()17, my + ﬁs?r_lllﬂm'[wﬂ||£3(m

5ol = nlltaz (- B)IZ, ) + Cron™*lul- )11 )

82l < llzs (-, O12, ) + Cran™ S (- DI,

52| < alleze ()17 ,or) + Cran"lul-, tWi.cr)

sl < nllwza (s )12, 0m) + Cran™*Ilul, 1%y my ez (-, D)1, )

34l < e, Dy + Cran (o

[ Tis| < Blltias (- E)1F ) + fi*m-%||u{-,::|||-im;.||u;(-1tnri.:m
1756l < e, Oy + Gron™$ e DI,y s )12,

For the last six integral terms we have the estimates as follows:

il < lltaeC Ol zacry + Cron ™ liea (e, )11y 1 s )13y

1778l < itz (o )12 50y + Crsn~ u(., ””Eﬂg}”ﬂa{wﬂ”i(;ﬂ”f{':f}iﬁfl(ﬂj

sl < nlluzz (- Ol zacr) + Cron™ lul 13,00 1 ) 3yay

1730l < lluaa (5012, r) + Coon™ ()12 my

19511 < mllataa (3 )17,y + 521?3“1||1¢::['=f}l|i2(m + ﬁztl[ﬂiwtl'||igm}||f{'.~f-}||?,rl.;;¢}
32l < Dllze (O m) + Coon~Hlua (- OIS, vy + Coall -, )11y

Taking sufficiently small 7 > 0 that 2a%¢y = 17y, we can replace the equality (50)
by the following inequality

0
ditf (202, + 100t Hup, + Sou? Hug + 10u?u? )dz
—
+ 207 €[|trza -, iz, (r) + 202 Blltaza (- 1) Hute (-, 3] FAES
= _Eﬂiﬂﬂ”l{mm{':ﬂ”ig{ﬂ} + Crofllul:, t)ll52 ¢ my + 17 Gy ) oy }
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where Cig is a constant dependent on the norm |l¢]|,,cz.0) and sup [Ju(-, )| giorys
but independent of € > 0.

Hence the lemma is proved.

Lemma 14 [nder the conditions of Lemma 13, there are estimates for the solu-
tions we(zx, t) of the Cauchy problem (7), (6)o as follows:

s Ol + e Doy SKa {8l mncmy + sp [, )1
+

+ sup 11, (51)
where Koz depends on the normas lell 2.0 (@) and qup e (s Bl oy Dut is indepen-

tER
dent of € > 0,

3. Now we turn to estimate the norms [lu (-, ¢)||z,(p) of derivatives of high order
M = 3 for large time. We have the inequality:

g?f (20%u?y + (4M + Dautztupr—1 Huge — (2M + Dougug -1 Hu g
+ (4M + 2)utul iy )de + 40’ el|lugarss (- )1, ry + 407 Bllugrsr (5 8) Huga (- )|z, ()
< —40? f culudz + a*Crienlugaces (-, )13 ,ny

—

+ o' Cra8n||ugres1 (- ) Hugne ()| oy + Cramllaga (-, ﬂ”iz{ﬂj
+ Cra(m) (Il Ol Frzmy + 15 Ol Erae ()

Taking 7 > 0 sufficiently small, then we obtain the inequality

oo
%f {Eﬂzu + (4M + Dovu w1 Hum — (2M + Vowzu -1 Hum-1

+ (AM + 2)u"uly - )dz + 20 elugmer (-, ﬂfiL;[R}
+ 202 8|1y nair () 8) Hugon (-, 8)|| (R)
< —20”collugn (- )7, 0m) + Conllluls ) racry + £ Co Bl raa ) (52)

where (3; depends on the constants @ > 0, 8 = 0 and the norms |||::||W[M,u}mm} and
sup [[u(: t)]| g2y

ey

By the same way of proof as before, we can obtain the following lemmas of the
estimates from the inequality (52).

Lemma 15 Suppose thata >0, § = 0, ¢(x,f) € W {Mm{Qm}, f(z,t) € Leo(Ry;
HM(R)) and ¢(x) € HY(R) for M > 3. And further assume c(z,t) = co > 0. Then
there are estimates

leear (1 E) | £ag ) Efi'm{ﬂ_{:”t”#ﬁ“mf(m + NP s (-3 )]l 2o R)
+
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+ sup Hf(-,t}llw.;ﬂ;.} (53)
tER,

fort € Ry, where Ky4 depends on the norms of ¢ and f and on sup ||T.-EE|:',1’.}||LE{R:| and
tefy
15 independent of € > 0.

Lemma 16 Under the conditions of Lemma 15, there are the estimates for the
solutions u.(x,t) of the Cauchy problem (7), (6)g as follows:
Huﬂ”—lt{Wﬂ”Lg{R} + ”“*r_:.:-:-"’l—l |::ui}||LW{H] + ”ﬂcu:"‘f_‘qi{'!i}lll-m{-ﬁ]

< ffzs{ﬂh':”!||¢ﬂfw{m + sup Ju (-, ¢} z,m) + sup ”f{':-t]HHM{Rj} (54)
!EJ‘?+ I‘.ER+

for any t € Ry and M > 3, where Kas depends on the norms of ¢ and f and also on
sup ||ﬂf[-,t}]JLE,:R}, but is independent of ¢ > 0.
te Ay

4.  For the solution u(z, ) of the Cauchy problem (7) for the nonlinear equation
(5)o of Benjamin-Ono type, we have the following lemmas.

Lemma 17 Under the conditions of Lemma 12, Lemma 13 or Lemma 15, the
globel solution u(z,t) of the Cauchy problem (7) for the nonlinear equation (5)y of
Benjamin-Ono type has the estimates

it (Ol < Ko { el gy + sup s, )l
+ 5D 11 ) (55)
tER L

foranyte€ Ry and M =1,2,... respectively, where Ky is @ constant dependent on o >
0, 5 = 0 and the norms of c(x,t) and f(z,t) and also on the norm sup (-, Ml 2o my-
te Ay

Lemma 18 Under the conditions of Lemma 17, there are the estimates:

[uzse=2e(s )| o) + llizner (-, 8) | £ gy + [egn—ae(y )]l £ ()

< KE?{E_‘:M”fﬁ'“H”(R] + sup lu(:,t)||p,cr) + sup ||f{'>tjlﬂfrﬂfr;m} (56)
teR, tER,

foranyt € Ry and M > 2 or M > 3 and M = 2,3, respectively, where Ko is
a constant dependent on o > 0, 8 > 0, the norms of ¢ and [ and also on the norm

sup ||ﬂ{.1' t.] "L;[R}‘
teER

9. Existence of Global Attractors

1. It is well known that the existence of the global attractor and the estimate
of its dimension hinge crucially upon the compactness of w-limit sets of trajectories.
In the previous study of nonlinear parabolic dynamics, this compactness requirement
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is trivially satisfied and the trajectories themselves are precompact. For an evolution
equation of functions defined on an unbounded Euclidean domain, this precompactness
property does not hold true. It is our alm in this section to present a method of the
weighted function space to overcome this difficulty. It needs to make a priori estimates
uniformly for ¢ in weighted space to construct the semigroup and its attractor.

Let us consider the following Cauchy problem of equation of Benjamin-Ono type

Up — Oligr + 2uty + FHupy + 6Hu, = g(v) + h(z) (57)
i |¢=p= up(x), x« € R (58)

where a > 0, 3, & are real constants.
Let Hp- be a Hilbert space with the norm

fullfy = [ (@ P+ o) do (59)

and let H;., (I =1,2,---) be weighted Sobolev spaces with the norms
lallf, = 3 118%ull?., 8% =88 8%, o] =1+ + an, 8 = - (60)
la <l

It is evident that, as > 0, functions u(x} which belong to Hy_, are decreasing at
infinity faster than the fuimctions from L,(R").
We use in the estimation for the solutions of (57) the function ¢(x),

$(z) = pe(x) = (1 + |ex[*)” (61)

where 0 < ¢ < 1 and ¢ is sufficiently small. This function ¢(z) is in the definition of
norm in Hy . with e = 1. For € £ 0, the following norms are equivalent:

L L
C g2 ull < |lulloy < Cell@éull (62)
(here and below || - || denotes || - [[o,0). The estimate
|7 ¢ < Ced (63)

holds. It is easy to verify the inequalities

L
C ully < llpéull < llulliy, 1=1,2 (64)

Here and below || - ||; denotes || - {|;,0
Now we give a priori estimates for the solutions of the Cauchy problem (57) (58).
Lemma 19 (A.P. Calderon [16]) Let 4:R — R be a C™ function. Then the
operator [H; Al&; maps La(R) into La(R) with

I[H, Alo-f|| = ClA'f| (65)




30 Zhou Yulin and Guo Eoling Vol.9

where H 15 the Hilbert transform, i.e.

5@ = 2P [~ LDy - Pt (isgucie)

with “A” gnd =1 denoting the Fourier transform and its invers respectively. [Ha,, Al
denotes

[Ho,, A|f = [H, Alfz + H(A'F)

and
[-’an]lf= ABf — BAf

15 the commutator of singular integral operator A and B.

2. Lemma 20 Suppose that the following conditions are satisfied:
(1) g(u) € CY, 9(0) =0, g'(u) < b, b > 0,
] 3
(2) o> g+ 5 5> 2,
(3) up(x) € Hy ., hiz) € Hye.
Then for the smooth solution of Cauchy problem (57) (58) we have

L] 2 B |
s Bllocy < Cele™ = Nuollo,y + (1 — e 8y )

bJé|
2 2
T [, O < ColhIR,, = Eo _ (66)
B 3 [ ) dr < B
t—oo ] : i Sl

Proof Multiplying (57) by ¢, (z)u and integrating with respect to @z, we obtain
(Pett, vy — aHuy, + 2uty + fHuz, + §Hu, — glu) = h(x)) =0 (67)

Here we have

(Betye) = 5 lloFu, B

(Pctt, —QUsz) = afdlu, u,) + o(Poug, i)

(B, uz)| < ve(ll@Zull? + |62 wa]?)

(G, 2u)] = Z1(6e (03)2)] = 21(61,0%) < el uf?
(@t BHuzs) = —B(du, Huz) — B(cun, Husg)

|8(ps, Hua)| < |Blve(llg2ull? + |62 Hu |

18, Huz)l < L (oFu? 4 16} Hrua )

In view of Lemma 19, it follows

162 Husl2 < |6 ualf? + ceflgFu)? (68)
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Hence

18
2

%[{1 + eo)lg2ull® + |7 s

(et BHuze)| < 1811 + 7| 0F uall® + Llefe + 24(1 + ce)]l| 6 ul?

1 L
|(¢ert, 6Huz )| < |6]ll¢f ul|l|éé Huall <

(9(u), ¢eu) < —bllo2ul’
1 1 b ] y
($eu, ) < 192l I8 RIP < SNsbull® + o 1gdh?

Thus from (67) we have

[Ba L oo 45 181y, .3 2
5 lo7ull’ + [o— ave = [BI(1 +7e) - 5] 162 us]
4 & el
+ [b = e = Sellulloo — Lle(e + 291 + e6) — Dee +1) - g ul?
S | % 5
< — ||
For small € and from Lemma 12, sup ||u(:, )]s < oo and the conditions of the lemnma,
tERy
we get
(CS TR ot sl o o pesr el Loty SSe)
T 18 = e Sii—
Zllg2ul® + Sl6z ull® < - ll97 Al (69)

From the inequalities (62) and (69), it follows (66).
1
Lemma 21 If ||¢upi-1]| <M (j =1,2,--+), then we have
1
168 ussll < e1llgfuginll +C(M, &) (70)

where €3 > 0 15 sufficiently small and C is a constant depending on M and g > (.
Proof By using Sobolev’s inequality,

1 1 1
0w || = ll($E i1 )y = (62) g1 |
L 1 jE 1 1
< (B2 giar), | + Vel 9Z i l] < 62 Ui IF (D7 air)u 7 + yel| 92 2gsr

1
< (G )aall + (5= + 7€) M

2E1
€ 5 i 1
< SHI62 sl + 288 sl + 164 v I} + (= +7¢) M
€ : 1 1 1
< SHg¢uasnll +evelldiugl + [gréa@y+1) + 5+ 1 M (71)

~ Taking €;ve = % we get the inequality (70) immediately.

Lemma 22 Suppose that the conditions of Lemma 20 are satisfied and assume
that ug(x) € Hy,, h(x) € Hy .. Then for the smooth solution u(z,t) of the Cauchy
problem (57) (58) we have

2

gLl + o) (72)

lu(t)lloy < Cele™ #luallo,y +
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B I Dl < Cogrlhll + lullo,y) = By (73)
=l
Jm < [, 03,4 < B (74)

Proof Differentiating (57

) with respect to z, then taking the inner product with
B, We get

{‘;ﬁ'{u:c: Uty — OUprr + E{Huﬂrjm =5 .{?Hux:.:: + éH'”fﬂ::l: E ﬂ'lr'[u}ﬂ'.z i1 h"rfI'M =0 {TEJ
Here

(Dettz, tay) = '2* E"ée |2

(Petia, ~0tizes) = a2 e |* + o(flu,, ),
[{‘f’ Uy, ﬂzﬂ:}l = IIftﬁ’JEﬂ:ffJJ[iﬁf?ﬂmH < GE?”&SEE:,:H”:;#E

< —f*{uqfé‘u:u 16 aa )

Uz

1 1 1 1
(Peta, (2uts)s)] < 2l oo |37 1, |2 + 1| pZ e ||* + —ws’uuﬂﬁ

< 11|82 el + 2Celfufl | 8 waf? + 1 ”m[ 0 uzall? + (|12l e1)
| ($etier B )| < [611( 12, Ervn)| + 1611 o, Hte)
< ClBle(ll2ual® + |67 Huma ) + D okl + 168 s

< ClBlellpZuel+ B bighodueal? + (2L 1 ela) ok unal? + Cefodu,
= 81+ Cep)péuaal? + ce(2 1 Jﬁ’i)llqeﬁ-r w

r{‘;ét'ﬂ'm I15-":"“'5'?.'1:3!::lI = E“"ﬁﬁ Uy ””ﬁﬁ‘e H"'-I-.::z'“ = 7]'1'“‘?—" Humm” + -_”'?hﬁ ﬂ-:cuz

1 2 a2 A i
< mallgZuzell® + (nCe+ ) 82 |

b2 1
< nolléd uaa? + (??25'6 4 &E) (167 ueel® + C2)
52 52
< [m+&(moe+ Q)] [62usel? + (1aCe+ )0 < mallghunal? +
{‘f’eﬂx:.ﬁ?’{t"}urj ':: b"‘.ﬁ'f ua:“E
(Peuz, W) < 29 w2 + o2

Hence from (95) we have

] doaa 6. 262 (|u|2 o
5 EH@E'" gl + ( — '2—'-‘? -1 - 2eilfullo 18] — €| 8le — '-'3'3) ||'::r%*t-£m||2
M
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b C o 3 'é 2
+ (b~ 5~ 5€ — 2C¢]ufloo - f:;'.E|,.=za'|(E + Ce) |62 ue|

< Sl + Callsbul?) (76)

For given small 1, and 5, then choose sufficiently small € and ¢, from (7T6) it follows
(T2)-(74).

Similarly we have

Lemma 23 Suppose that the conditions of Lemma 22 are satisfied and assume
that up(z) € HY(R) N Hy ysy, h(x) € Hyoos,. Then for the smooth solution u(z,t) of
the Cauchy problem (57) (58) we have

sup flu(:,t)ll1445 < By (T7)
fe .

where the constant §; > 0.

Lemma 24 Suppose that the conditions of Lemma 22 are satisfied and assume
that up(x) € Ho -, h(z) € Hy .. Then for the smooth solution u(x, t) of the Cauchy
problem (57) (58), we have

_ &l 2 sbp
(- )2,y < C (e 7| wall2,y + EH“ — e 20 (|| Rllzy + [l ) (78)
Rt 2
Al t)]lay = Cem{”flllz;r + [[elh,y) = B (79)
e t
Em 7 [, 0134t < B (80)

Proof Differentiating (57) with respect to = two times, then taking the inner
product with ¢,u.,, we get

{¢E7irr: Urre — Wllyprry + E{T"«umjm: = .SHu:l::c.m:. + 6Ht gy — (ﬂr{u}uﬂ,'}x = h“:' =0 (31}

Here we have
1 d

1
2
(";l’"t'u;cm:- "1-'[.-:::..-"!:' — E EEHQEEEH-E,I”

1
5 )
{fﬁ’cﬂmr: —ﬂ!u::.-n:z} = &H‘?ﬁeﬂmxjm ﬂm:l:x} == ﬂfw’:ﬂ-xm u:l?:::l::} o= ﬂ'"@ﬁf Hmmm”

; i 4 : 2
(@etiae, teaa)| < Celll ¢ vaal + || 02 taga]|?)
({i’fu;:m- {gﬂ'uft}xm} = '_lz'f:llhiurr + {;:",Eujzg;;“ Eﬂ-i e Eﬂﬂmt}

|(@tiz 22 + 2utta)| < Cell|$2tma® + | SF U2 + |67 wtine ]
< Celllp?uns ® + a2 6% el + [uflo] S 2tas]
< Celll¢Z gl + 1]

[(Pettrrs, 2u2 + 20tz )| < |(Pettine, 2u)| + [(Dettpns, U g )|

1 L 1 1
= 2z llool| 6 taawllll9é wall + 2ll2ulloo | $2 e I $2 e
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1
< 1|2 ez ||* + €4

1
Here the boundness of sup Iiu${~,tJ||Lm{R;., sup rf-u{-,t}lle{R;, and sup ||pZ u, (.,
te Ry te R, te Ay

have been used by means of Lemma 13, Lemma
thermore we have

Ol 2y my
12 and Lemma 23 respectively. Fur-

H‘j'fuﬁm -ﬂﬂuﬂm” = ‘-‘3”{'5&2“3:: Hu:mr}r + [ﬁ”{fﬁ‘ﬁumm: Hﬂxmm}f

< Cellpunal? + 164 Huesl) + L1 b 0y 4 ok b1y

< (161 + C|$2 traall” + Cref 68 1 ?

It is similar to the proof of Lemma 23,

? 1
W(bettan; Htanr)| < m1 |68 tea|® + C
And also

{‘i’fuﬂ:x: {ﬁ'!{uju.x}m:] = I::;;ISEHT;,;,Q”{H:IHE i Qj{“}uxm}

< 192 vmall? + 9" () oo sl S s s
< (=b+ Ce)l|¢? upe | + C

o {i=d
W @etian, )| < |62 e |® + (|02 1|12
2 2
Hence from (81) we obtain

it i
3 g lPe el + (@ = Ce — &1 ~ - & — ny) g unss?

b i 1 1
+(5= Goe) 6wl < Listnrpp 4 c,

<3 (52)

As €, €1, €2 and 7 are suitably small, from nequality (82) we can get (T8) (79), (80).

3. Lemma 25  Suppose that u1(z,0),
b = const. and ui(z, t), ual,
(57) (58). Then the inequality

HE{I"‘-DJ € HI.‘]’J e > [Hl: ';rlr(u} = 'E"r
t) be any two smooth solutions of the Cauchy problem

”ulf':ﬂ = uE(':ﬂ"i?,ﬁr = Cﬂ““lf’:ﬂj T ug{',ﬂ'}”fﬁ, t e [ﬂ'1 TJ {BEJ

holds, where the constant Co depends only on T.
Proof First, we estimate s (-, £)

iF HE{': ﬂ“ﬂ.fr- Let "-rf"-"{-r: ﬂ' = 1'1!-1{.'13, t) — T.Lg{.’l?, i),
subtracting the equation (57) for u; a

nd wug, we get

[t — ualy — afu; — U9 )zz + 2uqup, — 2ustn. + SH (uy

= g(u1) — glus)

(84)
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Multiplying this equation by @.(u; — u3), and integrating with respect to ¢ and x, we
deduce that

1 1 -
9 E”'i’gwt‘:ﬂ”‘g Ei + a((@ew)y, we) + (dherw, (Zugug, — 2ugtag))

+ (BHwzs, dew) + (8Hwz, dew) = (g(w1) — g(u2), gpew) < bl1¢5e%tlJ('1ﬂ||2 (85)

Here we have

1
o 2
a((Pew)e, ws) = a(dyw, w;) + || we |
! 7 3 b, Cfed d g
e Pew, wz)| < Cellgd wl|[|péwzll < ellddw.||* + — lééw|
2ujtyy — 2oty = 2ujw, + 2o, w

[(detw, 2ugw, + 2udzw)| < [{{tfr{m]m,wzﬂ -+ [[E:ﬁneug:,fwi}f

< Cellualloo 92wl + [uralloalidEwll® + 2lussllll6E w2 < AL
(B Hwer, ‘i‘ewjl o= |ﬁ(ku::-{¢'Ew}I}|

1 1 1
< |BICelldF Huws||l| g2 w]| + |51l 67 w || |6 Have
< (18] + )| we||® + Ca|| @ w|?
s L 1 1
(6 Hws, pew)| < 16|62 w||[|62 Huw|| < €10 wall® + C3l|é2 w]?

Thus from (85) we have

1 d 3 2 :
5 82w, O + (e~ 2¢ ~ 18] - ex) | 0Fws |
2

0 1
‘:_: (IEI - TE +C1 =+ GE -+ Ga)ﬂ‘ﬁ’fw”z
For small ¢ and €1, & — 2¢ — |3| — ¢; > 0. By use of Gronwall's inequality, we get

g2 w(t)|* < eSot{|pZw(0)])?

2 ;
where Cj) = E(b + % +C1+Ca + Sg). Let Co = CeSiT, we get

lur(t) = w2 ()15 < Collua (0) — ua(0)|[2.,, ¢ € [0,T)
Similarly, we can get (83),

4. Lemma 26 (A.V. Babin, M.L. Vishik) [17] Let a set B be bounded in Hy s,
6 > 0 and in Hz . Then B is compact in H ..

Theorem 12 (R. Temam [18]) We assume that H is a metric space and that the
nonlinear operators S(t) of H into itself for t = 0 satisfy

S(t+s)=5(t)-S(s), s,t20, S(0) =1 (Identity in H) (86)




_“
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And also S(t) are continuous and uniformly compact for t large, that means for every
bounded set B there exists tg, which may depend on B, such that : U S(t)B is relatively

=g
compact in H. We also assume that there exists an open set U C H and a bounded set B

of U such that B is absorbing in U. Then the w-limit set of B: A=w(B) = ¢:l§'i S(t)B
0

8 o compact attractor, which attracts the bounded sets of U, It is the marimal bounded
atiractor wn U. Furthermore, if H is a Banach space and U is conver and connected,
then A is connected too.

By use of a priori integral estimates and fixed point argument, we have

Theorem 13 Suppose that the Jollowing conditions are satisfied:

(1) @>0,8>0,6 <0,

(2) g(u) € C™, ¢'(u) < b, b =constant, g(0) = 0,

(3) ua(z) € Hyq, hiz) € Hy, .
Then there erists a unique smooth solution u(z,t) of the Cauchy problem (57) (58):

u(x,t) € L=(0,T; H,, - (R))

Theorem 14 Suppose that the Jollowing conditions are satisfied:
]
[1}ﬂ:ﬁ~ﬂ,|ﬂ}ﬂ,§£ﬂ,&}ﬁ—§;

(2) glu) € C2, g'(u) < —b, b>0is a constant, g(0) = 0,
and 3
b+ 51’5 =

(3) uo(z) € Haq, h(z) € Hy.,.
Then there exists a global attractor A of Cauchy problem (57) (58), t.e., there is a set
A, such that

(1) A ds compact in H; . ;

(3) L]ilgdist (8:B, A) =0, for any bounded set B € Hy 4,
where

dist (2, y) = sup inf ||z — y||; .
TEX ¥EY

and Siug 5 @ semi-group operator generated by the Cauchy problem (57) (58).

FProof On account of the result of Theorem 12, we shall prove this theorem by
checking the conditions in Theorem 12. Under the assumptions of the theorem, we
know that exists a semi-group operator generated by the Cauchy problem (57) (58).
Thus we set the Banach space H = Hy and S, : Hy , — Hy .. From Lemma 25, it is
a continuous (nonlinear) operator from H; 4 into itself, Let

B = {u(-t) € H1,(R), |lulli, < 2E;}

be the bounded absorbing set of the semi-group operator S; from Lemma 22. B; = S, B
is bounded in Hj, by Lemma 24. From Lemma 23 and Lemma 37, the absorbing set
By is compact in H; .. Hence the w-limit set of B, A = w(B) is a compact attractor
for the Cauchy problem (57), (58).
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10. Dimensions of Global Attractors

In order to establish the upper bounds of Hausdorff and fractal dimensions for the
global attractor of the Cauchy problem (57) (58), we need the following linear variation
corresponding to the problem (57) (58)

ve + Liu(t))v =0 (87)
v(0) = g (88)

where
L(u(t))v = =0z + 2uve + 2u.v + SHUze + §Hve — g’ (u)v (89)

Since the solution of problem (57) (58) is sufficiently smooth, we can easily prove
that the linear problem (87} and (88) has a global smooth solution as long as the initial
data mildly smooth, i.e., there is a solution operator G; such that v(t) = Gwg.

It can be verified that the semi-group operator S, for any £ > 0 is uniformly differ-
entiable on 4 in the metric of Hyg = Ly. Namely, the Frechet derivative Si{ug) exists,
and Gyvp = Sy(ug)vg. In fact, we set

w(t) = Sp(up + vo) — Si(un) — Ge(uo)vo = ua(t) — u(t) — v(t)
Thus we have
Syw(t) = Ly(ua(t)) — La(u(?)) + Lu(t))(t)

= Ly (u(t) + v(t) + w(t)) — Ly (ult)) + L{u(t))v(t) (90)
w(0) =0 (91)

where u: = Li(u) is the operator form of the equation (57).
Therefore, (90) can be rewritten in the form

dyw + L{u(t))w = Aolu, v, w) (92)
where
Ao(w, v, w) = Ly(u(t) + v(t) +w(t)) — Li(u(t)) + Llu(t))(o(t) +w(t))  (93)

By applying the theory of linear differential equations, we have the following Lq
estimate

lw(E)ll < Cllval® ' (94)

This implies the semi-group operator S; can be differentiated in Ly(R).

Denote by v1(t), ve(t), -+, v(t) the solution of linear equation (87) corresponding
respectively to the initial data v1(0) = &,---,v7(0) = &7, here & = (&1,8&2,-++, &) € La,
" and by the simple computation [19], we can deduce that

L on(®) A= A v @I + 2Tr(L@()Qllor(®) A+ Avs@IF =0 (95)
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where L(u(t)) = L(Syup) is a linear map: v — L{u(t))v, “A” denotes the exterior
product, Tr the trace of operator, and €;(t) the orthographic projection of space
L2(R) to the spanning subspace generated by v, (£}, -+, vi(t). Therefore from (95) we

: J
can obtain the change of the volume _nDE of the J dimensional cube by
T=

wit)=sup sup Jlur(#) Ao Ay (n)]2,
u{pE-‘!-fJEf.-g,E‘,_ﬁ]

< sup exp ( - fﬂtinf{Tr LS up), Qi(7))dr (96)

upeA

Noticing the result in [19], we know that wj is sub-exponented with respect to t, i.e.

Wit + 1) < wiltws (), £t >0 (97)
Hence we have
1
Am w8} =m;, §=1,2,... 7J (98)
and
T < expl—qy) (99)
where :
S el |
g7 = il_;.:g (mf;fﬂ inf(Tr L{ S ug) - Q_;[T})EET (100]

Definition 1 The Hausdorff measure of a set X is defined by

ng(X,d) = 51—1.];:1] ng(X,d,e) = 32}:}) ng(X,d ¢)

where

ng(X,d, e) = ianrf

the infimum takes over the balls that cover the set X with the radius r; < e. The
Hausdorff dimension of the set X is defined by a number dy(X) € [0, 00), such that

ng(X,d) =0, for d > dy(X)

and
n (X, d) = oo, for d < di(X)

Definition 2 The fractal dimension is defined by the number

oo log nyx(e)
O = I Togti /o)

where ny (€] denotes the smallest number of the balls that cover the set X with their
radiuses less than or equal to ¢,
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From the results of [18], we see that
dp(X) = inf{d > 0,np(X,d) = 0}

where
np(X,d) = li[% sup (“nx (¢))

Since ng(X,d) > ng(X, d), we have
dn(X) < dr(X)

Theorem 15 [19] Let A be the attractor of nonlinear evolution eguation (such as
Navier Stokes equation, Equation (37) etc.) that is bounded in HY(R). Then if g; > 0
for some J, the Hausdorff dimension of X is no more ﬂhan J, and ifs fractal dimension
is less than or equal to

—q
J(H moax — =) (101)

Lemma 27 (Sobolev-Lieb-Thiring Inequality, [18]) Let ¢;, 1 < j < N be a finite
family of H™(R™) which i3 orthonormal in Lo(R™) and sef, for almost every x € R

i
o E f‘?’j(:ﬂﬂz
i=1
Then there exists a constant kg such that
,I'r|: —l} ?ml:_p—].:lll"??- N 3
(jj;ﬂ pl(x)PHP a’:u) < kﬂz—/}; | D™ il “dz (102)
el

where the constant ko depends on m, n, p and is independent of the ¢; and N.
Theorem 16  Under the conditions of Theorem 14, the Hausdorff and fractal
dimensions of the global attractor A of the Cauchy problem (57) (58) are finite, and

dp(A) < Jo, dr(A) =20 (103)

where Jy is the smallest integer, such that

8ZN=1 40282
Jo = (b_ﬁ) o 1;’2(3‘.}’m 2f3||um|]i‘;i) (104)

Proof Supposethat {¢1,---,d;} is an orthogonal basis of the subspace Q7 L2(R),
we have

Tr (L{u(t))Q)
J
=Y {(~0jux + 2ujz + 2usd; + BH Pjoz + 6Hiz — g'(w) s, ¢5)}
7=1
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J
T E; {ﬂn'iﬁ’jm”g 3= '["i'.&;;,, ';'1:'_12.] + 2{1-"-":1:: "353} 7t £{H¢5}T1 ff".‘.'f} = {gj{u}'i.j:'l ‘;If’jj}
g —
By Soboley-

Lieb-Thiring inequality (102) it follows

F
fR P(z)de < h;.g fR 1622 dx

Hence we have

S
E {HT!‘?S'_?} = [:?-'rfmr ,ﬂ{:ﬂ}] = ||'u'I'HLgJ-'2 "P”La

I=1

i 1/3 g
S lellzys (13 [160fa) ™ < 31y, (X hosei)”
a=l1

j:l
And also

Ii’:ﬁﬁrﬁ":’jﬂ:: *:’f}j}J =
j=1

) =2
S (6H3;, 65) f <83 ligslllHds)

=1 =1

J it 42
=0 L 16illlesl < 53 sl + £
el

i=1
where ||¢;]]? = 1 forifsSilic o ToEaR we get

T /
T (IR 2 5 3 15l - kel ( > frqzamf)l E (b-2)s
=1 =1

2oy

7 1/3 2
Let g = (Z”‘ﬁjtuz) p ff-ﬂ';' = '333 i ‘rf;‘m“ﬂm“LM?-F + ( P 5_)*}'
j=1

ok

3a 3 : 21/2.1/6
O = 5 s o el Gayz ey,
Let us choose J , such that -
Y a<
fll:$m] = ESE” st ”3“'11:!:“53.-’25"1 -+ (IEI — EI:'_)J >0

This gives

52 23;2%2!3 3/9
(~532)7 > gl
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