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Abstract This paper deals with the degenerate Stefan problem with Joule's heat-
ing, which describes the combined effects of heat and electrical current flows in a metal.
The local existence of a bounded weak solution for the problem in proved. Alse a
degenerate thermistor problem with discontinuens conductivity is considered.
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I. Introduction

A multidimensional, two-phase problem of Stefan type that describes the processes
of electric heating in a conducting materia] is considered. When an electrical current
flows across the conductor, Joule heating is generated by the resistance of the conductor
to the electrical current, which brings about theincrease of the temperature. Once the
melting temperature is crossed, latent heat will be absorbed and the phage change
Phenomena oceurs,

Let 2 be a smooth bounded domain in RY, N > 1. The electrical potential and
the temperature distribution inside Qr = 0 x [0, T] are denoted by © = (x,1) and
= u(x,t), respectively. Let w,, be the melting temperature, which ig positive
constant, & = h(z,t) be the enthalpy density. Then the mathematical model under
consideration is the follows:

Find a triplet {&, u, v}, such that

g—?—ﬂuza{u}]?gﬂﬁ in ¢ (1.1)
Vie(u) 7o) =0 inQp (1.2)
h Ca(u) inQp (1.3)
- w=ug(x) on N x {0} (1.4)
u=0 ondQ x [0, 7] (1.5)
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@w=1o onddx[0,T] (1.6)

where o(u) is the temperature depending on electrical conductivity, e(u) is the maximal
monotone graph modelling the phase change process,

85— A if & < u,
als) = { |us — A, ue + A if 3= wu., (1.7)
- if 8> u,

For simplicity we have assumed that the temperature is equal to zero on 82, and
will assume A = 1.

When A =0 (i.e., k = u, no phase change occurs), the problem (1.1)—(1.6) is called
the thermistor problem and has been studied by several authors; see, e.g., [1-6]. For
the physical background and the known results for the problem (1.1)-(1.6) with A =1,
we refer to [7] for more details and the references therein. In [8] we have proved the
existence of the C"-solution in two-space dimension. The results mentioned above are
proved by assuming that the conductivity is continuous and uniformly positive. When
the conductivity (s) has limit zero as |s| — oo, Xu [9] introduced a notion of capacity
solution to aveid the difficulty which is caused by the fact that the boundedness of
solution u has not been proved. In this paper we shall estimate the uniform bound of
approximated temperature u in local time by using heat potential analysis and com-
parison principle, and then obtain a sequence of approximate solution converging in
L? space to the local weak solution of (1.1)-(1.8) by using a generalized compactness
lemma, which is the improvement of the well-known Lions-Aubin compactness lemma
and is crucial to the proof of existence results for the Stefan-like problem. As a corol-
lary the global existence of bounded weak solution for the problem (1.1)—(1.6) with
uniformly positive conductivity is obtained. We note that the boundedness of weak
solution has not been discussed in (7], and it seems that the proof of (4.21) in [7] is
false. :

The plan of the paper is as follows. In Section 2, we state the definition of the weak
solution and main results, and prove two auxiliary lemmas. The one is a generalized
compactness lemma, and the other one is a maximum principle for parabolic equation
with the source in Morrey space L>°(0,T; LN ~2+22(0))) (See Section 2 below). In
Section 3 we introduce a family of regularized problems, to whom the existence and
uniform estimate are proved. Next in Section 4 we will conclude that there exists a
sequence of approximating solutions converging to the weak solution of (1.1)—(1.6).
Finally in Section 5 a time-dependent thermistor problem with degenerate and discon-
tinuous conductivity is considered and the local existence of bounded weak solution for
the problem is obtained

2. Formulation of the Problem and Auxiliary Lemmas
Let us assume

a(s) € Lip(RY), 0 < a(s) 09 < +o00, ¥s€R!, lim ofs)=0 (2.1)

|#|—+oc
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up(x) € Hy(Q)n C(82), g () # u,, a.e reQ (2.2)
wa(w,t) € C(0, T; C1+o()) 0<a<i) (2.3)

We assume A =1 for simplicity.
Definition 2.1 We say that a triplet {h,u, @} is a bounded weak solution of
(1.1)-(1.6) if

heL™Qr), hc a(u), hiz,0) = alup(z)), a.e. in 0
u € L=(Qr) N C(0,T; LX) n L (0, T Hy () (2.4)
Y=o € L0, T; HY(Q)

and for all £ € L*(0,T; HE(0)) n ¢ (Qr) with & = 0 on Q {T'}, there holds
3,
f { - h—"f + - v{}d&cdt :f o(u)| 7 pizgfixdt—l-f £(z, 0)er(ug(z))di (2.5)
LRy dt flop LT
and for all n € H}(D), ae. te [0, T], there holds

LJ{H} V- ynds =1 (2.6)

In this paper the following existence results will be proved,

Theorem 2.2  Under the assumption (2.1)2.3), there exists o bounded weak
solution to the problem (1.1)~(1.6) for some T > 0.

Corollary 2.3  Assume (2.1)-(2.3) holds, and o(8) 2 o1 > 0forall s € R, where
01 18 a positive constant. Then there exists a global bounded weak solution to problem
(1.1)-(1.6).

Remark  If we replace (1.1) with the equation

%~ VD 0 = o) v P (L.1)

where k() is a continuous function on R and satisfies

Jim k(s) =0, k(s)>0, ¥se R
then for the problem (1.1)" (1.2)—(1.6) the same results as Theorem 2.2 and Corollary
2.3 hold.
For the presence of the singular term % we shall need the following generalized
compactness lemma;
Lemma 2.4  Adssume fals) € CURYY, fals) 2 1, |fa(s)] < 1+ |s], for all s € R,
=12, Letu,(z,t) € C(0, T: H3(9)) such that

Bfn{ﬂﬂj

Ienllzago,rimyan) + | =5 5 24)

<<
L0 H-1 () —
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where C' is a constant independent of n. Then {tin} is precompact in L2(Qy).
Remark Note that Lemma 2.4 is not the corollary of Lions-Aubin compactness
Lemma (see [10, Chapt. I, Thm 5.1] or [11]). The upper bound of fr(s) is not assumed,
which makes Lemma 2.4 applicable to Stefan-like problem. 2
Proof of Lemma 2.4 Denote by e; the unit coordinate vector in the x; direction.
Extend w,(-,t) by zero into RY\Q for each ¢ € [0,T]. By Lemma 7.23 in [12] we know,
foreach 1 <i < N,

ff [un(z + heg, 1) — w2, 8)|2dadt < [hfff | 7 usl?, WhemR! (2.8)
Ny Oy
Assume that for any 5 > 0 the following inequality holds,

lFal1 2+ &) — u(, )12y Sellul, ¢+ k) — u(, OlE e

+ g‘”fn{’ui'af + 1)) — falu(, t”’igﬂ"t[nj (2.9)

for all u € C(0,T; H2(Q)) and all t,t+h € [0,T]. Then, for any 0 < h < ki,
T—h
%T " |t£.,1|::1?, t+ -‘rl} ey [3:1 tjlzdﬂ:dt = E/;) ”Hﬂ-f'! t+ h'} - Hﬁ-{'! t}”gﬂj{ﬂ}dt
=]

1 T<h :
2 [ Ut 1) = foCmCr D)y

e [ Munl ey + 2 [ [2RLCD

< Cle + he ™) (2.10)

By combining (2.8) with (2.10) and using Theorem 2.21 in [13] one obtains the conclu-
sion of Lemma 3.2. It remains to show (2.9). In fact, setting

w=w(z,t) = uz,t + h) — u(z,1)
W = w(x,t)

{ folw(@,t + b)) - fu(u(z, 1)) if w{z,t+ h) —ulx, t) #0

H{E:Jt + h} ¥ u{:'-'"# ﬂ
1 if w(z,t+ k) —u(z,t) =0

we get i > 1 and

H'lf.-' - ﬁ”ff—l{ﬂ} = SUp {w ; EE, E} = Sup f U - A - &Eh;
”‘f”ﬂé{m:l |'I'E"H,:,1tﬂ]=1 it

k. ) "W”fp{m
l‘«_‘:/w-w~ ——dy > — A
0 | e ey lwll g1y

and then (2.9) follows.
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For the proof of Theorem 2.2, we
a direct consequence of Lemma 2.2 in [g

Lemma 2.5 [ f=1(z1t) e L0, T L) sueh that fZ20inQp and

€8S sup flz, t)dz < G’gp”‘“i",

Vg € 0, Wo >0 (2.11)
0=t=T JONB(zq,p)

where 0 < @ < 1, Blzg,p) = {zx € RN
solution of the following probiem.

Jw :
Et- — Aw = f in ﬂ’j’

|z - ro| < pL. Let w = w{;r:,t} be the weal

(2.12)
W(r,0) =14y, + ”'ﬂ.ﬂ”Lﬂ:}i’ﬂ} on 12 (2.13)
ot =144 on a1 » [0,77] (2.14)
Then we have
1+ u, < w(z, t) < Cf 4 2(1 + w, + l0ll poepey)  in Qg (2.15)

where § € (0,1) depends only on o and

N, and C depends only on the constant Cy in
(2.11).

Proof Decompose w into the sum of w; and wy which are. reg

pectively, the sola-
‘tion of the following two praoblems:
%ﬂ — 4wy = f in Oy (2.16)
wi(z,0) =0 on O (2.17)
wi(z, ) =0 on J0 x [0, 7] (2.18)
arnd
an .
5 Aws =0 ip {ir (2.19)
wa(x,0) = w(x, 0} on (2.20)
wWo(z,t) = w(z,t) on 5O x [0, 7] (2.21)
Introduce the fundamental solution of the heat equation:
1 lx — ¢
- E>
fe— gy { [irE= a7 P~ gy o>
ﬂ for t < ¢
Then t
w1=f fﬁI‘{x—-f,t—-ﬂf[&,ﬂd{dr-ﬁ-ueLr:; + v (2.22)
0 JR _

where v is the soluting of the problem

— — = 1 2.
Y Av =0 in {2 (2.23)
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v=—w; onddx[0,T] (2.24)
v=0 on$x{0} (2.25)
Note that

Dyz—fif=r) S Clt 7| Blo— ¢ V2 (15 r0x gei)

We can estimate wy by

lw gz, ¢ {CZf f L£(E 7| dédr

B(r, 2;-1'1.]'5‘3{1 EI.J If — T"ﬂ] Iﬁ: == €|."'i'r-"2||31

(&7
¥ szufﬂ fﬂ{m,z"":ﬁﬂcm a-i-1y |t — Tlﬁz |z — £V 28 dfdr

=] N2 .. dr
<CO i EI:I+1}{N—E+E-:::I
ol ﬂ% (Ei) 0 {t—- T;]ﬁl

(-+1I(N—202) N-2+2c:f¢ dr
+c<:‘u§2 (2) b=

<Cl-ha

where 0 < 81 < 1—a < f <1, and C depends on Cy. By the standard maximum
principle and w = wyr + v + wy we obtain (2.12).
Remark  If one replace (2.12) with

%1: Vie(z, ) vw)=f in 9y (2.12)

where a(x,?) is a bounded function with positive lower bound, then the conclusion of

Lemma 2.5 holds still. The proof is the same as above provided that the estimate for
the fundamental solution in [14] is used.

Lemma 2.6 If f satisfies (2.11), then f € L0, T H-Y0)). M{JTEG‘HET”fHme’T;Hu-J.{ﬂ}}
T C[p I:S'EE f]ﬁ]

3. Approximate Problems

Set an(s) = s+ Hols —ue) (n=1,2,- ), and H,(s) satisfies the following condi-
tions:

Hy(s) € C'(RY), H,(0) =0, -1< Hy(s) <1

0 Hy(s)<4n, VseR, n=12--. (3.1)
¥ e SR 1 [ BAEl L Wbl

Hy(s —u) =0, ¥seR[u H,u...+ﬁ], n=1,2- (3.2)
&n(s) — afs) in C'{e,b] for all a, b] such that u. ¢ [a, b] (3.3)
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Let wp,(z) (n = 1,2,--) satisfy

Upn(z) € Cl(5), on(Z) =0 on 80

on = o) + lluon ~ woll gy — 0 (a5 1 = o) (3.4)

Denote

= a(s) for |s] < B
7(s) = LR (3.5)
o(M)  for |s| > TF
where M is a positive constant to be determined ate.

Denote la]l. = min(e,n). For each n we consider the following approximating
problem (P,): Find a Pair {uy, ¢, }, such that

v, = :
j:?%@l = Aun = 7(u,)|| enl?, in 25

VAT(un) Von) =0 inQp, vie [0, 7]
Un(z,0) = Uon(z) in
Uy =0 on 30 « [0, 7]
¥n =0 ondx|o, T

(3.6)
(3.7)
(3.8)
(3.9)
(3.10)
Lemma 3.1 oy eachn =12

v 70y the problem (Fr) has a weqk solution satisfying

Un € LP(0,T; WP () 1 WyP(0))

%ﬂ- € L0, T, 27(Q)) for any p e (1, 00)

¥n € L7(0,T; CMe () CO,T; HY () n C(Qr)
and for all ¢ ¢ L¥0,T; Hi () n g1

(3.11)
(3.12)
(0,75 L(Q)) with £ = 0 on ¢ T

/ { = 'uﬂ]'—- + Tty - E}'.f}drx:dt

= [ @)l v ouf?] ednat + I enluon(@))é(z, 0)dz (3.13)
P ]
and for all £ € Hi(Q), all t e [0, 7],

| 70) 7 6w = 0 (3.14)

The proof is much the sam
Taking M =3 4+ 2{tw + “unJ]me]}, we have
Lemma 3.2 H'i'.-!-;-,HLm(ﬂx{u 1) = M ff.'-l?‘ L = fﬂ = ﬁu{ﬂ].
Proof Since the righ

t hand side of (3.6) is nomnegative, we pet

e as that of Lemma 3.1 in [8]. We omit the proof.

Uy = —] — ]]uu.]];m.[m in HT {3.15]
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'I'o obtain the upper bound of u,, we compare w,, with the solution w of the following
problem:

o

E — Aw = E{‘Hﬂ_:l[l N ‘FTEF]n 1 EIT (316}
w(#,0) =1+ u, + ||[ugllgwrny on © (3.17)
wiz, t) =14 u, + FIHDIILW{H] on J€1 x [G,T] [3.18}

By using the classical Holder estimates for (3.7) (3.10), we obtain
”JiﬂﬂuL-:lncﬂ.’T:G&{ﬁ}] < Gl {3.19}

where 0 < & < 1, and C) depends only on M, o, ||| Le(0,7;0=(my) And smoothness of

2. Let £ € C5°(RY) be the cut-off function satisfying £ = 0in RV\B(z¢,2p), £ =1 in
2

B(xo,p), 0 £ 21, |7¢ < > in RY. Obviously, for zp € 9, either dist {x, O} = 2p

or dist {xg, d2} < 2p. In the first case, we can take § = (@, — n(zp, £))€2 as a test
function in (3.14) and obtain

= f ﬁ{'ﬂn} WV ¥t ?{(F’n o Wn{ﬁﬂ,tj]lﬁa}
2
_ f 5 (tn)| T on|26% + 2 f & (tn) (10n — ©a(20,8))E T 0n 7 €
o LY
1
e fﬁ?fuu]l V @nlEt - Gﬂ”‘“““llaﬂniwﬂﬂzmqﬁ;
In the second case, taking n = (pn — wolx,1))E? € HY (), we get
3 o ] = 2
0 —Lﬂtunj V ©n* F((n = ©0)£°)
1
25 | 7lun)l v oul?€? - ) 7w 7 wult€?
— 4 [ 5(un)(0n — w0)*| v €I
|

gty — = 5 N =242 T s t 2
=3 N Blzo.p) '5"[“' }l ?"F‘ﬂl Cp { T ”':F' (r }“gw{ﬁj}

Thus, for the function f = #(u.)|| 7 ¢x)?],, the inequality (2.11) holds. By Lemma
2.5, we obtain

1+ S w=w(zt) < COMI +2(1 +u, + lugllpeqm)) in Qo

Now, noticing the definition of a,(s), we have a,(w) = w and then

a{ﬁn{ﬂn?ﬁl; an (w)) — At —w) =0 in Qp (3.20)

Un(z,0) —w(z,0) <0 onQ (3.21)
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Un(Z, 1) —w(z,2) <0 on 80 x [0, 7] (3.22)
Denote
VTi4+462 -5 forr>0
Sﬁr:'il“j — .
0 for r <0

Multiplying (3.24) by Sj(u, — w) and then integrating over £} x (0,1), we get

(= [/ﬁ; %{&n{un} = o (w))Ss(un — w) + f-/f; Vitn —w) - 7Ss(u, — w)
=1+ e
Obviously, Si(r} > 0 and

1 ifr>0

Sl — sion F(r) =
o{r) — sign*(r) {U if <0

and sign *(ay (u,) — an(w)) =sign *(u, — w), it follows that

; ¢ i
fim 1t = || [, i enun) — anfu))* = o gy @) = a0

and :
J;E:f éS&[i;n—w][v{ﬂn—w][z}_ﬂ
0

Thus, -/j.a }lfr:rﬂ{*uﬂj —ap(w))t <, Le, Un £ win O, and then e < M in ) x (0,2),
S|t

for t < &y = ().
Remark By Lemma 3.3 and the definition of 7(5) we know that o (tn) = T(un)
for ¢ = 1p =f.||:||':F}1 = ]-JE!""

Lemma 3.3
(1) llenllzogoy) < €, sup jﬁ; |7 wal, t)dz < C(FT) for some by > 2 (3.23)
D<esT
(ii)  sup '.!L.i{', t) -I—/] [--Tr’ﬂnlz < C(M) (3.24)
0t<T J1 {ir
il |y TR g )
(i) “ At L2017 H-1 () = C(M) 13.25)

where C' and C(M) are constants ndependent of n. :

Proof (i) follows from the maximum principle and Meyers' estimate (see [16]).
Multiply (3.6) by u, and integrate over ), = ) x (0,2). We proceed to evaluate
separately the three terms. By using (3.1) (3.2) we have

E:"Cl-_',_!_ { t.!“:I d @t (1n ) Sl
f/;hﬂn“—'—-aﬁ = /]&‘h (Eﬁfﬂ a, {3]:1‘5}
=f (fﬂﬂ ra, (v)dr — fuu ey, If?*]ﬂfr) > 1/ ul (- t) - C
T 0. it g
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ffm un(-aun}=[fm1vun|ﬂ

|ffﬂ FToluq)]| 7 wnlilﬂuﬂ| < C(M) ffﬂ | 7 el < (1)

Combining these estimates we easily conclude that (ii) holds. Note that a(Un)[|7enl®],
satisfy (2.11). Then the estimate (3.25) follows from (3.6) (3.24) and Lemma 2.6,

and

4. The Limit as n — oo

Lemma 4.1 (i) The family {u,} is precompact in L*Qr), (ii) There ezists a
subsequence out of {p,} (still denoted by {ien}) such that, as n — oo,

n — o in L2(0,T: HA ()
Vienlt) = e, 8) in LEQ) for ae t e 0,7

Proof By Lemmas 2.4 and 3.2 we obtain (1) holds. Now we prove (ii).
Using (i) we get, for a subsequence (still denote {un}),

Un —t  a.e infp, as n — oo (4.1)
un(yt) = u(,t) ae inQ, for a.et € [0,7] (4.2)

For ¥t € [0, T, ¥ € H () and ¥n, m, there holds
fo2m) 7 (= 0 91 = [ (0(n) = o(tm)) @ - 7
Taking n(-) = (wn — Ym)(-,2) € H}S), we have

L9 = em) <€ [ o) = ofum)?] 9 oul?
£ 1

L Cll 7 emllirlle(uas) = e(um)l? 2
1 falllotin) = o)l 3,

< Cllo(un) = o)

Ep
L7~ (q)
Lhen, || 57 (on — "Fm)“[.i’{ﬂ} — 0 for a.e. £€[0,T], as n — oo, m — 00,
”(Fﬂ- o ﬂ’grm”iLEEU,T;H{Hﬂj] —+ s T, 1T —+ OO
Let gn(-,t) = (- t) in H(RQ) for a.e. t € [0, 7]
vn— @ inL2(Qr), vy, —» @ in LA(Qr)

It is easily seen that v = $ a.e. in Qp and the conclusion (ii) follows,
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Now, take T = T(M) small enough, and note that

n(tn) = h C afu) weakly in L*(Q)
i (Upn) — o(ug) weakly in L(£2)

and let n — oo in (3.13) for the subsequence chosen as in Lemma 4.1, We have, for

V¢ € L0, T; H () n C Q) with £ = 0 on Q » {T},

_/;;T { & h’% T V- ?5} =fﬁ o(u)| 7 |2 + fﬂ a(ug(x))E(x, 0)

t.e., (2.5) holds, Finally (2.6) is true by Lemma 4.1 and the proof of Theorem 2.2 is
completed.

Remark From the proof of Theorem 2.2 it is easy to see that Corollary 2.3 holds.

5. A Degenerate Thermistor Problem with Discontinuous
Conductivity
Now we consider the time-dependent thermistor problem with the degenerate and

discontinuous conductivity, which can he formulated as follows:
Find a triplet {h,u, ¢}, such that

g-% —Au=flvy?* inQp (5.1)
u(x,0) = ug(z) on N (5.2)
u=0 ond% x [0,7] (5.3)
f=Ff(=t) € o(u(z,t)) in Q2 (5.4)
VAfve)=0 inQp 5.5)
¥ =10 ondilx|0,7T] (5.6)
where
f 't o
ofs) = [o2(A), o1 (A)] it =X
Tu(8) if 3> A

It represents the electric conductivity, and we have assumed a2(A) < a1()) for simplic-
ity.

In [5] by using divergence-curl lemma the existence of weak solution to the prob-
lem (5.1)~(5.6) was obtained under the assumption that the conductivity is uniformly
positive, which is essential to the proof of existence. Also the boundedness of 4 hag
not been discussed in [5]. We can relax the assumption of [5] allowing the limit of
the conductivity o(s) being zero as |s| — oo and prove the local existence of bounded
solution. Since the method of proof is much the same as that in Sections 2-4 above
and that used in [5], we omit it and only state the existence results as follows,
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Assume {2 is a bounded smooth domain and

o1(s) € C{—o0, Al, 02(s) € C[A,+00), A >0 isa constant
0<os) <op < 4o, i= 1,2. Vs e dnm{m}, i=1,2

Aol =0, Jm ox(s) =0 @)
ug € Wy (0) N C*(Q), for some r > 0 (5.8)
wo € CLO, T;C*)NHYN), (D<a<l) (5.9)

Definition 5.1 We say that {f,u,} is a weak solution to the problem (5.1)-
(5.6), if

feL®Qr), ueC*Qr)nL0,T; H}(RQ)
© — o € L=(0, T; Wy (R))
ur € LP(Q7), Au € LP(Qp) for some p > 1

and (5.1) is satisfied almost everywhere and (5.2)-(5.4) hold, and for all £ € H'(}) and
a.e. t € (0,T), there holds

Lf{at}vw'v(f— ¢o)dz = 0

Theorem 5.2 Assume (5.7)(5.9) hold. Then for some T > 0 there exists a weak
solution {f,u,p} to the problem (5.1)—(5.6).
Note that the Holder continuity of u can be proved as in [6]. We don’t repeat it here.

Remark  For the case of other boundary data such as the third boundary data
and mixed boundary data, the analogue results can be obtained similarly.
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