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Abstract A quasisteady Stefan problem with ecurvature correction and kinetic
undercooling is considered. It is a problem with phase transition, in which not only
the Stefan condition, but also the curvature eorrection and kinetic undercooling effects
hold on the free boundary, and in phase repions elliptic equations are satisfied by the
unknown temperature at each time. The existence and uniqueness of a local classical
solution of this problem are obtained.
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1. Introduction

Let £ be a bounded domain in R and I'” be a (V —1)-dimensional single-connected
closed hypersurface in . Our problem is to determine a function w(z,t) : 3.[0,T] —

R! and a free boundary I' = {U{T[FL » {t}), where [':(0 < ¢t £ T) are (N — 1)-

dimensional single-connected closed hypersurfaces in 2, such that

e Aui(,t) =0, in (), 0<t<T i=1,2 (1.1)
Ju' '
g an 1.2
o 0 on 9 x [0,T] (1.2)
$ u1=u2——&ﬁ—ﬁ?’ o -0t <T (1.3)
2
s Ly only, 0<t<T (1.4)
e dr
Ls=Tr (1.5)

where, u' = u in £25(t) x [0,T), i = 1,2; §¥(t) is the domain bounded by I't for + = 1,
or by Ty and 8% for i = 2; n and » are the unit outward normal vectors of £ and
Q1(#) respectively; & is the mean curvature of I'; which takes positive value when 01(t)
protrudes into ﬂﬂ{t], is the velocity of 'y in the direction of v; & and 3 are positive
constants.
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If (1.1) is replaced by the heat equation

uf — Au' =0 iy U @) x {1, =172 (1.6)
0<t<T

the system ( 1.2)-(1.6) is called the Stefan problem with the curvature correction and
kinetic undercooling. This problem has been studied by many mathematicians, Chen,
X. and Reitch, F, ((1]) established the existence and uniqueness of a local classical
solution for § = ¢ and @ > 0. Radkevich, E. ([2]) proved the existence of a local

got sufficient conditions for the convexness of the free boundary. And Luckhaus, S,
([5] [6]) set up a weak formulation for G=0and 3 > 0, and proved the existence of a
global weak solution of this problem,

For the quasisteady Stefan problem with Curvature correction and kinetic under-
cooling, that is, the system (1.1)-(1.5), less results have been obtained. When 7 = 0,
& > 0 and A0 being a chart of a Lipschitz function defined in RY(N =2), Duchon, J.
and Robert, R, ([7]) proved the existence and uniqueness of a local classical solution,
When 3 = 0,8 > 0and 0 being a bounded domajn in R?, Chen, X, ([8]) established the
existence of a local weak solution, and he also obtained the existence and asymptotic
behaviors of a global weak solution when 3 = 0,&>0and Q=R2

In this paper we consider the system (1.1)-(1.5) in the case that § > 0 and & >0
We shall use the idea in (1] to formulate (1.3) as a paraholic équation on some smooth
manifold. Our main results are the existence and uniqueness of a local classical solution.
Without loss of generality, we might as wel] suppose & = 3 =1 in the sequel,

Now we state our main results as follows:

Theorem 1.1  Assume that T € O+ 4n4 50 ECHE) g 1), then there
EXiSLS @ positive constant T, depending only on I'" and Q, such that, the system (1.1)-
(1.5) has an unique elassical solution {u, '}, satisfying

u € CH*%(Qln CH3(@3) nC(Giy) (1.7)
w8 @M NCHe@E), o<i<r (1.8)
a7t
e C::“H*’E

where Qp = O % (0, B = D{EﬁTfﬂ{fﬂ X{th (i=1,2)

Cot ¥ = (0] 0,0, 0, € O8) (1.9)
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and g
+ : .E
':::r.::!,!:ﬂe k= {T-" | Uy Uy Uy Upd Vs, U € Ga’%} {11[]}

2. The Parabolic Equation on the Free Boundary
Let M C R™ be a (V — 1)-dimensional C**®.manifold and the transformation
XM —=T? (2.1)

be a C°t* diffeomorphism from A onto T,
Denote by s’ the local coordinate of A4 and by +%(s") the unit outward normal
vector of TV at x = X9(s'). Set

X(s' en)=X"&") +syr(s): M x [-L,L] - RN (2.2)

If L is small enough, then X(s',5y) is a C°**-diffeomorphism from M x [~L, L] onto
some neighborhood of I'? in RY.
Let 5" = (s1,-++,8y5-1), § = (¢, sn) and X(s) = X(s',sn). Denote the inverse of
= X{s) by
5(z) = (8'(z),---, 8" (2)) (2.3)

Now for any fixed positive constant T, we define a family of smooth hypersurfaces
{Fi}ﬂgfg’}‘ by

Dy={X{s,sn) | sw=A(s",1), S e M}, 0<t<T (2.4)

where A is a C? function from M x [0,T] — [—L, L]. Obviously, if L is small enough,
then I'; CC 1. Thus, setting

v(s',t) = w(X(s, A(s',2)),8), s'eM,0<t<T (2.5)

(1.3) and (1.53) can be equivalently transformed into the following Cauchy problem of
parabolic equations (see [1]):

ey, M e A
T 17 A, VA F:u 1 ¥t
o ijz_:la.j{s,g, 31]55553j+b|:3 A, VaA)
-.1 =
—e(s A, VaAlu(st), sfeM 0<t<T (2.6)
X ;"L{S",D] =0, &eM (2.7)

where

N—1
z {pkﬂ}: : Hi]{piﬂi i ﬂj]

ki=1

! 1 =1 1 ]
ﬂ'i.“-i(SE-SN:P i ;I =a’ - adi= N-1 2

Z Pk&k
k=1 .

1+
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b =1, a1 {28'}
= Iy &
N=-1 : > Pl (ah)TaN
b{sj: SN Ply i :pN-HI} = 2 FkTT{Ak} = TT[AH} -2 N—1 4
k=1
N—1
Z Fﬂ:plpm[ﬂ,k}TAm&J
m k=1
2 alie iy (2.9
1+| 3 phak
=]

N—1 2y 3
(s sy, pl -+ ) ==(1 + E p*a® J =1 (2.10)
k=1
5 ] a5t ; i
ﬂtf;ﬂ:(&ﬂ‘fﬂ’ S{E:J!”_’EF‘SW:E}) y Tl (2.11)
Tl Oz Oxy ) e xpa)
’Si@)  agi(y)
. dxy0x; " 018z
A'(s) = -‘ : o 4=1,.0., N (2.12)
0% S'(x) e G2 G
5‘.’1:,?-;5.'1:1 : : ﬂﬂmﬂ:ﬂﬁ r=X{(a)
Tr(A') = the trace of 4%, ;= ..« N

(2.13)

Lemma 2.1 [et i and T be two constants, 0 <T <1 and m > 0. If

“U”CEH’%{MI[D,TH +D§!£1£PT ”t’{'! ﬂ“ﬂ"‘l{M] =m {214:"
then there exists a constant Tm € (0,7), such that, (2.7) and (2.6) has a unique solution
A(s', ) in [0, T|, which satisfies

[M”c:-*+ﬁ=§wx1u,f~mﬂ W Non tuiporgy S Cm), 0<acpear S

where § € (a,1) is g fiz
depends only on m and é g

Proof It is easy to verify
I'? such that, if I is small e

ed constant, C(m) is & constant independent of T and s iR

that, there existg constant Cy > 0, depending only on

nough, then
Ly o N-1 2
E{_'I'E[ ot Z ﬂ@j{’&‘;, 31"-"11?11 i J'Eff_’.r' it Gﬂfﬂ
ij=1

Vs'e M, sy e (=L, L], p* € [-1,1], ¢ ¢ RV
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and
”":'!'ijr b, EHC-H“ (Mx[—L,L]x[-1,1]N-1) < (Y, 1.0 =1 N

Hence it follows from the theory of parabolic equations that there is 5 T'm, depending
only on m and T, s.t., (2.6) and (2.7) has a unique classical solution A(s',t) in [0, T3]
Moreover, by (2.14) and the Schauder's estimates, we have

which, together with (2.14) and the L? theory of parabolic equations, implies
”DE”I‘!'-HWJEJKMH[U:'TMH = C{m:PL Vl<p<+4oo

thus, (2.15) follows from Sobolev imbedding theorem.
If we continue v from M x [0,T] to M x [0,1] and preserve the inequality

|9l 24ag (M x [0,1]) + 210 (-, Dllcsay < Cm)

where C(m) is independent of T, then the constant C'(m) in (2.15) is obviously inde-
pendent of T'. Hence, we conclude the proof of Lemma 2.1,

3. An Approximating Elliptic Equation in the Bulk
For 0 < T <1 and L small enough, we set
L '
A7 = {86 I8l goret upngory € 2 A D) =0, o €  BCEY

Arbitrarily taking A € Ay and £ € (0, 1), we consider the following problem

(—eu'(,t) + Au'(, 1) =0 in Qi (), &= 1.2 (3.2)
1,
i aE; ) = (3.3)
1 dul(-,t)  Sul(,1) ]
BoAlt) O —KA(E) = w'(-,2) on Tu(2) (3.4)
Cul( ) =u?(, 1) on Ty(t) (3.5)

where £ € [0,T), Ca(t) = {z € | §¥(x) = .:’E.{Sl{m],---.rSN_l{:r],_fh_ﬁ ={zecn]
dist (z, I'g) < L}, 02} (t) is the domain bounded by Ta(t), 23 () = Q\Q2 (2), va(?) is the
unit outward normal vector of 01 (t) and kAl t) is the mean curvature of I'y (¢} which
takes positive values when {2} (t) protrudes into Q3 (t). It is easy to verify that

1 iy 82
Eﬁ{glj t} v ﬂ{S‘, j'j._, vsrﬂ] Z ﬂt‘j{ﬂl’ ﬂ’ ?’Fﬂ}ﬂ.ﬂfa T b{"j‘r! "1: ?afﬁ} {3*5}

o L
1, 7=1 I
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With ﬂ{j{-&';} .ill, ?314'1} {i,j - ]-:l 2! SRy
(2.8)~(2.10).

Lemma 3.1 There epst constants T° C and C(e),

8t. for any A Ago, the
) has ¢ unigue classical solution uh (z, 1), Uy = ul for z ¢ Q(t)
(i = 1,2), satisfying

Vo 1) 85 A VaA) and e(s', A,V A) given by

lluj “Gﬂm,g{@ + [Juj Hﬂzh,ﬁt{'ﬁ'} =C{1+ ”ﬂi”c[ﬁruj} < Cle)

(3.7)
aitel
ﬂ;;IEI;‘ i (1) HGW{@ + : ;-.‘Cg:_i%"“ i G5 2 s @)
S C{1+ Jug Mc{ﬁﬂj } < Ce) (3.8)
where Q4 =

u{!LéTu{ﬂi{ﬁj x {t}) (i = L2), C and T? gre independent of e, and Cle)
depends only on e,

Proof For simplicity, in the following argument we rewrite uj,
and p respectively, and let

Vy and vy as u, ¥
the capital letter denote constants ind
£,

ependent of T and
Set h(g, A) is such a function that

(A, A) € C=([-L, ] x RY)

3
g for p| > L
fi!-{ﬁ,.-l;l ==

L

1
0 fur,u:iandfm*_iEL

Sh
S e
(55 2C>0

Define a transformation ¥ (z, t) from Q7 into

itself by

(z,8) if dist (2, > 31
¥{z,t) = . ¢ 3
(X°(s") + n(s MLA(S,£)00(sh, t) r{s’,s"'r}zll_'.ﬁ'l{.:},--~,..5’N|::|;:I} if dist (2, I'%) < it

It is easy to verify that ¥ is a E’::u’% diffeomorphism from 0
any t € [0,T], ¥ maps La(t) x {t} onto I {t}. Moreover

¥l 4o o < 0 (3.9)

=1 =

T onto {2y and, for

et ¥ an) (3.10)
Letting Z(y,¢) = u(¥ =1

¥:t)), or u(z,t) = 2(¥Y(x,t)), then (3.2)-(3.5) is trans-
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formed into
r—&‘z +ZE-;_—,. i Eﬁi’ —ﬂinﬂﬁb{{t} b= (3.11)
52 5‘?;153.5 & ) :
3 % =0 on 90 x {t} (3.12)
7 [Vyz! — Ve = -8 - Z' on T x {2} (3.13)
| 2= ion T s i) (3.14)

where ¢ € (0,7, 2* = z in Qf x {} (k= 1,2), 0} is the domain bounded by I'?, Q2 =
0\@, and e

rﬁt'j = E-;:l:y, ﬂ = {?:Yi : ?ﬂ:};j]{m: t)l[m,t}EF'j{y,t}

bij = bi(y,t) = (ﬁxF’:}{I:f”[r,t}ﬂ’-ll:y,tj

Y(z,t) = (Y(z,8),- -+, YN (2,1))

K= E{E":f} = H’!‘L{m:ﬂ |r:.1!,t:|=‘r""’{y,t}

? = F{'y,f] e [H($:f} : ?E}F{ﬂ:,f} |I[:1‘-J-‘]=?_1{!.|'|ff:| ;

Denoting » = (' (y,t),- -+, ™ (y,t)), then after simple calculations we can get

oy

asi Z aA 887

. ar; 857 Oz
Vipt) = —— , i=1,--- N

N=l gA asi
”Z(Z 557 am,)

Moreover, we can easily verify that

(z,)=Y " {y.t)

IIfft-;;IICaﬁ. Say SC (3.15)
and, after some computations,

II'F:'“C?‘HI "E'I:n :| .::‘ G {3.1?]

190 pste g 5y < C (3.18)

Since #(y,0) = v(y), y € T°, and @;;(y,0) = Iyxy (the N x N unit matrix), we
can take 7" so small that

eV o en BV 0,7 (3.19)

b | =

Evidently, such choice of T depends only on I'?. Moreover, it is obvious that

|£l| = Z ﬂ'a.jlfi.f_? < Slflg on £ % [{] T] for 1"?’{ = RH {32[.')

£, 7=1
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Now we can apply the following lemma to the system

(3.11)-(3.14) and obtain a
unique solution z(y, t) of (3.11)—(3.14),

such that z € C(T2p),

[|'3||¢z+«.%{ﬂ'—axmj~u 2 “z”ﬂ'““‘&{ﬁﬁ'x[ﬂ.T]} s Cl1+ lzllgm,y ) < Cle)
and '

GE?ET ”ﬂ':ﬂ”cuu(ﬁ} A UEI:ET ||Ef-, f}“gﬂ+a(ﬁ} < G{l T uzllgfﬁ}} < G{Ej

which, together with (3.9) and the relation u(z,t) = Z(

Y(z,t)), gives (3.7) and (3.8).
The proof of Lemma 3.1 is completed.
Next we consider a more general problem: determine a function w(z,t), a.t., for any
fixed t € [0, T
¢ N 525&5: N 15'-:,1:"% .
o e B E i k o :
i\fzz-l _I.r.lu aytayj + ;B 33&: + H'l,ﬁ' 111 ﬂﬂi JIL' 1...2 {3 Elj
At
4 il e porled
5 0 on a0 (3.22)
7 [Vl — ‘F:pzj =G =y onTy (3.23)
L' =92 onTy

(3.24)
where ¢ = % in Qf (k=1,2), visa positive constant and

gt gt
- Vel — Vel m s 5 onTa(t) (3.25)

for @ (x,t) = e (Y Nz, t) (i =1, 2) and A € Ap.
Lemma 3.2 Assume that

ME = max{"fh—f“{:“‘l"'&'%I:ET:P ”ﬂ"ﬂﬂ+1+a,-¥(ﬁT]1
“B'!'-“{:fﬂ-ﬂ'{ﬁ?,:,a ”H”CH“'%{HHTT}‘ 1:..7' =1, *H.T} < +o0 (32&}
i _— 4
0= Gl gto110.8 ) + 1Bl iam (3 fo1) * VB ot g < +00 (327
-’27 >0 onT®x[0,7T) (3.28)
H< -y <0 iny (3.29)
and

n
15 € < 3 At <mle)? on T, v¢ e RY (3.30)
1,3=1

where [ =0 or 1, (£ =1,2,3) is positive constants, then the system (3.21)—(3.24) has
@ unique classical solution v € C(Qr), s.L.,

2
Z”"rp”cﬁil+u.ﬂ- [ﬁ;x[ﬂﬂ"]} = C{MIF 713 ’J‘EH"‘P”{:(ﬁT} i If}
i=1
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< C(M T v, v2,98), [=0,1 (3.31)

W

{ 550l Dllusasa gy} < OO 2,26 0y + 14

< O(M' Iy, 92,78), 0 = 0,1 (3.32)

i=]

where C{M*,v1,3) depends only on M, 7 end vz, and C(M', I v, 9, 73) only on
MU T v, e and s,

Proof Here we give the proof of this lemma only for { = 0 because in the other
case the argument is similar. For simplicity, we might as well suppose v = (. For v > 0,
we can use the Leray-Schauder’s fixed point theorem to obtain the same results as for
— 0.

In terms of (3.27) and I'® € 5", we can find a function Clx,t) € Co(ly), such

that _ :
{T?'[T’ril—?§2]=f3 on I''¢'=¢ nfpri=1,2
0 50
DEET{HCLJJI!GE[@ HICC Ml oy } < CME, 2, 1)

where C(M?, 19 4,) depends only on M?, 19 and .
Let & = ¢ — . Noticing (3. EEJ, we can find from (3.21)-(3.24) that

i -
- %P ap -
Aijm———+ ) B.— +HF=F inQ 3.33
jzl ? By;8y; ; gy ¥ i (3:33)
g: 0 ondQ x [0,T] (3.34)

where || E|| ooz < C(MO, 1% 41, 73). o

By the theory of elliptic equation, there exists an unique weak solution @ € C*(82)
(0 <t = T) of (3.32) and (3.33) which satisfies || (", t}”c @ =< C(M, 1% 41,93, 73)
for ¢ € [0,T]. Therefore, for any ¢ € (0,77, (3.21)-(3.24) has a unique weak solution
p € C(f1) (0 <t <T) and the second inequalities in (3.30) and (3.31) hold for [ = 0.

For any § € T'%, we can transform (3.21)-(3.24) in a neighborhood of 7 into a
system of two elliptic equations by straightening I'” in some neighborhood of § and
then making a reflection along the straightened boundary (see [1]). We can verify that
this elliptic system satisfies the complementary condition and hence by the theory of
elliptic systems (see [9]), we obtain the first inequality in (3.31).

For any 1,12 € [{}!T]: set iﬁ’k(y} = {':F:'k[y'l tl} % ':Pk'l:% tﬁ”.’f'tl = £2|%b k= ]-: 2. After
S0Ime vr:a,lcuial;it:ms we find from [3 21)—(3.24) that

- 2 .'ir
Z Aa-:.r y,h} + EBU{J:' ﬁj == f in ﬂﬁ (3.35)
i7=1 =1
1
< '?:1 =0 on 89 (3.36)
m- [V = V=g onI? (3.37)
Lt =4? onI? (3.38)
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where 7, = n(y, t;),
”fkl'iLm(naT] < C':iuus'}'laTﬂj{”‘F“L“[ﬂTJ +1%, k=12 (3.39)
and
“E’”cl{ﬁ} £ cl:Mﬂr’]’l:TS]{“‘P”LMmT} ar Iﬂ} {3-4{”

As in the beginning of this proof, we can find a function W ¢ Co(f2),
me (VW — VYW =gonl® W W i Qf k=12

: 0 .

Sy {19 Oll ey + IWCDlla g2y} < Ol MO)llgll o

such that

Setting o = 1 — W, then we have from (3.35)-(3.38) and (3.25) that

2 A e B ]5"“? H b=F D (3.41)
il t + gl ) =— + i = in A1
2 Aty o ; i t)g s+ Hiy t)i = f
N
%::[] on J80 (3.42)
where
171l zoo gy < G(Mﬂz’rh’}“a}{”&ﬂ"”Lm{ﬂT} +1°% (3.43)

So we apply that LP theory of elliptic equations to (3.40) and (3.41) to obtain

1%l 20z < G(Muph,’mdﬂ{llﬂl';m[m + 1l o@}, 1<p<+oo

Hence,

Jiﬂllwz.p(ﬂéj + ”T;}”W:'-P{ﬂgj = CEM‘]?TI!#:"E}{”W”LWI:QTJ + Iﬂ}1 vl < P < 4o

which implies from Soboley imbedding theorems that

”T-ﬁ’”‘:l{ﬁ“ L “1-'3”,:;1 (72) < Cc(M°, T4 TH]{||"F“L“='{ET} T ID}

Therefore, the first inequality in (3.30) for | = 0 follows
and the definition of .

The proof of Lemma 3.2 is completed.

from the last inequality

4. The Existence and Uniqueness of the Approximating
Solutions for (1.1)-(1.5)

For any A € Ay defined in (3.1), let w5 be the solution of (3.2)-(3.5) and A® be the
solution of (2.6) and (2.7) in M «x [0, T3] for v = up (X (s', A(s', 1)), 1), here T (0,79
is determined from Lemma 2.1 and Lemma 3.1 which depends only on I'® and «.
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Define an operator 7, from Ag into C(M x [0,T.]) by F.A = A® for any A € Ap.
We must show F, : Ay, — Ay, and F, has a unique fixed point in Ag..
From Lemma 2.1 and Lemma 3.1, we have

| FA < Cfe) (4.1)

CHHT (Mx[0.T3))
where 0 < & < F < 1 and C(g) is independent of T,.
Noting that A®(s',0) = 0 for &' € M, we derive from (4.1) that

a2
1A gt oz < CENTE (4.2)

L
Hence if we let 7. so small that the right hand side of (4.2) is less than 5 then (4.1)

and (4.2) imply that 7. is a compact operator from Ar, into itself. The continuity of
Fe on Ar, follows from the compactness of F, and the uniqueness of the solution of
(2.6) and (2.7) for any A € Ap,. Thus, by the Schander's fixed point theorem, F. has
a fixed point in Ar,. Moreover, in terms of the same argument in Section 6, we can
show that 7. has only one fixed point in Ar.. Thus we have proved.

Lemma 4.1 Assume that TV € C%F® and 3Q € C%® (0 < a < 1), then there
erists a positive constant T, depending only on £, ©@ and T°, such that, the system
(2.6), (2.7) ana’ (3.2)-(3.5) has o unique classical solution {A*, uS.}, which satisfies
AE € CHAE(M x [0, T]) (o < 8 < 1), A € C*3, uf. € C(@p) N C*H>% (O, (1) x
[0, T))NCEHe% (0% () x [0, T2]), whe (-, £) € CH+2(QL, () NCHQZ. (1) (0 < t < T0),
and

(4.3)

b-'-'ft"l

I[A° ” bR o x[0,T, JJ

where (0, () (i = 1,2) is defined in (3.2).

5. The Existence of a Local Classical Solution of (1.1)—(1.5)

Lemma 5.1 Let {A*, .} be the solution of (2.6), (2.7) and (3.2)~(3.5) provided
by Lemma 4.1. Then we have the following estimates:

A =C (5.1)

T (M x[0,T3))
2
; {Ilﬂhellcwn-ﬂmxm]} toe |Iui=||¢aq.¢[mj} = (5-2)
where the constant C is independent of ¢ and Tk.
Proof We have from (2.6) and (4.3) that

oo (& £Yelsl ag,vgfﬂfms*dﬁ‘ <C (5.3)
.-H.‘-*L'[‘D,T]
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which implies from (4.3) and the imbedding theorems that

2
! ! £
me‘[ah?f’.;r] |ﬂi* (¢, f}ﬂ{s 3 -'"!H'.‘:- T‘?.s"ﬂ-f}‘ = 1'5};:1: ”vﬁz ||Gr$-i-ﬂr='§"{ﬁmx{ﬂ,i’}” i Cﬁ} (Elij

where C, is a constant depending on p.
Noting that e(s’, A, V. A) =1, we get

2
i, N yxpo,my < PE lhellcases @rmupomy + Co. (5.5)
Now applying the maximum principal to (3.2)-(3.5) for A = A€ and u = u§, in
25 x [0,T] and using (5.3), (3.7) and (3.8), we obtain

2
(1—Cp) }: [Hnis HCHR@{WRWEM) T Z Huﬁ*”[:ﬁa(njﬁm] S Gy

i=1 0<t<T,
Thus, by taking p small enough, we yield (5.2) from the above inequality, while (5.2)
and Lemma 2.1 give (5.1). Henece we conclude the proof of Lemma 5.1,

Lemma 5.2 Under the assumpiions of Lemma 5.1, there erists a constant A=,
independent of €, such that

TS for any e € (0,1) (5.6)

-

where T is a constant such that [0,7%] is the mazimum interval in which the solution
{A%, us.} exists classically.

Proof If
I L (5.7)
= et R oo = 9 '
Then, from (5.1) and (2.7), we have
L oA £
E f::- “‘I “.:T'I'r"l'l'-%EMH[”,T-E]} E ST-‘E
So ;
i Fo N B
EE’EE‘(EE) =M >0 (5.8)
Now we suppose
‘i L
”'ﬂ!" ”C"d""'ﬁ'%{..‘h’[bf[U,TEH {: E fﬁ.g;}

For any T € [T, Tu] (Tp is defined in Lemma 3.1), we define a subset of Ar by

; L
B.p= {j’lﬂlﬂ = A" forte [0,T;] and ”ﬁ”c”“'%[,ﬂv{x[ﬂﬂ'ﬂ] - E}

Since FLA® = A for ¢ ¢ [0,T.], where F, is the operator defined in Section 4, then
Feld = A% in M x [0, T:] for any A ¢ B.r.
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It is obvious that the solution of (2.6) and (2.7) provided by Lemma 2.1 can exist
upto Ti, in the way that, either T, = T, or

DL
IAleroatxo,,)) = min {E’l}

(See [1].) If we assume that F.A is well-defined in M x [0,7)], then we have from
Lemma 2.1 and Lemma 3.1 that

||Frﬂ”f:4+m% Mo T < ”Fﬁ”{-—ui-i-a-ﬁ- Mx[Te T + ”Fﬂ“‘j'ﬂi-d: 7 Mx[0,T,
(Ad[0,77) (M [T, T7) (Mx[0,Te])
= AN gese uxgo gy + 1A Todll gt goepr )

+ [|FeA — AS(s", T2) ||f~*+*= F(Mmx(Te.T))

c:§+r3 e)|T — TI

2 _

L )E_a >0and T = min {T% T, + AT.}. Then we yield

4C=)

Set AT, = (
L .
||F5ﬁ||(?‘+‘*'%{;ux[u,ﬂ‘j} < 5 <3 fapile]

Hence FeA is indeed well-defined in M x [0,T] with T = min {T°, T. + AT,} and F.
is an operator from B, r into B. 7. Thus from the argument in Section 4, we see that
Fe has a unique fixed point in B, 7, that is, we have extended the existence interval of
{A%, uf.} from [0,7¢] to [0,T]. Repeating this process finite times, we can extend the
domain in which {A®, v, } exists classically from M x [0, T:] to M % [0, T?], such that,
either T = Ty or the inequality (5.7) holds for 7. = T, So if we take A = min{ Ay, To },
then (5.4) holds.

It 1s easy to see from Lemma 5.1 and Lemma 5.2 that there is a sequence {g;}
with £; — 0 as j — 400, such that the solution {A%s ,’u,ﬁ ¢; } of the system (2.6), (2.7)
and (d 2)-(3.5) for £ = ¢; tends to a local classical solution {u, A} of (1.1)~(1.5) with
I''= - t{ |f1“¢ % {t}) defined by (2.4), which has the regularities desired by Theorem
1.1.

Remark 5.3 IfI%eC*eand 80 e C* 2 (k> 4,0 < a < 1), the arguments
in Sections 2-5 give a local classical solution {u,I'} of (1.1)~(1.5), which satisfies

ul-, 1) € C* QI N (R2(), 0<t<T
e Crk .3+{‘:|' Ql } il C’k S s {QE }

6. The Uniqueness of Classical Solution of (1.1)—(1.5)

Suppose that {u;, A;} (i = 1,2) are two classical solutions of (1.1)-(1.5), which
satisfy
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”ﬂf”ﬂ’““'ﬂﬁ_f:r} N "ﬂf”cuﬁ,ﬂ@} S0 = 1) (6.2)
UET:EPT il s GHO D?tlgpr ”“’i”f:ﬂﬁ{ﬁw) =l =12 (6.3)

where ﬂ.fr:t}_lf the domain bounded by I;(t) = {X(s' 8n)|sn = Ai(s',0), 5" € M},
Q) = Q\(QL(¢)) and @5, = U _(QFt) x {t}) ((=1,2,k=1,2).

=|:={

Set ®(s',t) = Ay (s, 1) - ﬂgf;r'._,_tj. Due to (2.6) and (2.7), we have

n—1 2 Tp==1
ol g T B s .
Z ﬁ;‘j———"l'ZE?i‘;—'{"ﬂ‘I'—*,—:E{?_Jl—-'ﬂg;l lHMK!ﬂ,T} I':E.fil-jl
i1 ﬂsiﬂsj = 5 ot
"I‘(Sﬂ{]} =0, s'e M (6.5)
where
v = wi(X (s, A, 8),8), i=1,2
i = (', 1) = ayg(s', A1, VA1), 4,5=1,--- N—1
e=¢(g, t) = ﬂfﬂlr Ay, Vel) 21
and

”aij’:-bf:-a € i, j=1, IV = 1"(’_."2'*“'%{"-’11{[0,?“]:' =0 16:)

Without loss of generality, we can sssume T £ (0,1]. T.hus the constant ¢ in
(6.1)—(6.3) and (6.6) is independent of T
Using the same argument as in the proof of Lemma 2.1, we can show

A -
1A ﬂg”cﬂﬁﬂgwxm,rj} ”Tl|c-'*+ﬂ-§.;Mx[u,:.r']:|

< ﬂ'{”'ﬂl - ﬂz||,31+a,1§wx[[,;“ ko lea (-5 ) — wa(-, ﬁ'ffr::zw}}s

a<f<l (6.7)

here and below, the capital letter ¢ denotes constants independent of T,
We may assume T so small that

T
Isllemxor < 5 1=1,2 (6.8)

and let ¥; = ¥, (i =1, 2) be the transformations introduced in the proof of Lemma
3.1, After simple computations, we find

]]F]_ 7T FZHC:H'W‘?I:ﬁT:I E J:.:’MI”"!‘!"-I T3 ﬂEIICE“'E{MH[ﬂ,T]] {h‘gj
||}Ji_1 i }'E—IIICE'F&.%{ET] E ||"!l.-."1 T ﬂgllca-P&'%t.-M:{fﬂ,T]} [ﬁ.lﬂ]
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The function Z; = u;(Y "y, t)) is the solution of (3.11)=(3.14) withe =0, A = A
for i = 1 and 2 respectively. Denote ¢(y,t) = Z1(y.t) — Za(y,f). Then we can easily
verify that, for any ¢ € [0, T,

r =1 2 ok n—l o,k
. O°g o I g e
fij—— + b—=f mfy, k=12 (6.11)
.!-_J-Z::l Y By 0y; ; By :
1
: %§r== on 90 (6.12)
7. [Vyd! —Vyd?l=7 onI" (6.13)
(¢! =¢* onI® (6.14)

where ¢ = ¢" in Qf (k=1,2)

< C||Ay = k=1,2 (6.15)

—k
15 oo (5 o,y S = Mall gase 8 (papo )

”§||{-:1+n.g{ﬁﬂ < Clla - -'HLE||G:3+Q.$}[MH[G?T]} (6.16)
We can check that the conditions of Lemma 3.2 for | = 0 with respect to (6.11)~(6.14)
are satisfied if 7 is small enough. So (3.30) and (3.31) with [ = 0 give that, for small
T,
3 :
El{ ”31 2~ Eﬂuﬁjihﬁﬂf{ﬁl‘szﬂlT] 7 ﬂi]i:lp Z ”"51{ t} EE{'! t}|lcz+“[‘ﬁ"ﬂ}}

< CillAr = Azflgsseg (pguppy + ”31 - Z2llcqpy (6.17)

Since wi(x,t) = Z(Yi(x, 1), 1) and v(s',t) = wi(X(s", Ai(s', 1)), 8) (1 = 1,2), it follows
from (6.9) and (6.17) that

E!Ul szll{:ﬂl'ﬁ'ﬁ %{M [DJ‘})+ Eup ”Ul{ t;l-"ﬂz{ t]”ﬂ'

= C{llAL - ﬂg”c““*’E[M:-:[ﬂ,:{']} + |21 — Eziiﬂ{ﬁT}}
for sufficiently small T (6.18)

Applying Maximum principle to (6.11)-(6.14), we obtain

”31 il El”{:‘{ﬁr} E 1:-.:"II-{”'III!‘:l i s 112||G3+“'%{MHEH|T]:I + ”zl = EEHG(FDK[H1T]}}
= C{”Jﬂkl T, JH!I-E Hcﬂ+n,%—|:-lwx[u,1-]} + "T-'I]. T JUE FFG(M x[ﬂ,ﬂ}} [6.19]

On the other hand, by using an argument similar to that in the proof of (5.3), we can
show

vy — Uﬂ”l:'.?{M:u:[ﬂ T

< pz | Z1 — 33”‘:1“. % (38, x[0,T]) + pllA1 — J"'LE“CHa % (Mx[o, T]} +C,

:I.._.
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which, together with (6.17)-(6.19), gives

H‘E’I i) El”ﬂ{ﬁT} = GHﬂl 2 fh”:?""““'?m—{x[ﬂ,?“]} I':ﬁ?ﬂj
Combining (6.7), (6.18) and (6.19), we yield
st Alosn uisiomy < CllAs - A2llosea.t (vxpo)
fora < 8 <1, T small enough (6.21)

Recalling A, (s',0) = Az(s',0) in M, we obtain from (6.20) that

| Boer

1= {?Hﬂ'g(M:{[U.T]} s

< —
c"“ﬂr'g.[mx[n,:r‘}) = CllA1 - A

which implies
A1 = Ay in (M x|, T} for T small enough

Therefore, u; = w, in (A x [0,T]) for T small enough.
Thus the solutions of (1.1)-(1.5) provided by Theorem 1.1 is unique,
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