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Abstract In this paper we consider the two-dimensional Muskat free boundary
problem: Aw;(z,t) = 0 in space-time domain Q: (i = 1,2), here ¢ is a parameter, The

unknown surface Typ (free boundary) is the common part of the boundaries of Q, and

T
tda. The free boundary conditions are wy(x,t) = ua(z, t) and —1'5:1-‘?% e —fc;;?j—z =

If the initial normal velocity of the free boundary is positive, we shall prbmre the
existence of classical solution locally in time and uniqueness by making use of Newton's
iteration method.

Key Words  Classical solution; Muskat problem: Newton's iteration method

Classification 35R35.

1. Introduction and Main Result

Muskat problem is a very old open problem, it was proposed by Muskat in 1934
(see [1]). This problem describes the flows of two fluids in porous media, for example,
oil and water. In 1987 Jiang had got a weak formulation for this problem ( [2]). In 1989
Liang and Jiang researched an approximating Muskat problem (see [3]). But up to now
there is not any mathematical result in the existence of weak or classical solutions,

In this paper, we shall prove the existence of classical solution locally in time and
uniqueness by use of Newton’s iteration method (see [4], Theorem 15.6). The solution
is sought as the limit of the sequence

Ini1 = Ty — [DF ()]~ F(2n)

The difficulty is to prove the invertibility of Frechet derivative operator. In order to
state and prove our result, we introduce the following function sSpaces:
Let G be an open set in B*, n = 1,2, define

Crr (@) = C[0, T); C**+(@)), 0<a < i, k=12 .
CENG) = {ve Cstr(@); v e C# (@)} and
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|U|ﬁk+&[{—;} = |1.-"|{:\-;=‘+rr{ﬁ:l -+ |5|1'1.||{:qu—1-'|—-::['§‘]
Denote
CH(@) = {v € CF(@);0(,0) = 0)
CH(G) = {v € CF**(G);v(+,0) = 8,0(-,0) = 0}

Let 2 be a bounded annular demain in B? with C**® boundary 8Q =t U, 't
is the inside boundary and I'” is the outside boundary. T’y € {1 is the initial position
of free boundary such that [y N I'* = B and I'" is inside of 'y and T'" is outside of
I'y. Define that 7 is the part between I't and I'y. For the points of the surface Iy we
introduce the coordinate w; we also denote by z{w) € I'y and #(w) the unit normal to
I’y directed into 7.

Let vy be a given positive number such that the surface {z = z(w) £ 27(w)v,
0 < v < vp} has no selfintersection and doesn’t intersect I'T; let p(w,?) be a function
of class ﬁ?ﬁ"“{[‘ﬂ} such that p(w,0) = 0 and max |p(w,t)] = vp/4. We denote by
Qf; the region bounded by the planes ¢ = 0, ¢ = T, surface 't = I'* x [0,T] and
Tor = {(z,8); 3 = 2(w) + fip(w,t), t € [0,T]}.

The Muskat free boundary problem consists in finding the pressure u®(z,t) (of oil
and water) and function p(w, ) defining an a priori unknown surface I' )3 on the basis

of the conditions

AuF(z,t) =0 in (1.1)
uut (=97 (x4 on s (1.2)
v (2, 8) =g (x,t) onT3 (1.3)
vz, t) =u(z,¢8) onTl,r (1.4)
kta.ut =k 80" onD,p (1.5)
Vo= —kT8u" onl,p (1.6)

Equation {1.1) is from Darcy’s law neglecting gravity, (1.2) and (1.3) are boundary
conditions on fixed boundaries in which n is the exterior unit normal to T'", (1.3)
represents supply of water. (1.4)-(1.6) are free boundary conditions, in which EE =
E=/u=, k= are permeabilities and u* are viscosity coefficients. (1.5) and (1.6) have
the meaning of the law of energy conservation on the unknown boundary I'yjp and V5
1s the velocity of the free boundary in the direction of 7.

We shall assume

=Ty e C** with0 <a <1 (1.7)
k% are constants with kT > &~ > 0 (1.8)
g*(z,t) € CIF(TT) and F,g™ (x, 1) € G}“'“{I""} (1.9)

g~ (z,t) € CHF*(T7) and 8g~ (,2) € C2(T7) (1.10)



86 Yi Fahuai Val.g

The condition (1.11) means the initial speed of free boundary is positive. Because
Va li=o depends on g7 (x, t), % and [g, in the last section, we shall discuss the condi-
tions which guarantee the correctness of (1.11).

Now we can state our main result as follows:

Theorem 1.1 [nder the assutnptions of (1.7)-(1.11), if T is small enough, the
problem (1.1)~(1.6) has a unigue classical solution p € E’%‘*“[ng, ut g c([o, 7);
CH(OF, x {1})).

In next section, we make Hanzawa diffeomorphism to change the problem (1.1)-
(1.6} into a cylindrical domain. In Section 3, we construct an initial approximation and
describe the sketch of the proof of main theorem. In Section 4 we prove the imvertibility
of Frechet derivative operator and prove the main result. In the last section, we drive
out some sufficient conditions which ensure the correctness of the condition (1.11).

2. Reduction of the Problem

To prove the solvability of the problem (1.1)-(1.6), it is convenient to reduce it to
a problem in a fixed domain. To this end we use Hanzawa diffeomorphism presented
in [3]. Suppose vy introduced above is s0 small that mapping r : I'y x [—wyp, vg] — R?
defined by the rule z{w, A) = z(w) + Afi(w) is regular and is one to one. Let the range
of this mapping he
Ny = {-..T-ll:l'.-l.;':,.l'}l}-; {I'-L-',.-:!IL;I ey = [-E-"ﬂ, L-’n.”

The inverse mapping from Ny to Lo % [~, 1p] is defined as follows: 2 — (wiz), A{z)).
We set

$MNw, A) = T2w(2) pmarur,
'i'l:z:ll:‘r"" J‘] = .‘T-.?I"}L(I} |..:=5-_~|:|,.,-|34.]-

We shall show below that for sufficiently small T, the free boundary surface [yr can
be described by the equation

ho(2,t) = Alx) — plw(z),t) =0
This makes it possible to compute unit normal to Capr x {2}:

h
= tElp

= | kol

Further, let x(A) & C*([=0, vo]) such that

3
X =0, i |\ > o
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1
Q) =1, i A < g
4=
J{I{A” < E”ﬂ :

then 14+ x'(AM)p = 2/3 if |p| < vp/4.
For any pl(w,t) € CYTgr), where Lop = Iy x [0, T], with p [t=¢= 0 and maxr,; lpl <
vo/4, we define Hanzawa diffeomorphism

e, B % [0,T] — B2 x [0,T]
in the following manmner:
(z,t) = epr(y, t) with
T =1 if dist (y,I'p) = %L"ﬂ
z = x(w) + (71 + x(n)plw, t))(w) if dist (y,Tg) < %uu.

where y = y(w,7) is in Np and (w,n) are local coordinates of ¥ in 'y % [, 4]. In
local coordinates of Ny x (0,T), we have

eor(w,mt) = (w,n + x(m)plw, t);t) = (w, A1)

where A =5+ x(n)p ]I
The tranﬁfnrma,tmn €, T makes it possible to take the noncylindrical domain ﬂ

into the cylindrical dmnam (5. We can make the change of variables (z,t) = cﬂT{y, t]
and get

vE(y,t) = “ﬂ:{EPT'[?J':I}]
then the problem (1.1)-(1.6) becomes

LvE(y,t)=0 in 0F (2.1)
8,vt(y,t) = gt (y,t) onTg (2.2)
v (y.t) =g (3:t) onlg (2.3)
ot (yt) =v () onlor (2.4)
ktS,8,vT — kT Kpduvt =k 8p0nv™ — k™ Kpu@uu~  onDor (2.5)
hp = —ﬂ:+5p3nv+ + k_"ffwﬂwtﬁ' on I'gr (2.6)

where

2
f i a
tJE— ﬂPJ ﬁij;ﬁy_., z ﬂ'.ﬂ ayi'

ﬂ’.l; 2 aij{F'H dup)y 154,352,

: :ﬂi{.ﬂ:awpaaifj}r 1= i E 2

ap
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aolél* < e Eié; < o1 [€[?

%0,01 > 0, depend on p, T, and (see6])
Sp =1+ (Qup)lpl))?,

Ko = Ew.ﬂ[ﬂf’mﬁ

We now consider a nonlinear operator:
Fp) = 8p+ ﬁ:+SPa5‘ﬁv: - Fc"'prwa:‘uvj;" (2.7)

on the function p e ﬁ’fﬁ'“{Fn] with max |p(w, t)| < vo/4 and t,;.': 15 a solution of (2.1)-
(2.5) with given pE 5’%*‘“{&} where ¢ is a parameter, Obviously (1.1)-(1.6) has
the solution (uZ, p) which is equivalent to the existence of a solution of the equation
Flp) =0.

S0 Theorem 1.1 of Section 1 can be reformulated as follows:

Theorem 2.1 (Reformulated form)  Under the same assumptions as in Theo-
rem 1.1, for a sufficiently small T, there exists o unigue p € 5’%+“(1"'g], with Fp) =0,

Here we suppose £ 18 the only unknown function of the problem because »t s
obtained once p is determined.

3. Construction of an Initial Approximation

It is well known that the first a,ppmximati_nn is important in Newton iteration
method, so at first, let us analyse the value of &p le=0, 5 =0,1. Of course,

P lt=0= 0= Ry(w) € CH(Ty)

and from (1.1)-(1.6) we know u®(x,0) € G‘"“"“(ﬁi}, S0

+ Vi, +
| | =0= = Vel 'ﬂ::l{}
ik | 7 Ay (@,0)

Since V,, = Gpf| w7 hel,
f‘],;p J¢=ﬂ= u.ﬁ'.""{‘i.:?hp} lt=0 ?:;.f.u"-'{:c,ﬂ} = it Ly 'G"_tu'F'{I,,ﬂ;l = H; Ifw:l = CE"L‘}{FQJ

Suppose that pp(w, £ € CHrend+e/2(Tor) satisfies & po t=0= Rj, j = 0,1, (see [7],
p.298, Th.4.3) and

fﬂﬂ|¢d+a,2+nm{1—-nﬂ 8 (3.1)
here C' depends only on |gt(z, [I'}I|,El}+.:.“u,;I and [g7 (z, E]jfc_im{rhj.
Let v admit the following problem
Logt (4,4) =0 in 0 (3.2)
Onvpg (¥:1) = g7 (3,4) on T (3.3)
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Uy t) = g7 (y,t) on I (3.4)
?-';;{'Ih t) = vy (y,t) onIgp (3.5)
k* S py Ot — kY K pouuth = k7 8,p0000py — b~ Kpouwutpy onTor  (3:6)

It is clear that al € C'E"'“{E’_‘:‘:'ﬁ{ﬂ e eha ! A+a/2(02) 5o a, a e G’%*'E{'ET],
it follows that v: € C-‘"“"E'l:ﬂ'“]l by ['E, I'u c Ot ghizt) € C'3+“{F+}, g (z,t)
CLre(r-y. and thc theory of elliptic equations. medm ing gt (y,t) € Gil.q"'“l[l“"’],
Bg~ (y,t) € CET*(I7), we can differentiate (3.2)-(3.6) formally with respect to t, then
we have wau = ff%'*'“{ﬁiL and

e o ufe
0 ottty + 10003 gare ity S Ollomloureasera(in
-+ |Q+|{'ﬂ+n{1"r—] + |5t_§|'+|{;1+n|:11+} - |g_|cd+n{1-.+} - 151:';'_ |i:'2+“|:1"—}]

We call {pp, .-:?'n]' the initial approximation, and we will find ép € C’E *(I'g), such that

oo + &p is the solution of (2.1)-(2.6).

The proof of Theorem 2.1 is based on the theorem of the following with respect to
Newton iteration method ([4], Theorem 15.6):

Eet X, Y be Banach spaces and F : By(zg) CX — ¥ o Cl-map such that

(a) [F'(20)]™" € L(Y, X), |[F'(zo)] ™' F(20)| < e and |[F'(z0)] 7’| < 8;

(b) |[F'(z)] = [F'(Z)]] < klz —F| for all ,T € Br(xo);

(¢) 2kaf <1 and 2o < r
are satisfied. Then F has a unigque zero Z in Baa(zg).

We define F : {?%ﬂ'“{?n} — Q%T“{I‘n} by F(&p) = Flpo + p), here F(po + 6p) is
defined in (2.7).

The main difficulty is to prove [F'(pg)] ™! € L(Y, X), others are easy to be proved be-
cause Flpo) |t=o= 0, and 8¢(F(po))|t=0 = 0, so if T is small enough then |F(pu}131+¢(rﬂ}
is small enough too. The proof of (b) is standard but needs complicated -::aicuiatmns
we omit the detail. In the next section we prove [F'(pg)] ™! € L(C e G’Eq'“(I‘g}]

and estimate the norm of [F'(pg))~". In this way, we complete the proof of theorem
2 :

4. Invertibility of F'(po)

At first we derive out the formula of F'(pg)dp, here 8p € *'? il

F'(po)dp = Dz [Flpo + 78p)] lr=0

= 8:5p + kT 8o 0 (60) + kT (85,4 )8pvt = (6K pgu) Oty — bt K e 0 (607,
= dybp + fH(6p, buyy)

where 85, = (8Sp/9p0)8p + [05:,/0(0up0)|Bubps 6Bpow = (0K pou/Bpo)op
4 [OK pges | 3(Bwp0)]8usdp and v satisfy

Loo(60E) = —(8L,)vs  in O (4.1)
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In(0u Hu i) =0 on FF (4.2)
(6v, )y, 8} =0 onTyg (4.3)
(6v,,) = (6v,) on Tor (4.4)
f*(6p,6v5) = f~(8p,6u,) on Tor (4.5)
Sép + fT(8p, ;51:;;] =G onlgr (4.6)

in which §p and év5; are unknown, and 6L,, is the variation of the operator £, at
# = pp. The invertibility of F'(pg) is that for any & G‘}J"“[Pn}, we must find §p and
]

qﬁvfﬁ satisfying (4.1)-(4.6). In fact we can prove the following theorem:
Theorem 4.1 For any G € C;*(Ty), the proboem (4.1)—(4.6) has o unique

solution [ép,étﬁj], fp € t;_'?ﬂ‘j?f”:'(l"gj and
|'5P|5§.+a,:1~n} = G|G|¢;fr“{rnj

here C is the norm of [F'(po)]™" only depending on |1;§D|{:%+ﬂ, }Sﬁufﬁlc;ﬂ and T.
Proof In order to solve the problem {4.1)-(4.6), as usual, we use the Hanzawa

change of function:
W= = 51';:':.;, —{{ V= u;:;.] O 20T D€pyT) (4.7)

here
; d ' .
éePuT(y{m:ﬁ'J:t} & {EE(M,ALHJE,{L for {yr t) € Ny [D:T]
degoriy(w,n),t) = (0,0) for (y,t) & N x [0,7)

and w,, = vy, © E;DII So n fact the mapping ée,,r is the variation of mapping e, 7. It

is clear that W= = ﬁt?fﬁ = B,;ﬂpiuﬁ,ﬂ on Lgr. It is not difficult to calculate (see [3], page
327), under the change of (4.7), that the problem (4.1)-(4.6) becomes:

LooWE=0 in 0 (4.8)
8.WT =0 onT3 (4.9)
W™ =0 onIs (4.10)
Wt L &ltl;ﬂép =W~ + Onv, ép on Tgr (4.11}
f(6p, W™ + 8puf 6p) = F~(6p, W™ + 8,v,.8p) on Dor (4.12)
Bibp+ fT(6p, WF + 8,v) ép) =G onTor (4.13)

Thus, the existence and the boundedness of the norm of [F'(pp)]~! and, conse-
quently, the existence and unigueness of a classical solution of the problem (2.1)-(2.6)
are a consequence of the well-posedness of the problem (4.8)—(4.13) in the respective
classes:

6p € CFr*(Ty) and W e g;ﬂ(ﬁ*;
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In order to eliminate &p in (4.8)-(4.13), we utilize the condition that the initial speed
of the motion of the free surface is different from zero:

Va |.¢=D= _'i:-'_'anv:::. 1¢='3': '_'ii:_a'f”;:, h:ﬂ on I'g

So v, t=0< 0 and Gnvy, li=n< 0 on ['g. Considering kv |e=0= k™ vy |,—p oD
Iy and kT > k= > 0, we have Gauy | < davt g < 0 on Iy, therefore (BnvE —

Onvy, );=p = 0 on I'g. Since e Cr‘%"*“{ﬁij, if T is small enough, then

~ From (4.11), we get

Substituting (4.14) into boundary conditions (4.12) and (4.13), we have the linear
quasi-stationary diffraction problem for elliptic equations:

L, W* =0 inQF (4.15)
8, Wt =0 onTl3; (4.16)
W~ =0 onTH (4.17)
W- -W* W- —-WT
4+ W+ Gt .
Jr (ant-':r; . ani";n N e aﬂ?-';_}r.:. = 5:11',:;])
W— =Wt wW--Wwt
= f~ W 4+ anr, - on I’ 4.18
! (HE'UHE. — Onlpy Fpo E'?‘u‘ﬂ.?% = 'Cr}r;?-'.;:*u} = 9% ( }
; W— — W ] WwW- —-WTt : W=t
dt(f — ~_—)+f*( - — Wt + 8ol —— _)
dn'u_p[:, = d“'{fpﬂ an'l-:pu - an_?.-'pu aﬂﬂpn lﬂ'ﬂt"lpﬂ
=G onTy (4.19)

It is not hard to show by the traditional method of “freezing” of coefficients, the
existence and uniqueness of the solution W= € C %ffﬂ'{ﬁi] of the problem (4.15)—(4.19)
L=

reduce to the problem of well-posedness of the following model problem:

AWE =0 inQf (4.20)
8, Wt=0 inl} (4.21)
W- =0 onlZ (4.22)
ke, Wt =k~ 8, W~ onTyr (4.23)
S(W™ — W)+ Cok~ 8, W~ =G onlor (4.24)
WH(y,0) = W (y,0) onlTy. (4.25)

here Cp > 0 is a constant.
Next we use the method of parameter extension to solve the problem (4.20)-(4.25),
that is replacing (4.23) and (4.25) by

k*&nﬁf* — vk~ 8,W~ on [yr, (4.23)-



92 Yi Fahuai Vol .9

W*(y,0) =W~ (y,0) on Iy (4.25),

We consider the proboem (4.20)-(4.22), (4.23), (4.24) and (4.25),, When 7 =1,
this problem is just the problem (4.20)-(4.25). When 7 = 0, this problem splits into

two problems:
(AWT =0 in Q3

) Wt =0 on I 0
G, W+ =0 on Ior
W (y,0)=0 on T
so W =0m Qf, and
AW~ =0 in 0
W==0 on I'; (1T}

W™+ CokTa W =3 on gy

It is not hard to prove that the problem (II) has the unique (global) solution W~ €
C7%(Q7) and (see [8], Th. 5.1)

Jw_le.?l-!-al:ﬁ"‘} E Gl |G|ﬂ;-.+¢-|:rﬂ.}

here Cy depends only on Cy, k™ and Ty, I~

In order to get the well-posedness of the problem (4.20)—(4.25), we must have a
uniform a priori estimate with respect to the solutions W & L? !}"'“[ﬁi} of the problem .
(4.20)-(4.22), (4.23),, (4.24) and (4.25),.

It is clear that we only need to prove the estimate in the neighborhood Ny = [0, T
of I'yr. To do this end, we use the local coordinates (w,n) in the neighborhood Ny of
o, After localization, we suppose W2 have compact supports with respect to w in B
and  in [0, +00). Neglecting the term of lower order, we have

ApnWE(w,n,t) =0 inR x B x [0, 7] (4.26)
kY8, W =1k~ 8,W. on B! x [0,7) (4.27)
RW. — W + Cok™8,W. =G on R x [0,T] (4.28)
W (w,0,0) = TW(w,0,0) (4.29)

Carrying out the Fourier transformation with respect to w to (4.26)-(4.29), we get

d*

(—I€1 + Eﬁ)ﬁf =0 inR}xEE x[0,7) (4.30)
K58, W = rk=8, W on B} x [0,7] (4.31)
AW; — QW + Cok=6,W; =G on Bl x [0,T] (4.32)

ﬁ“’f{f,ﬂ,ﬂ] = W= (¢, 0, 0) on E% (4.33)

e —
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here W£(£,n,t) is the Fourier transformation of W= (w,n, t) with respect to w.
From (4.30), considering IE]Iim W+ =0 we know that
Sl

W&, 1) = pr(€, t)eTIo

pE(£,t) are to be determined later on. Substituting it into (4.31)-(4.33), we get

= kFIElpT (6, t) = ThTEIPT(, 1) (4.34)
Gp~ —OpT + CokT|élpT =G (4.35)
p*(€,0) = Tp(£,0) (4.36)
From (4.34), we have
-
pt(E) = T (E1) (4.37)
Substituting (4.37) into (4.33) and (4.36), we get
kT + 1k~ SR
T o + Coklélp = G
p~(£,0)=0

The solution of this ordinary differential equation is

i k—i— ) B L
p £, 1) = m]ﬂ e=Colelle=m Gz, u)dp

Cok Tk~

here Oy = k++?}ﬂ. S0
Walw D= Cokiils Ld f k(w— z,t — p)G(z, p)dz
T w1 o B Fﬂ+'+'r|ai:_ 0 #‘ El . Bt I"L '!-.;"!'
in which s
1 = - 0
YO JHN e Y
@ =T I S Cot? + w?

It is easy to find that K{w,t) is even in w and
10785 e(w, )] < Clw? + t2) 2047+
from this we know that (see the proof of Lemma 1 of [10]) W, (w,0,%) € {‘E %:H‘{Rl] and
W |oaseqty S ClGlomeqmyy (4.38)

From (4.37), we have
“’I"r:ll.j;-t-al:ﬂl] < Glgic_}jaiﬂlj {‘1-39}
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Differentiating with respect to £ in the formula of wy (w,0,t), and considering

73,2 9
'ai‘i:{"""Hf} = _Eﬂ ..{_:;ﬂf i 2

we have that 8, W, (w,0,t) € gf{rﬂml} and

]a‘swfﬁlcjl“fﬂ'iﬁl] E Clg[ﬂ;l-Fn{El} {4-4[}]
From (4.37), we have again

Ja!wjrc;ww} < Cfr.'i;’|c%+,.f31 (4.41)

)

(4.38)-(4.41) point out
W3

i = CFGM}"“[I‘:;}

here C' is independent of T
Comebacking to the problem (4.20)~(4.23)., (4.24) and (4.25),, we have uniform
estimate

i
[H-‘rf |E§n¢“fﬁi} E GFG|G;-.+“|:F{:|:|

of course, C is independent, of 7.
In this way, we have proved the well-posedness of the problem (4.20)0—(4.25). It
means the problem (4.15)-(4.19) has the unique solution W= e ¢ %““[ﬁij and

|L{I':]G§_+&{ﬁi] i: ClGlG‘;.'!“[Fn,'I

From (4.14) we know §p € C2M*(Ty) and 6p [t=0= 0, from (4.13) we have that dibp €
..i}:*“[l“g] and didp o= 0, therefore §p i;j'g:"“'{I‘uj? and

f§ﬂ|§;{+n[p¢] < Clg[ﬁ;ﬂ'“{l"uj

This completes the proof of Theorem 4.1.
Theorem 2.1 has been proved,

5. Analysis of Condition (1.11)

In this last section we give two sufficient conditions which guarantee the correctness
of the condition (1.11),

As we know, at initial time V, = —kT B ut = —k~8,u", so Vi t=0> 0 is equivalent
to dqu o< 0 or S u— l=g < 0.

Lemma 5.1 (First sufficient condition) Assume that I't and Ty are circles
with the same center, T has polar coordinates representation r = f(8), Ty is between
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[+ and [-. IfTo is closer to To, g7(z,0) < 0, g~ (x,0) = cosnt, then, at t =0,
Fptt™ |pe< 0.
Proof We use polar coordinates on t = 0, suppose that it satisfy

%af{ra,ﬁi} + T%agﬁ* =0 inQ*
g+t =—-g"(>0) onIT

7T =g (=const) onTl~

= only

rraat =k~ a.u on Dy

From the maximum principle we get maxu™ = g . Since I'~ has a representation
r = f(8), it follows that &,&~ > 0onI". Set

U* =ktrgat in QF
then U¥ satisfy

+

1 1 cpaca :

(Ei'EUj: + ;BTU:h + ﬁﬂggﬂ_ = in {2

Ut on T

U= >0 onl"

Ur=0U" only

1 . 1

Fﬂfb+ = FETU_ 0711 ru
From the maximum principle we get UF > 0 in 2%, so /£ > 0 on Ty, it means &a~ > 0
on I'p [Sﬂ_ﬁi 11*:}{ U}

Using the perturbation of the interface of the diffraction problem (see [3], Theorem
1.1) we know that

]aﬂ-“i ro "aﬂﬁi lr'u

Ol < IPD = rn|¢2+.;.

so if ['y is closer to Ty, we have
a"“ill‘ﬂ < 0

Lemma 5.2 (Second sufficient condition) Suppose that gH(z,0) <0, 9 (z,0) >
0, if Ty is the solution of steady two-phase Stefan problem, then we have

BpuE(z,0)|p, <0

Proof TFrom assumptions, we know that g and u™(z,0) satisty

Auf=0 inQ* (5.1)
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&t =gt o) ol (5.2)

w =g (>0) onI~ (5.3)

uT=4" =0 on Ty (5.4)
dut du~

.E:+—— bk ;
o k a5 o1 Pr_) [5 5}

If we set

then, from (5.1)-(5.5), U satisfies

AR i=0_SnfTobua
Gl = kFgt con Tt
U=k"g" onl~

By the maximum principle we have
=0 AinF 5= 0 in 27, and 8, <0 on Ty

$0 we have Bﬂuﬂrn <0.

On the other hand, Ty is the zero-level curve of harmonic function U and it is
therefore an analytic curve (see [9]).
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